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Supplement 

The agent-based model Covasim simulates the spread of SARS-CoV-2 among a collection of agents 

representing people. Each agent is characterised by a set of demographic and disease properties: 

• Demographics: 

o Age (one-year brackets) 

o Household size, and uniquely identified household members 

o Uniquely identified school contacts (for people aged 5-18) 

o Uniquely identified work contacts (for people aged 18-65) 

o Average number of daily community contacts (multiple settings / contact networks 

modelled, described below) 

• Disease properties: 

o Infection status (susceptible, exposed, recovered or dead) 

o Whether they are infectious (no, yes) 

o Whether they are symptomatic (no, mild, severe, critical; with probability of being 

symptomatic increasing with age, and the probability of symptoms being more severe 

increasing with age) 

o Diagnostic status (undiagnosed, diagnosed) 

o Level of neutralizing antibodies (see vaccine section) 

Transmission is modelled to occur when a susceptible individual is in contact with an infectious 

individual through one of their contact networks. The probability of transmission per contact is 

calibrated to match the epidemic dynamics observed and is weighted according to whether the 

infectious individual has symptoms, the type of contact (e.g. household contacts are more likely to 

result in transmission than community contacts), and the level of vaccine or exposure-acquired 

protection that the susceptible person has.  

 

Model population 

A synthetic model population is initialized comprising of 100,000 people. The age and household size 

structure of the model population is based on the Victorian population. 

  

Figure S1: Population age structure and household size distribution, March 2021 estimates from Australian 

Bureau of Statistics [1, 2]. 
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Household contact network: household size and age structure 

The household contact network was set up by explicitly modelling households. The households size 

distribution for Australia [2] was scaled to the number required for the number of agents in the 

simulation. Each person in the model was uniquely allocated to a household. To assign ages, a single 

person was selected from each household as an index, whose age was randomly sampled from the 

distribution of ages of the Household Reference Person Indicator in the 2016 Census [2]. The age of 

additional household members were then assigned according to Australian age-specific household 

contact estimates, by drawing the age of the remaining members from a probability distribution based 

on the row corresponding to the age of the index member. 

 

Primary school contact networks 

Over time, the complexity of the schools networks in the model have increased.  

In the model’s latest implementation, primary schools are modelled as a collection of classrooms, 

aggregated into schools. Each student is assigned to a classroom with others of the same age, and 

each classroom has an assigned teacher (Figure S2). Primary school mixing includes student-student 

contacts within classrooms, student-student contacts between students in different classrooms, 

teacher-teacher contacts and teacher-student contacts within the classrooms that they are assigned 

to. 

 

 

Figure S2: Contact networks within primary schools in the model. Primary schools are modelled as a collection 

of classrooms, where students of the same age are assigned a teacher. Primary schools include student-student 
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classroom contacts, student-student non-classroom contacts, teacher-teacher contacts and teacher-student 

contacts.  

 

Secondary school contact networks 

Secondary schools are modelled with a lower emphasis on assigned classrooms reflecting elective 

subjects, and hence secondary school students have a greater number of classroom contacts than 

primary school students. Secondary schools in the model include student-student classroom contacts, 

student-student non-classroom contacts, teacher-teacher contacts and teacher-student contacts 

(Figure S3). 

 

 

Figure S3: Contact networks within secondary schools in the model. Secondary school mixing includes student-

student classroom contacts, student-student non-classroom contacts, student-teacher contacts, and teacher-

teacher contacts. Secondary school students have more contacts than primary school students because they 

attend multiple classes. 

 

Table S1: Model parameters related to schools 

Parameter area Estimate Source 

Primary school   

Average school size 298 
Number of primary students (2,267,564 in 2020; ABS [3] Table 
42b) divided by number of Primary + Primary/secondary schools 
(6249+1363 in 2021; ABS [3] Table 35b). 

Average class size 22 Average class size of primary schools. Victorian government [4] 

Average number of student-student non-
classroom contacts per day, per student 

2 
Assumption; tested in sensitivity analysis. This impacts the 
efficacy of test-to-stay of class contacts verses close contacts or 
entire school. 
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Average number of teacher-teacher 
contacts per day, per teacher 

20 
Number of FTE primary teachers (152,281 in 2020; ABS [3]) 
divided by number of primary schools (6249+1363) 

Secondary school   

Average students per school 622 
Number of secondary students (1,738,083 in 2020; ABS [3] 
Table 42b) divided by number of Secondary + 
Primary/secondary schools (1433+1363; [3] Table 35b) 

Average teacher/student ratio 12 
ABS data. [3] suggesting secondary schools have on average 
12.1 students to one teacher. 

Average number of student-student 
classroom contacts per day 

44 
Average class size in secondary school of 22 ([5]; page 354), 
assuming two unique classrooms of contacts per student per 
day. 

Average number of student-student non-
classroom contacts per day 

5 
Assumption; tested in sensitivity analysis. This impacts the 
efficacy of test-to-stay of class contacts verses close contacts or 
entire school. 

Average number of teacher-teacher 
contacts per day 

5 Assumption. 

Average number of teacher-student 
contacts per day, per student 

6 Assumes students have six classes per day 

Probability of transmission per contact per 
day (without vaccines or NPIs) 

  

Student-student (primary classroom) 0.25 Delphi process; Scott et al. [6] Measured as relative to 
household transmission per contact - e.g. a typical day's worth 
of contact in school is 75% less likely to result in transmission 
than a typical day's worth of contact at home. Non-classroom 
primary school contacts equivalent to outdoor contacts; 
secondary school classroom contacts halved to account for 
shorter interactions. All transmission probabilities are scaled in 
sensitivity analyses when NPI efficacy is tested. 

Student-student (primary non-classroom) 0.03 

Student-student (secondary class contact) 0.12 

Student-student (secondary close/social 
contact) 

0.12 

Teacher-teacher 0.25 Assumption that transmission risks in schools are equivalent for 
all types of contacts. Note that the model has independent 
parameters to account for differences in susceptibility by age 

Teacher-student (primary) 0.25 

Teacher-student (secondary) 0.12 

 

 

Work contact networks 

Within the model, people aged 18-65 years were classified according to: 

• Whether they were working or not (69% classified as working, based on ABS employment data) 

• Industry type, with the workforce classified as:  

o hospitality or entertainment (9% of workers);  

o retail (11%); and  

o other non-retail workers (80%; including 7% construction). 

Two different workplace types are included based on the above classification: public facing (e.g. retail, 

hospitality) and non-public facing. Contact networks for non-public facing workplaces are created as 

a collection of disjoint, completely connected clusters for the percentage of people aged 18-65 who 

worked in those settings. The mean size of each cluster is equal to the estimated average number of 

daily work contacts (Table S2). For the percentage of people aged 18-65 who worked in public facing 

workplaces, their workplace networks consist of a completely connected cluster with other work 

colleagues, as well as each day having a number of random contacts with the community.  
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Additional contact networks 

An arbitrary number of additional networks can be added. Each network layer requires inputs for: the 

proportion of the population who undertake these activities; the average number of contacts per day 

associated with these activities; the risk of transmission relative to a household contact (scaled to 

account for (in)frequency of some activities such as pubs/bars once per week); relevant age range; 

type of network structure (random, clustered, or specialized [as per schools/workplaces]); and 

effectiveness of quarantine and contact tracing interventions. Parameters for the networks currently 

in the model are in Table S2.  

 

Parameter values for each contact network 

Table S2 shows the parameters that define each contact network in the model. Unless otherwise 

noted, parameters are derived in [6] from a mix of published and grey literature and a Delphi 

parameter estimation process. The columns refer to: 

• Network structure type: Clustered refers to a network structure comprised of disjoint, completely 

connected groups of contacts. Random refers to individuals being allocated connections to anyone 

else in the network. Random networks are also dynamic and regenerated each day. Public facing 

networks are a combination of completely connected clusters for staff, who are then connected 

to random community members 

• Mean contacts: The average number of contacts per person in each network. Each person in the 

model has their individual number of contacts draw at random from a Poisson distribution with 

these values as the mean. For the social network layer, a negative binomial distribution was used 

with dispersion parameter 2 to account for a longer tail to the distribution. 

• Mean public-public contacts: For the percentage of people who participate in an activity, the 

average number of contacts they have with other members of the public (draw at random from a 

Poisson distribution with these values as the mean)  

• Mean public-staff contacts: For the percentage of people who participate in an activity, the 

average number of contacts they have with staff (draw at random from a Poisson distribution with 

these values as the mean)  

• Relative transmission risk: The transmission probability per contact is expressed relative to 

household contacts, and reflects the risk of transmission depending on behaviour. For example, a 

casual contact in a public park is less likely to result in a transmission event compared to a contact 

on public transport. Similarly, the relative transmission risks between staff-staff, public-public and 

staff-public are characterised for public-facing workplaces. 

• Percentage of population: Each network will only include a subset of the population e.g. every 

person has a household, but not every person regularly uses public transport. 

• Age bound: Each network will only include agents whose age is within this range. 
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Table S2: Contact parameters for each of the networks in the model. 

Contact network 
Network 
structure 

type* 

Mean 
contacts 

Mean 
public-
public 

contacts 

Mean 
public-

staff 
contacts 

% of 
workforce 

Relative 
transmission 

risk 

Relative 
transmission 

risk (staff- 
staff) 

Relative 
transmission 
risk (public- 

public) 

Relative 
transmissio
n risk (staff-

public) 

% of 
population  

Age 
bound 

House Specialized 4    1.00      

School Specialized          5-17 

Non-retail work Specialized 5   0.80 0.28      

Retail work Public facing 5 8 2 0.11  0.28 0.04 0.04 0.70 12+ 

Community (general) Random 1    0.10    1.00  

Places of worship Clustered 20    0.04    0.11  

Community sport Clustered 30    0.07    0.34 4-30 

Entertainment Public facing 25 8 2 0.02  0.28 0.01 0.01 0.30 15+ 

Cafe/restaurant Public facing 5 8 2 0.02  0.28 0.04 0.04 0.60 12+ 

Pub/bar Public facing 5 8 2 0.03  0.28 0.06 0.06 0.40 18+ 

Public transport Random 25    0.16    0.11 15+ 

Public parks Random 10    0.03    0.60  

Child care Clustered 20    0.25#    0.55 1-6 

Social Random 
6 

(disp=2) 
   0.12    1.00 15+ 

Aged care Clustered 12    0.58    0.07 65+ 

 

 

Contact tracing 

Following detection of a positive case, the model initiates a contact tracing algorithm, which varies 

depending on tracing policies at the time, potential capacity constraints, and different algorithms for 

people who are identified (i.e. duration of quarantine and testing requirements). The basic algorithm 

is as follows: 

1. Day 0: Test is taken by index case 

2. Day 1 (24 hours following test^): Positive test results are returned, index case is notified and enters 

isolation. 

3. Day 2 (48 hours following test being taken^): Contact tracing completed, with contacts having a 

setting-specific probability of being detected (Table S3), reflecting differences in the level of 

difficulty in identifying contacts in that network (e.g. households vs public transport contacts), or 

policies that exempt settings from tracing. Specific requirements are put in place for identified 

contacts, that can include different durations of quarantine or requirements to test. Tracing can 

take place at the individual or household level (i.e. if a contact is identified and required to 

quarantine, their household may need to quarantine as well).  

4. Day 3 (72 hours following test^): Test results for identified contacts become available, and any 

contacts who returns a positive initial test would then have their contacts traced within the next 

24 hours, in the same manner as the index case. 

^Test return time is modelled to deteriorate as testing volume increases, based on Victorian 

Department of Health data. Capacity constraints can be applied for particular settings as case numbers 

increase; however they do not apply to household, school or childcare contacts who are assumed able 

to conduct their own tracing.  
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Table S3 shows parameters that define the contact tracing through each network in the model.  

• Contact tracing probability: Probability that each contact can be identified in order to 

quarantine. This has changed over time depending on the COVID-19 strategy (elimination versus 

suppression) and capacity of the tracing system. 

• Effectiveness of quarantine and isolation: When a close contact is asked to quarantine for 14 

days, or a confirmed case asked to isolate while they are infected, these parameters represent 

the effectiveness of at reducing transmission through the specific networks. For example 

quarantine is assumed to have no impact on household transmission and greater impact on 

other contacts, reflecting compliance. 

 

Table S3: Contact tracing parameters for each of the networks in the model. 

Contact network 

Assumed 
contact 
tracing 

probability 
(low 

cases)^ 

Assumed 
contact 
tracing 

probability 
(high 

cases)# 

Assumed self-
tracing 

probabilities& 

Assumed 
contact 
tracing 

probabilities 
during 

Omicron 
outbreak* 

Assumed 
effectiveness 

of 
quarantine 
on network 

Assumed 
effectiveness 
of isolation 
on network 

House 0.9 0.9 0.9 0.9 0.00 0.80 

School 0.9 0.9 0.72 0 0.99 0.99 

Non-retail work 0.5 0.2 0.4 0 0.90 0.90 

Retail work 0.5 0 0 0 0.90 0.90 

Community 
(general) 

0.1 
0 0 0 

0.80 0.80 

Places of worship 0.5 0 0.15 0 0.99 0.99 

Community sport 0.5 0 0.15 0 1.00 1.00 

Entertainment 0.5 0 0.15 0 1.00 1.00 

Cafe/restaurant 0.5 0 0.15 0 1.00 1.00 

Pub/bar 0.5 0 0.15 0 1.00 1.00 

Public transport 0.1 0 0 0 0.99 0.99 

Public parks 0.1 0 0 0 1.00 1.00 

Child care 0.9 0.9 0.72 0.5 0.99 0.99 

Social 0.4 0.2 0.32 0.25 0.50 0.80 

Aged care 0.9 0.9 0.90 0.9 0.80 0.80 

^Assuming extensive interview with Department of Health, in the context of elimination 

# In the context of elimination, but with high case numbers such that capacity is limited and prioritized. As case 

numbers increase, tracing probabilities are extrapolated between the low case and high case number limits, 

reaching the high case number limits at 500 cases per day. 

& Assuming no input from Department of Health, and so probabilities are scalable with case numbers. 

Requires information systems to be accessible for people who test positive. 

* Following the changed definition, from 1 Jan 2022, that close contacts are household contact or people who 

have spent more than 4 hours in a household-like context together. 

 

Testing 
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All people with severe disease are assumed to be tested. For people with mild symptoms, the model 

includes a per-day probability of seeking a test, which is determined through model calibration. As 

rapid antigen tests have become available, the model includes a per-day probability of seeking a RAT 

as well. 

The model also includes a per-day probability of asymptomatic people seeking either a PCR test or a 

RAT in more recent analyses (i.e. people without COVID-19, as well as people who have an 

asymptomatic infection). The probability of asymptomatic PCR testing is calibrated to match the total 

number of tests processed. Asymptomatic RAT testing can be implemented at different rates for 

different sub-populations; for example teachers could be modelled to test twice weekly as part of a 

surveillance program.  

 

Table S4: Test sensitivity parameters. 

Test sensitivity   

PCR test sensitivity 0.87 Arevalo-Rodriquez et al. systematic review [7] 

Rapid antigen test sensitivity 0.773 

Muhi et al. [8] Lower bound selected to account for 
inconsistent self-use. Note that PCR is modelled as 
having 87% sensitivity in real world use (systematic 
review Arevalo-Rodriguez et al. [7]) 

 

Vaccines and immunity  

In the model, vaccination acts to reduce the probability of acquiring an infection when a contact occurs 

with an infectious case, as well as the probability of developing symptoms (both mild and severe) for 

people who are vaccinated and become infected.  

The implementation and parametrization of vaccines has changed over time as new information has 

become available. Originally, for the delta variant analyses associated with the roadmap [9] and 

original outbreak analyses, vaccines were implemented with single efficacy values for protection 

against infection, symptoms and severe disease that did not change over time, with the exception of 

a time-lag for immunity to develop (Table S5, Figure S4). 

The vaccine’s prevention of infection is approximated as “leaky”, meaning that each person vaccinated 

has reduced but non-zero risk of becoming infected based on the vaccine efficacy (as opposed to an 

“all or nothing” vaccine, where 80% efficacy means that 80% of people have perfect protection and 

20% have no protection).  

Multiple vaccine interventions were implemented in the model, with each vaccine intervention 

defined by vaccine type and time between doses (e.g. AstraZeneca 12-weeks). People who received 

their first vaccination were assumed to receive their second at the scheduled time, and vaccine 

immunity (protection against infection and disease) was modelled to increase over time. The time to 

reach the estimated peak efficacies reported in Table S5 was dependent on vaccine type and time 

between doses, and the immunity profile assumed for the Pfizer 3, 6 and 8-week and the AstraZeneca 

12 and 6-week vaccinations are shown in Figure S4. 

 

Table S5: Original vaccine efficacy parameters against the delta variant, based on estimates for vaccines 

against the delta variant from Imperial College London, London School of Hygiene and Tropical Medicine and 

Warwick University from June 2021 [10]. 
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Vaccine impact Infection Onward 
transmission 

Symptoms Hospitalization ICU Death 

Overall protection: Pfizer 1 47% 33% 47% 71% 71% 71% 
Overall protection: Pfizer 2 80% 56% 85% 87% 89% 92% 
Overall protection: AstraZeneca 1 43% 24% 43% 69% 69% 69% 
Overall protection: AstraZeneca 2 62% 45% 71% 86% 88% 90% 

 

 

 

Figure S4: Vaccination immunity profile over time. Vaccinations were modelled according to vaccine type and 

time between doses and had a time-varying protection that depended on the vaccine type and time between 

doses.  

 

 

However, but as more evidence has become available, the model implementation has since been 

updated and now includes waning of immunity over time. Currently, individuals are modelled to have 

a level of “neutralizing antibodies” (NAbs). NAbs can be acquired through either vaccination or 

infection, with different doses of different vaccines lead to different levels of NAbs. NAbs are then 

assumed to wane over time following an exponential function. A separate logistic relationship is then 

modelled that relate a person’s NAb levels to estimates for protection against infection, symptoms 

and severe disease [11]. For the Pfizer and AstraZeneca vaccines, the induced peak NAb levels 

following vaccination and rate of waning were calibrated to align with UK SAGE estimates [12] for 

protection against infection, symptoms and severe disease from the Delta variant (Figure S5, Table 

S6). The peak NAbs following a third dose were calibrated to produce the increase in protection from 

the published literature [13, 14] (Table S7). 

Note that although cellular immune response is not modelled explicitly it is captured through the 

functions translating NAb levels into risk reduction against infection, symptomatic infection and 

severe disease; for example, even very low NAb levels result in protection against symptomatic and 

severe disease which is likely due to components of the immune response other than NAbs. 

 

0

0.2

0.4

0.6

0.8

1

0 14 28 42 56 70 84 98

P
ro

te
ct

io
n

 a
ga

in
st

 in
fe

ct
io

n

Days since first dose

Immunity profile of vaccination schedules

Pfizer 4 weeks Pfizer 6 weeks AZ 6 weeks AZ 12 weeks



10 
 

  

Figure S5: Estimated efficacy of Pfizer (blue) and AstraZeneca (red) vaccines against Delta variant over time. 

Time between consecutive Pfizer doses are assumed to be 3 weeks (second dose) and 5 months (third dose). 

Time between AstraZeneca vaccines is assumed to be 12 weeks, followed by a third dose of Pfizer 5 months 

later.  curve assumes third dose of Pfizer. Dots correspond to estimated efficacy values from UK SAGE, Sep 2021 

[12]. 

 

Table S6: Peak vaccine efficacy against Delta, based on implementation in Figure S5, and UK SAGE, Sep 2021 

estimates [12]. 

 
Peak protection against 

infection 
Peak protection against 
symptomatic infection 

Peak protection against 
severe disease 

Vaccine Dose 1 Dose 2 Dose 1 Dose 2 Dose 1 Dose 2 

Pfizer 35% 82% 55% 88% 86% 100% 

AstraZeneca 21% 55% 45% 69% 71% 96% 

 

Table S7: Relative effectiveness of Pfizer booster dose compared to effectiveness of two doses after five 

months, by vaccine [13, 14]. 

Vaccine received for first 
doses 

Infection Symptomatic infection Severe infection 

Pfizer 94% 94% 99.9% 

AstraZeneca 88% 88% 99.7% 
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Virus strains 

The model transmission parameters are calibrated to the variant in circulation at the time. The 

incubation period was shortened to a mean time from exposure to becoming infectious of 3.71 days, 

compared to 4.50 days for the wild type virus [15]. Disease prognoses (e.g., age-specific probability of 

requiring hospitalization, ICU or of dying) were updated to reflect the increased severity of the strain 

[16] (adjusted odds ratio for hospitalization, ICU and death of 2.08 relative to wild type; see appendix). 

 

Model calibration 

Model parameters for transmission and testing were calibrated to data on daily new detected cases, 

hospitalisations and ICU from the Delta COVID-19 epidemic wave in Melbourne over the July-

September 2021 period [9]. The model was initialised with a population of 100,000 agents, and the 

overall transmission risk per contact (which multiplies the transmission probabilities in Table S1 for 

each layer), the per-day probability of a symptomatic individual seeking testing were varied such that 

the distribution of model outcomes for diagnoses, hospitalizations and number of tests was centred 

near the actual epidemic trajectory. For additional details see [9]. 

For this analysis, the model was initialized with only a single case in a school, as described in the main 

report, however the transmission and testing parameters were based on this previous calibration. 

 

Disease prognosis 

People in the model who became infected had an age-specific probability of becoming symptomatic 

or developing severe or critical disease. These probabilities are shown in Table S8 for unvaccinated 

people, and are modified according to vaccination status (Figure S5).  

People who were infected and had severe or critical disease also had an age-specific probability of 

being in hospital or ICU, based on Knock et al. [17]. I.e. in the model, the probability of ICU given being 

in a critical condition is not necessarily 1, for example for people over 70 years.  

 

Table S8: Age-specific susceptibility, disease progression and mortality risks for unvaccinated people, Delta 
variant. 

Age 
bracket 

Relative 
susceptibility* 

Pr(symptomatic 
| infection)^ 

Pr(severe | 
infection)# 

Pr(critical | 
infection)# 

Pr(death | 
infection)# 

Pr(hospital 
| severe)## 

Pr(ICU | 
critical)## 

0-4 0.34 0.533 0.016 0.00006 0.00002 1 1 

5-9 0.34 0.533 0.016 0.00006 0.00002 1 1 

10-14 0.34 0.533 0.016 0.00010 0.00002 1 1 

15-19 1 0.533 0.016 0.00017 0.00002 1 1 

20-24 1 0.679 0.045 0.002 0.00011 1 1 

25-29 1 0.679 0.045 0.002 0.00011 1 1 

30-34 1 0.679 0.076 0.004 0.00035 1 1 

35-39 1 0.679 0.076 0.004 0.00035 1 1 

40-44 1 0.679 0.109 0.009 0.00107 1 1 

45-49 1 0.679 0.109 0.009 0.00107 1 1 

50-54 1 0.679 0.158 0.030 0.00180 1 1 

55-59 1 0.679 0.158 0.030 0.00180 1 1 

60-64 1.24 0.803 0.308 0.050 0.00992 1 1 
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65-69 1.24 0.803 0.308 0.050 0.00992 1 1 

70-74 1.47 0.803 0.440 0.090 0.05012 1 0.71 

75-79 1.47 0.803 0.440 0.092 0.05012 1 0.71 

80-89 1.47 0.803 0.550 0.297 0.10007 1 0.10 

90+ 1.47 0.803 0.550 0.297 0.12161 1 0.10 
*Zhang et al. [18] found children <14 had 34% less susceptibility to adults, and people>65 years had 47% increased 
susceptibility 
^Meta analysis; Sah et al. [19] 
# Victorian Department of Health Delta wave (2021) data 
## Knock et al. [17] used to calculate age-specific pr(hospitalization or ICU | infection with wild type); This implies that in 
the model, only a percentage of people with critical disease end up in ICU, according to age-specific pr(ICU|infection) from 
Knock et al. 

 

Hospital length of stay 

Length of stay in hospital was calculated separately for people who do or don’t go to ICU. Victorian 

data was used from the Delta variant epidemic wave July-September 2021 (Figure S6). Data were 

separated by age but were not as granular as ICU data (Table S10 and Figure S7) due to small numbers 

(Vic only vs all of Australia data). For people in ICU, ICU days are included as hospital days. 

 

Table S9: Values used to fit lognormal distribution number of ward days: Victorian data from Delta variant 
2021 epidemic wave. 

 Median Percentile 05 Percentile 25 Percentile 75 Percentile 95 

People who went to ICU 

0-59 3.2 0.0 1.4 9.0 18.0 

60+ 6.8 0.4 0.5 7.0 14.9 

People who did not go to ICU 

0-59 4 1 1 8 13 

60+ 3 1 2 7 13 
 

 

Figure S6: Distribution of length of stay in hospital by age, Victorian data from Delta variant 2021 epidemic 

wave. Left: people who did not go to ICU. Right: people who did go to ICU. 

 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

P
ro

p
o

rt
io

n

Days

Fitted cumulative distribution: hospital 
length of stay for non-ICU patients

16-59

60+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30

P
ro

p
o

rt
io

n

Fitted cumulative distribution: hospital 
length of stay (ward + ICU) for ICU 

patients

0-9 years

10-19 years

20-29 years

30-39 years

40-49 years

50-59 years

60-69 years

70-79 years

80-89 years



13 
 

ICU length of stay 

ICU length of stay was extracted from SPRINT SARI, in 10-year age categories, based on national data 

from the Delta variant epidemic waves July-September 2021. Linear regression was used to smooth 

median/IQR to ensure consistent pattern with increasing age (Table S10). Lognormal distributions 

were then fitted to the quantile estimates in Table S10, with the distributions (Figure S7) used as 

model inputs. 

 

Table S10: Fitted values for ICU length of stay used in the model 

 Fitted median Fitted 25-percentile Fitted 75-percentile 

0-9 years 3.84 2.94 4.89 

10-19 years 3.96 2.81 5.52 

20-29 years 4.07 2.67 6.16 

30-39 years 4.19 2.54 6.79 

40-49 years 4.31 2.41 7.42 

50-59 years 4.43 2.28 8.06 

60-69 years 4.55 2.15 8.69 

70-79 years 4.67 2.02 9.32 

80-89 years 4.78 1.88 9.96 
 

 

Figure S7: Distribution of length of stay in ICU by age, national data from Delta variant 2021 epidemic wave.  

 

 

Policies 

The policies being modelled apply to different contact networks in the model, and have been derived 

through calibration to past epidemic outbreaks in Victoria and NSW [6, 20, 21]. 

 

Table S11: Policy impacts in the model. 

Policy area Policy Impact in model 

Childcare Authorized or vaccinated 
parents only 

Reduce transmission by 60%. Based on 40% reduction in 
enrolment (authorized only component), 50% of remaining 
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children are excluded with the vaccination policy, and an overall 
assumed additional 50% reduction due to NPIs ([0.6 + 0.4*0.5 ] 
*0.5). 

Schools Closed Attendance reduced to 9% for vulnerable children  
Open with NPIs Full attendance and 50% reduction in transmission risk in school 

setting. Applied independently per year level.  
Cohorting When this policy is in place, the probability of transmission per 

school contact based on the proportion of time spent in person 
(e.g. 3/5 for three days per week). Applied to specific year levels. 

Café/restaurant Take-away only 30% of venues closed; venue capacity reduced to 0; 35% reduction 
in transmission risk per contact  

Outdoor only with 4sqm rule 80% reduction in number of contacts per person; 50% reduction in 
transmission risk per contact  

4 sqm rule 50% reduction in number of contacts per person 

Pub/bar Take-away only 30% of venues closed; venue capacity reduced to 0; 35% reduction 
in transmission risk per contact  

Outdoor only with 4sqm rule 80% reduction in number of contacts per person; 50% reduction in 
transmission risk per contact  

4 sqm rule 50% reduction in number of contacts per person 

Retail Essential only 20% of retail closed; 40% reduction in contacts for retail work that 
remains open  

4 sqm 50% reduction in contacts 

Places of worship Closed Contacts in setting reduced to zero  
Outdoor only 80% reduction in transmission risk per contact  
4 sqm 30% reduction in transmission risk per contact 

Community sport Closed Contacts set to zero 

Outdoor 
gatherings 

2 for exercise 50% reduction in transmission risk in social and public park 
networks  

<10 outdoors + no home visitors 20%, 40% and 40% relative reductions in transmission risk in 
community, social and public park networks  

<50 outdoors + 5 visitors at 
home 

20% reduction in community and social contacts, 10% reduction in 
public park contacts 

Non-retail work Work from home if possible, 
construction closed 

20% of workforce removed from work network; 40% relative 
reduction in transmission risk per work contact; 33% reduction in 
transmission risk per transport contact and community contact; 
10% increase in household transmission risk  

Work from home if possible, 
construction open 

13% of workforce removed from work network; 40% relative 
reduction in transmission risk per work contact; 20% reduction in 
transmission risk per transport contact and community contact; 
10% increase in household transmission risk 

Entertainment Closed Contacts turned off  
Outdoor only, 10 per group 70% reduction in number of contacts per person; 80% reduction in 

transmission risk per contact  
4 sqm 70% reduction in number of contacts per person 

Mobility 5km 30-70% reduction on community transmission  
10km 20% and 50% reduction in community and transport transmission 

risks 

Masks Mandatory 30% reduction in transmission risk in work, entertainment; 
transport, aged care settings; 25% reduction in community, social, 
public parks and places of worship; 20% reduction in schools; 10% 
reduction in cafes, restaurants pubs and bars   

Indoors only 30% reduction in transmission risk in work, entertainment; 
transport, aged care settings; 25% reduction in places of worship; 
20% reduction in schools; 10% reduction in cafes, restaurants 
pubs and bars  

 

 

Model implementation 
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The model is implemented in Python and is available in an open access repository 

(https://github.com/InstituteforDiseaseModeling/covasim), where any elements can be adapted to a 

particular context or research question. Individual simulations can be run on a personal computer 

without requiring other software, with a single simulation taking between 5-20 seconds per 30-day 

period, depending on the epidemic size (with bigger outbreaks taking longer to simulate as more 

contact tracing, quarantine or isolation algorithms need to be applied). Therefore, while testing can 

be conducted locally, to run 1000 simulations for each scenario requires parallel runs on a server with 

a larger number of processors.  
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Parameters used to define scenarios 

Scenario type 1: prospective outbreak analyses (elimination strategy context) 

These scenarios were applied in the context of no community cases, to assess the outbreak risk 

associated with incursions into the community from hotel quarantine or other sources. This type of 

scenario was useful for policy in the context of an elimination strategy.  

 

 

Figure S8: Schematic of outbreak analysis with dynamic policy changes.  

 

Parameters that were varied to define scenarios were: 

• Initial policy conditions: any combination of policies from Table S11. 

• Number of agents infected at t=0 to start outbreak: typically this would be one, but in specific 

cases where it was known that multiple incursions had occurred simultaneously, the model 

could be initialized with multiple simultaneous incursions. 

• Contact tracing algorithm on detection of cases: defined by values for the parameters in Table 

S3, setting the probability of detecting contacts through different networks and the likelihood 

of people complying with quarantine or isolation instructions.  

• Thresholds for triggering policy changes: pairs of inputs for (7-day average daily detected 

cases, policies). In the model, if the 7-day average daily detected cases were reached, it would 

update the set of policies. The new policies could be any collection of those in Table S11. 

Multiple thresholds could also be used, for example allowing combinations such as “if the 7-

day average reaches 10 then close hospitality, if it reaches 20 additionally close schools and 

non-retail work”.  

The principal output measure for each scenario, defined by the inputs above, was the percentage of 

simulations where the epidemic reached different sizes over a fixed period (e.g., 90 days). 

 

Scenario type 2: reactive outbreak analyses (elimination strategy context) 

These scenarios were similar to scenario type 1 but were applied during specific outbreaks, rather 

than when no outbreaks were occurring. They were implemented similarly to scenario type 1 but 

included additional constraints on parameters to ensure the simulated outbreak accurately 

represented the specific real world outbreak: 
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• Initial policy conditions: those in place when outbreak commenced. 

• Number of agents infected at t=0 to start outbreak: based on number of incursions that 

occurred in the real world. 

• Contact tracing algorithm on detection of cases: extracted from government contact tracing 

databases.  

• Thresholds for triggering policy changes: for the past, policies set to change over time as 

occurred in the real world. For the future, additional trigger thresholds and/or policy changes 

could be implemented as scenarios. 

Scenario options were therefore restricted to future policy changes. The principal output measure for 

each scenario, defined by the inputs above, was the percentage of simulations where the epidemic 

reached different sizes over a fixed period (e.g., 90 days). The difference between this and scenario 

type 1 was that simulations were excluded from these calculations if they did not align with the past 

observed detected cases (e.g. if 20 cases were detected in the first week in the real world, then any 

simulated outbreak not meeting that condition to some tolerance was discarded). 

 

Scenario type 3: easing restrictions (elimination strategy context) 

These scenarios were useful at the end of an outbreak or epidemic wave, when scenarios around 

easing restrictions and resurgence risk were being explored. They were implemented analogously to 

scenario type 2, but over a much longer time scale. This involved simulating outbreaks that became 

large, and in the model implementing various policy and behavioural changes at different time points 

according to data on what occurred. Specifically: 

• Initial policy conditions: those in place when outbreak commenced. 

• Number of agents infected at t=0 to start outbreak: could be varied depending on the nature 

of the outbreak (e.g. if frequent cases were entering the community from interstate this could 

be a larger number). 

• Contact tracing algorithm on detection of cases: extracted from government contact tracing 

databases; able to decrease in efficacy with epidemic scale.  

• Thresholds for triggering policy changes: for the past, policies set to change over time in the 

model as occurred in the real world.  

The model was calibrated analogously to the scenario type 2, where simulations were only retained if 

they were consistent with the actual outbreak. This resulted in a collection of simulations that met the 

conditions and past policy changes observed in the real world, which could then be used for further 

scenario analyses.  

Of the retained simulations, the main outcome measure for each scenario was the probability of 

reaching >N diagnoses per day following the easing of restrictions (i.e., “resurgence risk”), and how 

this varied according to the timing and extent that restrictions were eased. 

 

Scenario type 4: health system utilization (control strategy context) 

These scenarios were useful when a control strategy rather than elimination strategy was in place. 

Scenarios were implemented analogously to scenario type 3, however with different key outputs 

being considered (e.g. hospital and ICU demand rather than the number of cases).  
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