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Figure S1: Manhattan plot of GWAS on rmtCN (A) before and (B) after correction for blood cell counts

in the AFR cohort. Only chromosome 1 is displayed.
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Figure S2: Sensitivity of association of mtDNA copy number with cardiac phenotypes to model choice.

(A) The x-axis shows phenotypes arranged in order of phecode number such that similar phenotypes

cluster together, and the y-axis shows the negative log of the association p-value. (Top panel) A model

closely mimicking that used by Hägg et al. where, in addition to lrmtCN, we include sex, age, age2,

neutrophil %, lymphocyte %, total white blood cell count, and 20 PCs as predictors. (Middel panel)

The same as previous model except for the addition of platelet count as a covariate. (Bottom panel) The

model used in this study where we use rlrmtCN (residuals from the model described in the main text),

sex, age, and age2, and 20 PCs as predictors. (B) Forest plot illustrating the change in effect size for one

phenotype (hypertension and renal disease) in the EUR cohort.
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Figure S3: The heritability of lab measurements in the PMBB shown separately for the AFR and EUR

cohort. Only lab measurements where the lower bound of the 95% CI was greater than 0 in at least in

one of the cohorts is shown

Figure S4: Heritability of neutrophil count partitioned by chromosome in the AFR cohort. The colors

represent two models with and without genotype at the Duffy-null allele as a covariate. Both models

included sex, age, age2, and 20 PCs as covariates.
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Figure S5: SNP heritability of rlrmtCN in the AFR (first 7 columns) and EUR (last columns) cohorts

estimated using GCTA. All models included 20 genetic PCs calculated separately in each cohort. For

the AFR cohort, the heritability was estimated with additional covariates: AST = amino aspartate

transferase levels; APOL1 = genotype at the APOL1 locus; DARC (add.) = genotype at the rs2814778

SNP coded additively; DARC (add. + rec.) = additive and recessive coding for rs2814778; PRS (Blood)

= polygenic risk scores for blood counts which were measured in the PMBB; PRS (Blood ext.) polygenic

risk scores for an extended set of blood traits (see Methods for details).

Figure S6: Effect sizes for variants discovered in Chen et al. [28] are correlated with their effects estimated

in the PMBB EUR cohort. The red line represents y = x. The effects could only be re-estimated for

traits which were available in the PMBB. One variant which can be seen as having a large effect size on

platelet counts as estimated by Chen et al. was removed (see Methods for more details). The numbers

in each plot show the correlation coefficients.
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Figure S7: Polygenic risk scores (PRS) constructed using effects from Chen et al. [28] are strongly

correlated with the actual phenotypes in both PMBB cohorts. The blue line represents the linear

regression line.

Figure S8: Admixture mapping of rlrmtCN in the AFR cohort. The x-axis shows the position along

the genome and the y-axis shows the -log10 of the p-value of association between local ancestry at

each position and rlrmtCN. Global ancestry proportion and the Duffy-null genotype were included as

covariates.
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Figure S9: GWAS of mtDNA copy number (rlrmtCN) carried out separately in the AFR and EUR

cohorts. The x-axis shows the genomic position, grouped by chromosomes (vertical panels) and the

y-axis shows the -log10 of the association p-value. The dotted horizontal line represents the genome-wide

significance threshold of 5 × 10−08. The first 20 PCs, computed separately within each cohort, were

included as covariates.
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Figure S10: Power to detect a significant interaction effect between mitochondrial and nuclear ancestry

for binary traits (case/control data) and quantitative traits (e.g. lab measurements). The x-axis lists

the effect size, i.e., odds ratio (OR) or in units of standard deviation, for binary and quantitative traits,

respectively and the y-axis shows the power of detecting an interaction effect at α = 5 × 10−05. For

quantitative traits, the color represents the sample size and for binary traits, it represents the effective

sample size (Neff): nϕ(1− ϕ) where ϕ is the proportion of cases and n is the sample size.
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Figure S11: Mean sequencing depth (across individuals in the PMBB) of off-target reads aligning to the

Revised Cambridge Reference Sequence (rCRS) of human mtDNA. Note that the y-axis is on a log-scale.

Depth values from the region between the dotted red lines were filtered out for subsequent analysis.
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