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Summary
Mitochondrial DNA copy number (mtCN) is often treated as a proxy for mitochondrial (dys-) function and disease risk. Pathological

changes in mtCN are common symptoms of rare mitochondrial disorders, but reported associations between mtCN and common dis-

eases vary across studies. To understand the biology of mtCN, we carried out genome- and phenome-wide association studies of mtCN in

30,666 individuals from the Penn Medicine BioBank (PMBB)—a diverse cohort of largely African and European ancestry. We estimated

mtCN in peripheral blood using exome sequence data, taking cell composition into account. We replicated known genetic associations

of mtCN in the PMBB and found that their effects are highly correlated between individuals of European and African ancestry. However,

the heritability of mtCN was much higher among individuals of largely African ancestry ðh2 ¼ 0:3Þ compared with European ancestry

individualsðh2 ¼ 0:1Þ. Admixture mapping suggests that there are undiscovered variants underlyingmtCN that are differentiated in fre-

quency between individuals with African and European ancestry. We show that mtCN is associated with many health-related pheno-

types. We discovered robust associations between mtDNA copy number and diseases of metabolically active tissues, such as cardiovas-

cular disease and liver damage, that were consistent across African and European ancestry individuals. Other associations, such as

epilepsy and prostate cancer, were only discovered in either individuals with European or African ancestry but not both. We show

that mtCN-phenotype associations can be sensitive to blood cell composition and environmental modifiers, explaining why such asso-

ciations are inconsistent across studies. Thus, mtCN-phenotype associations must be interpreted with care.
Introduction

Mitochondria are vital to cellular function, playing impor-

tant roles in energy production, calcium signaling, cellular

homeostasis, apoptosis, and synthesis of biomolecules.

Mitochondrial function is mediated by more than 1,000

proteins—of which only 13 are encoded by the mitochon-

drial DNA (mtDNA), with the rest encoded by the nuclear

genome.1 Loss of function mutations in these genes can

lead to mitochondrial dysfunction, which typically affects

multiple systems and tends to be clinically heteroge-

neous.2 Considerable effort has been made to understand

the genetics of mitochondrial dysfunction through fam-

ily-based studies of rare mitochondrial diseases.3 However,

the extent to which mitochondrial dysfunction contrib-

utes to, or is affected by, common diseases is not well

understood.

Practical challenges drive this lack of understanding.

Mitochondrial function is difficult to assay in a high-

throughput manner. Therefore, most studies use cellular

mtDNA content, which can be estimated from sequence

data, as a proxy for mitochondrial function.While mtDNA

content can be correlated with the respiratory activity of a

cell and mtDNA gene expression,4–7 the relationship is not
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necessarily linear, and cells may retain as low as 20%–40%

of their baseline mtDNA content without a loss in respira-

tory capacity (see Picard8 for a review). Both a reduction or

elevation of mtDNA copy number can be associated with

disease risk.8,9 However, such associations are inconsistent

across studies (e.g., see Filograna et al.9 for a review), which

might be due to lack of power and differences in tissue type

used to estimate mtDNA copy number. Hägg et al. and

Longchamps et al. are the only well-powered phenome-

wide association studies (PheWASs) of mtDNA copy num-

ber.10,11 However, because these studies were both per-

formed in the UK Biobank, it is not clear whether or not

phenotypic associations ofmtDNA content can be general-

ized to more diverse cohorts.

In this study, we analyzed genetic and electronic health

record data from the Penn Medicine BioBank (PMBB), a

large, diverse cohort of African and European ancestry to

study the extent to which we can understand the biology

underlying genetic and phenotypic correlates of mtDNA

copy number. We carried out genome-wide and phe-

nome-wide association studies (GWASs and PheWASs,

respectively) separately in two sub-cohorts with largely Af-

rican (N ¼ 8,598) and European (N ¼ 22,068) ancestry.

This allowed us not only to replicate our findings but to
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compare and contrast the genetic basis and phenotypic

correlates of mtDNA copy number as a function of

ancestry.
Material and methods

Description of the dataset
All individuals were patients of the University of Pennsylvania

Health System and were enrolled in the Penn Medicine BioBank.

Written consent was obtained to collect and store biological spec-

imens and electronic health record (EHR) data and carry out DNA

extraction and sequencing. Access and analysis of data for this

study were approved by the Institutional Review Board at the Uni-

versity of Pennsylvania.

We started with genetic and EHR data from a total of 39,185 un-

related individuals, who were analyzed in two groups: 10,183 indi-

viduals with mixed African and European ancestry and 29,002

individuals with European ancestry (defined broadly), hereafter

called AFR and EUR cohorts. Laboratory measurements and dis-

ease outcomes were derived from patients’ EHR data. Disease out-

comes were obtained as ICD-9 and ICD-10 codes, which we map-

ped to phecodes.12,13 We defined case/control status for each

phecode based on the number of hospital visits, classifying an in-

dividual as ‘‘case’’ if they presented in the system with the same

phecode at least twice and as ‘‘controls’’ if they were not listed

with that phecode at all. Individuals listed once were set to

missing. We restricted the analysis to phecodes with more than

20 cases in each of the two cohorts, leading to a total of 1,157

phecodes in the AFR cohort and 1,353 phecodes in the EUR

cohort. We also analyzed 25 quantitative laboratory measure-

ments, using the median for each individual if they had multiple

measurements. A complete list of phenotypes analyzed for each

analysis is available in Tables S1 and S4. For lab measurements,

we removed outliers that were >7 standard deviations away

from the mean and transformed the values using the optimal

Box-Cox power transformation. We used the boxcox function in

the MASS package14 in R15 and estimated l for the residuals of

the following: y � poly(Age, 2) þ Sex þ 20 PCs where y is the

lab measurement of interest. Of the initial sample, we had non-

missing complete blood count data for 30,666 individuals

(EUR ¼ 22,068 and AFR ¼ 8,598) who were then retained for all

further analyses.
Calling mtDNA copy number
Mitochondrial DNA copy number represents the number of copies

of mtDNA per cell and can be estimated from whole-genome

sequence data as twice the ratio of mtDNA depth and autosomal

depth. Because exome sequencing involves enrichment of coding

sequences in the nuclear genome, we cannot estimate mtDNA

copy number in absolute terms (i.e., in number of copies per

cell) but can still capture the relative variation in copy number

among individuals. To do this, we used bcftools mpileup (version

1.12)16 to call genotypes from reads aligning to the revised Cam-

bridge Reference Sequence (rCRS) of the human mitochondrial

genome, filtering out reads with map quality less than 20

(–m 20) and base pair quality less than 30 (–q 30). Next, we ex-

tracted the depth at each position using bcftools query -f ‘%POS%

[:DP]’, giving us an overall mean depth of 2.8x per site per individ-

ual. We observed a spike in sequencing depth between 2.5 and 3

kbp on the rCRS (Figure S1), which has been reported previously.17
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Wemasked out this region when calculating mean mtDNA depth.

We calculated mean autosomal depth across 16,569 sites sampled

uniformly at random across the exome. Finally, we took the

ratio of mean mtDNA sequencing depth and mean autosomal

sequencing depth to get relative mtDNA copy number (rmtCN).

We modeled the log of rmtCN as a function of sex, age, and

blood composition using the following linear model in the total

sample (AFR and EUR combined) in R15:

lrmtCN � (Sex þ poly(Age, 2)) x (poly(Neutrophil, 2) þ poly

(Platelets, 2) þ poly(Lymphocytes, 2) þ poly(Basophils, 2) þ poly

(Monocytes, 2) þ poly(Eosinophils, 2))

This model accounts for nonlinear effects of blood cell counts

and allows these effects to vary between males and females and

with age. We used the residuals from this model as estimates of

mtDNA copy number in all subsequent analyses and referred to

them as rlrmtCN.
mtDNA haplogroup calling and ancestry estimation
We used genotypes at 779 mtDNA SNPs that were genotyped on

the Illumina Infinium Global Screening Array (GSA) to call hap-

logroups for each individual with Haplogrep v2.4018 using the

classify function with the –chip flag. We validated haplogroup calls

by calling haplogroups from exome sequence data using off-target

reads aligning to the mitochondrial genome. We show that called

haplogroups are highly concordant between exome sequence and

SNP array data (99% concordance at the top level).

To carry out local ancestry inference, we first phased the geno-

type data (545,267 SNPs) from the AFR cohort using Beagle version

5.419 and then used RFMix20 to infer local ancestry (k¼ 2) with ge-

notypes from the 1000 Genomes Project (CEU and YRI)21 as a

reference. We masked out the major histocompatibility locus

from chromosome 6 because of the challenge associated with

phasing genotypes in this region. We averaged local ancestry for

each individual across SNPs that were called with a posterior prob-

ability greater than 0.9 to calculate the overall proportion of Afri-

can and European ancestry. Global ancestry calculated using

RFMix was highly correlated ðr2 ¼ 0:99Þ with unsupervised

ancestry estimates generated using ADMIXTURE (k ¼ 2).22
GWAS, heritability, and PheWAS of mtDNA copy

number
We carried out GWAS on rlrmtCN against 10,868,495 autosomal

markers, which were imputed using the Michigan Imputation

Server23, with the first 20 genetic principal components (PCs) as

covariates. PCs were computed separately within each (AFR and

EUR) cohort from a genetic relationship matrix generated using

GCTA version 1.93.2beta24 from common (MAF > 1%), linkage

disequilibrium(LD)-pruned (plink –indep-pairwise 100 10 0.125)

autosomal SNPs that were directly typed on the array.

We carried out admixture mapping in the AFR cohort by testing

the association of rlrmtCN with local ancestry at each variant

across the genome using a linear model with the global ancestry

proportion and genotype for the Duffy-null allele as covariates.

The multiple testing burden in admixture mapping tends to be

less than that of GWASs because of long-distance correlations in

local ancestry that arise due to admixture. We empirically esti-

mated this testing burden using the approach of Shriner et al.26

Briefly, we estimated the effective number of tests ðNeff Þ by fitting

an autoregressive model to the vector of local ancestry for each

chromosome of each individual. This was done using the effective-

Size() function in the CODA package in R.15,27 We summed this



number across chromosomes for each individual and then took

the mean across individuals to get Neff , which was 17,821 in our

case, resulting in a genome-wide significance threshold of 0:05
Neff

¼
2:813 10�6.

We used GCTA to estimate the SNP-based heritability of

rlrmtCN with the first 20 PCs as fixed effects. We included sex,

age and age2 in addition to the PCs when estimating h2
g for lab

measurements. We included additional covariates (e.g., Duffy-

null genotype, see results section) to determine the source of

rlrmtCN heritability in the AFR cohort. The Duffy-null genotype

was coded as two variables representing additive ð˛ ð0;1;2ÞÞ and
dominant effects (0 for homozygotes and 1 for heterozygotes).

To determine if the rlrmtCN heritability in the AFR cohort was

driven by unknown differentiated alleles, we selected 21 inde-

pendent loci from the admixture mapping by clumping at a p

value threshold of 0.05 and physical distance of 1 Mb and

included the genotypes at these loci as fixed effects (in addition

to 20 PCs).

PheWAS for rlrmtCN was carried out using a linear model (for

quantitative traits) and logistic regression (for binary traits) with

age, age2, sex, and genetic PCs 1–20. We restricted the analysis

to phecodes with at least 20 cases. For lab measurements, we

used the trimmed and Box-Cox transformed values described

above.

Polygenic risk scores
We constructed polygenic risk scores (PRSs) for 15 blood traits us-

ing the variants discovered in Chen et al.28 We used the summary

statistics from the GWASs carried out in individuals of European

ancestry (N z 500,000) available from Table S3 of Chen et al.28

We retained only SNPs for the alleles that matched between

Chen et al. and the imputed PMBB genotype data. A comparison

between the effect size estimates between Chen et al. and this

study is provided in Figure S2. The effect size of one variant

(chr1:209451397:G:A) on platelet count as estimated in Chen

et al. ðbGallele ¼ �4:4Þ was much larger than the other variants

and in comparison to its estimate in the PMBB (Figure S2). Their

estimate is likely inflated, especially given that the allele is very

rare (MAF ¼ < 0.001 in their study). We removed this and another

rare variant (chr10:122775741:A:G) that had a large effect on

mean corpuscular volume of ðbAallele ¼ �3:49Þ before calculating

PRSs. This led to a total of 4,394 variants across all traits, which

were used to calculate PRSs with the –score flag in PLINK.25 To vali-

date our calculation, we showed that the PRSs were correlated with

actual values for traits that were available in the PMBB (i.e.,

neutrophil, monocyte, platelet, lymphocyte, basophil, eosinophil,

and white blood cell count) (Figure S3).

Power to replicate known associations
To estimate the power to replicate known associations for mtDNA

copy number, we downloaded Table S6 from Longchamps et al.11,

which contains the list of 129 genome-wide significant SNPs, their

positions, and effect sizes. We calculated the power to discover the

110 SNPs that were imputed in the PMBB at the a ¼ 4:5310�4

level of significance (0.05/110 SNPs):

SE ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nf ð1 � f Þp

l ¼
�
bgwas

SE

�2

power ¼ F�1ðaÞ

; (Equation 1)
Hu
where sz0:8 is the residual standard deviation in each cohort

(AFR and EUR) after accounting for variance due to age, age2,

sex, and blood cell counts, f is the frequency of the effect

allele in the cohort, bgwas is the effect size from the discovery

GWAS11, and F is the cumulative distribution function of a

chi-square distribution with non-centrality parameter l and 1

degree of freedom.

We calculated the heritability explained by GWAS variants sepa-

rately in each cohort c as h2
c ¼ 2

Pm
i¼1

bb2

i;cfi;cð1 � fi;cÞ where bbi;c is

the effect size estimate of the ith variant, and fi;c is the minor allele

frequency in cohort c.
Analysis of mito-nuclear incompatibility
For the analysis of mito-nuclear incompatibility, we analyzed data

from the admixed AFR cohort. We classified haplogroups H, I, J, K,

N, R, T, U, V, W, X as ‘‘European’’ and the L haplogroups as ‘‘Afri-

can.’’ Individuals carrying any other haplogroups (N ¼ 271) were

removed, resulting in a total of 8,311 individuals. We fit a logistic

regression model (linear if the trait was quantitative) with nuclear

ancestry, mtDNA haplogroup, and the interaction between the

two as predictors and sex, age and age2 as covariates. We treated

mtDNA haplogroup as a factor with the African haplogroup as

the reference level.

We calculated power to test for mito-nuclear incompatibility

using simulations. We simulated a quantitative trait with

effects of sex, age, age2, nuclear ancestry, mtDNA haplogroup

and the interaction between haplogroup and ancestry. We

used the effects of sex, age, and age2 estimated from our

data and assumed that the effect of ancestry ranges from

0.05 to 1 (in units of standard deviation of the phenotype).

We further assumed a simple model of mito-nuclear in-

compatibility such that the direction of effect of ancestry is

reversed between the two mtDNA haplogroups. We added

random noise from a normal distribution with mean zero

and standard deviation s, which was also estimated from the

data (after removing variation due to covariates) for each trait

separately.

For binary (disease status) traits, we selected the effect size

of ancestry ranging from an odds ratio of 1.5–4. Unlike

linear models, the power of the test in a logistic regression

depends on the intercept term, which specifies the prevalence

of the disease in the population. To model this, we fit a logistic

regression model to case status for each binary trait with sex, age,

and age2 as predictors. Then, we used the estimated coefficients

and the mean value of these predictors from the data to generate

the intercept: b0 ¼ bintercept þ bsexsexþ bageageþ bage2age
2. Now

let xj ˛ f�1;1g be an indicator variable coding for the mtDNA

haplogroup of individual j, zj ˛ ½0;1� be nuclear ancestry, and

b1 be the (assumed) effect size of ancestry. Then, we can simulate

case/control status ðyjÞ for the individual as a bernoulli random

variable with probability pj, where:

pj ¼
exp

�
b0 þ b1xjzj

�
1þ exp

�
b0 þ b1xjzj

� (Equation 2)

We fitted a logistic regression model (linear regression for quan-

titative traits) to the simulated data and evaluated significance of

the interaction between mitochondrial and nuclear ancestry if

the p value was less than 3:5310�5 (0.05/1137 traits). We repeated

this 1,000 times and calculated power as the fraction of iterations

where the interaction term was significant.
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Figure 1. Effect size of sex, age, and blood counts on relative mtDNA copy number (rmtCN)
(A) Effect sizes were estimated jointly using linear regression in the combined sample (AFRþEUR) or separately in the AFR and EUR
cohorts. The whiskers represent the 95% confidence intervals of the point estimate. Effect sizes are displayed in units of standard devi-
ation of lrmtCN.
(B) Blue curves represent the predicted values of lrmtCN based on the conditional effects of each predictor (x axis). Actual data are over-
laid as gray points. Age is expressed in years, whereas blood counts are expressed in 1,000 cells/ mL of blood.
Results

Peripheral blood mtDNA copy number is a function of

cell composition

We estimated mtDNA copy number using the exome

sequence data (derived from whole blood) of participants

from the PMBB, which has so far recruited more than

175,000 patients with electronic consent through the Uni-

versity of Pennsylvania Health System. We analyzed data

from 30,666 unrelated individuals, 22,068 individuals

with European ancestry (broadly defined) and 8,598 indi-

viduals with mixed African and European ancestry, which

we refer to as AFR and EUR cohorts, respectively (analyzed

separately). We used the ratio of the mean sequencing

depth of off-target reads mapping to the mtDNA to that

of reads mapping to an equal number (16,569) of

randomly sampled autosomal positions to estimate the

average number of mtDNA per cell in whole blood. Note

that because exome sequence data are enriched for auto-

somal reads relative to mtDNA reads, our estimate does

not represent the absolute mtDNA content per cell.

Instead, we and other studies that rely on exome sequence

or array data capture the relative number of mtDNA copies

per cell (which we refer to as rmtCN).

Inter-individual variation in the mtDNA content of

whole blood is a function of blood cell composition.7 We

find that the log of rmtCN is strongly associated with

neutrophil and platelet counts and, to a lesser extent,

with other cell types (Figure 1) in agreement with previous

reports.8,10,29 The effect of cell composition is consistent in

direction between the two cohorts, with neutrophil counts

having a negative effect and platelets having a positive ef-

fect on rmtCN (Figure 1). The effect of neutrophil count
4 Human Genetics and Genomics Advances 4, 100202, July 13, 2023
was larger in the AFR cohort compared with the EUR

cohort (Figure 1), and this difference is not driven by a con-

founding effect of ancestry, which is associated with

neutrophil counts and mtDNA copy number in opposite

directions. One possible explanation for this is that neutro-

phils in the AFR cohort carry fewer mtDNA copies per cell

compared with the EUR cohort.

The effect of cell type composition was also nonlinear

(Figure 1), and this needs to be appropriately modeled to

ensure that downstream analyses are not driven by varia-

tion in cell composition. We modeled the log of rmtCN as

a function of sex, age, age2, and linear and quadratic terms

for blood counts (neutrophils, basophils, eosinophils, lym-

phocytes,monocytes, and platelets).We also included inter-

action terms to allow the effects of blood counts to vary

with age and sex (material and methods). The residuals

from this model capture variation in the mean number of

mtDNA copies per cell independent of blood cell composi-

tion, and we hereafter refer to them as rlrmtCN (residual

log of rmtCN). Note, however, that the residuals are not

informative about whether mtDNA copy number varies

across all cell types uniformly or because of a single cell

type. To validate that our model appropriately accounts

for blood cell composition, we tested whether rlrmtCN

was associated with the Duffy-null allele in the AFR cohort.

The Duffy-null allele, because it protects red blood cells

from infection by Plasmodium vivax, is almost fixed in

Africa, while being virtually absent elsewhere.30 The allele

is also one of the strongest known associations for neutrope-

nia (low neutrophil count)31 and thus is expected to be asso-

ciated with mtDNA copy number if it captures variation in

blood cell composition. We confirm this by showing that

the Duffy-null (rs2814778) allele is significantly associated



Figure 2. Comparison of effect sizes of mtCN variants discovered in Longchamps et al. and their effects re-estimated in the PMBB(A)
EUR cohort and (B) AFR cohort. The PMBB effect sizes were estimated using linear regression with rlrmtCN as response, variant as
predictor, and 20 PCs as covariates.(C) Comparison of the effects of the same variants between the AFR and EUR cohorts. The color
scale in (A) and (B) represents the minor allele frequency in the original study11 and in (C) represents the difference between the AFR
and EUR cohorts in the variance explained by each locus. The value in each panel represents the correlation coefficient between the
two effect sizes.
with the log of rmtCN in the AFR cohort ðbC ¼ � 0:3;

h2
explained ¼ 0:02;p ¼ 1:13 3 10�50Þ. In comparison, the ef-

fect of the Duffy-null allele on rlrmtCN, i.e., after

removing variation due to cell composition, ismuch smaller�
bC ¼ �0:08;h2

explained ¼ 0:002; p ¼ 1:393�5
�
(Figure S4).

Thus, we have largely removed the contribution of neutro-

phil composition on mtDNA copy number variation. We

address any residual association between the Duffy-null

allele and mtDNA copy number in a later section.

MtDNA copy number is associated with health-related

traits

Because it is correlated with the metabolic activity of the

cell, mtDNA copy number is often used as a proxy for mito-

chondrial (dys-) function9, and changes in mtDNA copy

number are a common symptom and sometimes a cause

(e.g., mtDNA depletion syndrome) of mitochondrial dis-

eases.32 To understand if mtDNA copy number is associ-

ated with common diseases, we carried out a PheWAS in

the PMBB by testing for associations between rlrmtCN

and a range of health-related phenotypes (1,353 in the

EUR cohort and 1,157 in the AFR cohort), correcting for

sex, age, age2 and 20 genetic PCs as covariates, separately

within each cohort.

MtDNA copy number was associated with many diseases

related to metabolically active tissues such as liver, heart,

and brain that are common targets of mitochondrial

dysfunction.33–35 For example, in the EUR cohort, rlrmtCN

was negatively associated with liver damage (7 phecodes at

false discovery rate (FDR) of 0.005 and 9 phecodes at FDR

0.05; e.g., liver abscess, cirrhosis, portal hypertension, and

esophageal bleeding, and alcoholism; Figure 2 and

Table S1). RlrmtCN was also correlated with aspartate

aminotransferase (AST) and total bilirubin in the blood,

elevated levels of which are both an indicator of alcohol
Hu
use and alcohol-related liver damage36 (Figure 2 and

Table S1). While none of these associations were significant

at the 0.005 FDR in the AFR cohort, their effects were in the

same direction (8/8 phenotypes, binomial p value ¼ 0.008),

were correlated ðrbeta ¼ 0:65Þ, andwere directionally consis-

tent with previously reported associations with esophageal

bleeding and portal hypertension.10 The association

between rlrmtCN and liver damage is attenuated, but it

does not disappear, if we include case/control status for alco-

holism as a covariate (Table S2). This suggests that the asso-

ciation between rlrmtCN and liver damage may reflect the

causal effect of alcohol use on both liver damage and

rlrmtCN. This is consistent with an experiment in mice

showing that an alcohol binge can lead to drastic changes

in mtDNA copy number.37

We also observed a positive association between rlrmtCN

and cardiac dysfunction—mostly phenotypes related to car-

diac dysrhythmias—in the EUR cohort (14 phecodes at FDR

0.005 and9phecodes at FDR0.05; e.g., atrial fibrillation, pal-

pitations, atrial flutter, cardiomyopathy, andmitral valvedis-

ease, Figure 2 and Table S1). The associations between

rlrmtCN and cardiac phecodes were directionally consistent

between the AFR and EUR cohorts (14/14 phecodes, bino-

mial p value ¼ 1:23 10�4) and were correlated ðrbeta ¼
0:56Þ. The association with cardiac dysrhythmias is also

consistent with previous observations of elevated mtDNA

copy number in patients with atrial fibrillation.38,39 Howev-

er, our associations are in the opposite direction of the nega-

tive association with cardiomegaly reported by Hägg et al.10

and with general cardiovascular disease reported by Ashar

et al.40 We believe that this discrepancy might be explained

by differences across studies in how blood cell composition

is modeled. Ashar et al.40 do not fully account for blood

cell composition or ancestry, and Hägg et al.10 only correct

for percentage of neutrophils and lymphocytes and total

white blood cell count. As an example, we show that the
man Genetics and Genomics Advances 4, 100202, July 13, 2023 5



Figure 3. SNP heritability of mtDNA
copy number (y axis) contributed by
each chromosome (x axis)
The points represent point estimates, and
the bars represent the 95% confidence in-
tervals, which were estimated using
GCTA.24 The colors represent different
sets of covariates. No covar ¼ no correc-
tion for blood composition, sex, age, or
PCs; PCs ¼ correction for sex, age, and
PCs; PCs þ blood ¼ additional correction
for blood cell composition; PCs þ
blood þ DARC ¼ additional correction
for Duffy-null genotype.
associationsbetweenmtDNAcopynumberandsomecardio-

vascular phenotypes are highly sensitive to how blood cell

composition is modeled (Figure S5), suggesting that some

previous associations might be driven by blood cell counts

as opposed to mtCN per se. The association of rlrmtCN

with cardiac dysrhythmia phenotypes (e.g., atrial fibrilla-

tion) was less sensitive to blood cell composition as it were

positively associated with mtDNA copy number in all

models (Figure S5). Altogether, this suggests that mtCN

might indeedbeabiomarkerof somecardiovasculardiseases.

The association between some phenotypes and mtDNA

copy number was less consistent between the AFR and EUR

cohorts. RlrmtCN was negatively associated with epilepsy

(3 phecodes at FDR0.005 and1 at FDR0.05),which is a com-

mon symptom across mitochondrial disorders, including

mtDNA depletion syndrome.41 But it was not significant in

the AFR cohort. In addition to diseases of metabolically

active tissues, rlrmtCN was positively associated with pros-

tate cancer and international normalized ratio, which mea-

sures the time it takes for blood to clot, and it was negatively

associated with rickets in the EUR cohort (0.005 FDR). In the

AFR cohort, rlrmtCNwas only associated (positively at 0.005

FDR) with iron metabolism disorders.

Ancestry-related differences in the heritability of

mtDNA copy number

To study the genetic architecture of mtDNA copy number,

we first estimated the SNP heritability ðh2
g Þ of rlrmtCN in

the AFR and EUR cohorts using GCTA24 with 20 genetic

PCs as fixed covariates (material and methods). The h2
g of

rlrmtCN in the EUR cohort was 0.10 (95% confidence in-

terval [CI]: 0.05–0.14), which overlaps with previous esti-

mates (Hägg et al. ¼ 0.08, Longchamps et al. ¼ 0.07).10,11

The h2
g in the AFR cohort was significantly higher at 0.30

(95% CI: 0.20–0.39), and we explored a number of expla-

nations for this difference.

First, we suspected that the difference in h2
g might be

driven by known highly differentiated alleles such as the

Duffy-null allele, which was not associated with rlrmtCN

on a genome-wide level (Figure S4) but may still contribute
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to rlrmtCN heritability through ef-

fects on blood cell composition. This

might occur despite corrections for
complete blood counts if the counts do not represent the

cellular proportions underlying the measured copy num-

ber, which in turn could be due to measurement error or

because the cell counts were measured at a time or from

a sample different from that used for sequencing. This hy-

pothesis was motivated by the observation that neutrophil

heritability is also higher in the AFR cohort (Figure S6) and

a disproportionately large fraction of rlrmtCN h2
g is contrib-

uted by chromosome 1, which contains the Duffy locus

(Figure 3). However, including the genotype at the Duffy-

null allele (rs2814778), which explains most of the herita-

bility in neutrophil counts in the AFR cohort (Figure S7), as

a fixed effect in the model does not affect rlrmtCN h2
g

(Figure 3). Including the genotype for rs73885319 (variant

at the APOL1 locus)—another highly differentiated allele

that explains much of the difference in risk of kidney

disease between individuals of African and European

ancestry42,43—also did not change h2
g (Figure S8). This sug-

gests that the difference in h2
g between the AFR and EUR co-

horts cannot be explained by these large effect and highly

differentiated alleles.

Second, we asked if rlrmtCN h2
g in the AFR cohort could

be explained by the heritability underlying blood traits

that were not modeled in our analysis. We hypothesized

that AST level, which is correlated with rlrmtCN (Figure 2)

and also has a higher heritability in the AFR cohort

(Figure S6), could be contributing to rlrmtCN h2
g in the

AFR cohort. However, including AST level as a fixed covar-

iate in our model did not affect h2
g estimates (Figure S8),

suggesting that this is not the explanation for increased

heritability in the AFR cohort.

Third, we investigated whether heritability underlying

blood traits that were not measured in the PMBB could

be driving h2
g in the AFR cohort. To test this, we constructed

PRSs for 15 blood traits using effect sizes estimated previ-

ously in a GWAS carried out in z 500,000 individuals28

(material and methods). We validated these scores by

showing that the effect sizes of GWAS variants for blood

traits that were measured in the PMBB are correlated

with their effects in the EUR cohort (Figure S2) and that



the PRS is correlated with the actual phenotype in both co-

horts (Figure S3). However, including these PRSs as covari-

ates also did not affect h2
g estimates (Figure S8). We draw

two conclusions from this result: first, that unmeasured

blood traits are unlikely to contribute to the difference in

rlrmtCN heritability between the AFR and EUR cohorts.

Second, the EUR-AFR difference in rlrmtCN h2
g cannot be

explained by measurement noise in blood counts in

the PMBB.

Finally, we carried out admixture mapping to identify

differentiated alleles that might contribute to rlrmtCN in

the AFR cohort. To do this, we tested the association be-

tween local ancestry across the genome and rlrmtCN in

the AFR cohort with the genome-wide ancestry fraction

as a covariate. While we did not discover any loci at the

genome-wide level (Figure S9), we show that including

the genotypes at the most significant hits (21 independent

hits at p value <0.05, material and methods) as covariates

in the model substantially reduces rlrmtCN h2
g in the AFR

cohort to 0.15 (95% CI: 0.05–0.14), which overlaps with

the h2
g estimate in the EUR cohort. This suggests that the

heritability of rlrmtCN in the AFR cohort might be driven

by alleles with large frequency differences between indi-

viduals of African and European ancestry. Whether these

alleles are associated with mtDNA copy number directly

or through their effects on other blood traits will require

further investigation.

Similar effects of mtDNA copy number-associated

variants in AFR and EUR cohorts

To discover these alleles, we carried out a GWAS of rlrmtCN.

We used imputed data and included the first 20 PCs,

computed separately in the AFR and EUR cohorts, to correct

for population structure. We did not discover any associa-

tions at a genome-wide significance threshold of 5310�8

(Figure S10) in either cohort. This includes TFAM, which

was first identified in a smaller sample ofz 10,000 individ-

uals.44 We then tested if we could replicate other associa-

tions discovered previously in much larger GWASs.10,11,45

These studies were largely based on the same dataset (i.e.,

the UK Biobank), so we restricted our analysis to variants

identified in Longchamps et al., which was the largest study

in terms of sample size.11 Of the 129 independent variants

reported in Longchamps et al.11, 110 were present in our

imputed data. Of these, only three were significant at a

replication threshold of 4:5310�4 (0.05/110) in the

EUR cohort: rs3110823 in the gene STMP1 ðbA allele ¼
0:056; p ¼ 2:24 3 10�06Þ, rs10419397 near the gene

USHBP1
	
bA allele ¼ 0:047; p ¼ 8:69310�7



, and rs12247015	

bA allele ¼ 0:039; p ¼ 1:14310�5


in the 50 UTR of TFAM.

This is fewer than the 6.4 associations that we expected

to replicate (we had > 80% power to detect 8 loci) based

on the effect sizes estimated in Longchamps et al.11

(Table S3, material and methods). Nevertheless, the effect

sizes of the 110 variants were strongly correlated with their

effects in the PMBB (Figure 4, rEUR ¼ 0:64; rAFR ¼ 0:41).

Note, however, that the PMBB effect sizes are smaller, on
Hu
average, than the effects reported in Longchamps et al.

(Figure 4), which likely explains why we replicated fewer

variants than expected. To understand the reason for the

downward bias in effect sizes, we considered the possibility

that our estimate of mtDNA copy number might be noisier

compared with that of Longchamps et al. But, we reject

this explanation since the heritability of rlrmtCN in the

EUR cohort is similar to previous studies.

The effect sizes of GWAS variants were similar in magni-

tude and highly correlated between the AFR and EUR co-

horts (Figure 4). The GWAS variants also explain a similar

fraction of the phenotypic variance in the two cohorts

ðh2
explained � 0:01Þ. Thus, the difference in heritability be-

tween the two cohorts (see previous section) cannot be ex-

plained by a difference in the joint distribution of fre-

quency and effect size at GWAS loci.

No effect of mito-nuclear incompatibility on mtDNA

copy number

In a previous study, one of us (A.Z.) found that mtDNA

copy number in lymphoblastoid cell lines from admixed

individuals was negatively correlated with increasing

discordance between the mitochondrial and nuclear ge-

nomes such that cells with a higher degree of divergence

between nuclear and mitochondrial ancestry exhibited

lower mtDNA copy number, on average, than cells where

the nuclear and mitochondrial ancestry were similar.46

This might arise if there was a difference in replication

rate between mitochondrial genomes that are more diver-

gent vs. similar in ancestry to the individual’s nuclear

genome (e.g., due to mito-nuclear incompatibility). We

wanted to replicate this result in primary tissue and,

thus, analyzed data from a subset of individuals from

the AFR cohort with mixed African and European

ancestry who carried either a European or African

haplogroup (N ¼ 8,311, material and methods). We

fitted a linear model with rlrmtCN as the dependent

variable and proportion of African ancestry in the

nuclear genome, mtDNA ancestry, and the interaction

between mtDNA and nuclear ancestry as predictors. The

interaction term was not statistically significant (b ¼ �
0:31;p ¼ 0:095; Figure 5) contrary to our expectation un-

der the hypothesis that mito-nuclear ancestry discordance

leads to a reduction in mtDNA copy number.46 The

discrepancy between the result shown here and the orig-

inal study46 lies in how mito-nuclear discordance is

defined. In Zaidi and Makova,46 mito-nuclear discordance

was defined as the total fraction of nuclear ancestry that is

different in continental original from the mtDNA. For

instance, the discordance of someone with the L mtDNA

haplogroup (predominantly found in Africa) and 75%,

25%, and 11% of African, Native American, and European

ancestry, respectively, in the nuclear genome would be

0.25 þ 0.11 ¼ 0.36. This measure has also been used in

other studies to test for mito-nuclear incompatibility in

admixed individuals.47 The problem with this measure,

however, is that it captures the main effect of nuclear
man Genetics and Genomics Advances 4, 100202, July 13, 2023 7



Figure 4. Phenome-wide association study of mtDNA copy numberWe used linear and logistic regression for quantitative and case/
control phenotypes, respectively, with sex, age, age

2

and 20 PCs as covariates. Phenotypes are ordered on the x axis, and the y axis
shows the –log

10
p value of the association with mtDNA copy number separately within the AFR and EUR cohorts. Associations that

pass the 0.005 and 0.05 false discovery rate are colored in red and yellow, respectively.
ancestry—which is significantly correlated with mtDNA

copy number (Figure 5)—if mtDNA haplogroups are

non-uniformly distributed in the sample (e.g., 80%

African and 20% European in the PMBB). As a

result, discordance will be associated with copy number,

even if there is no effect of incompatibility. We

confirm this by showing that mtDNA haplogroup

imbalance in the PMBB also causes mito-nuclear discor-

dance to be negatively associated with rlrmtCN	
b ¼ �0:321; p ¼ 3:31310�6



. Therefore, the correct

way to test for incompatibility is to test for an interaction

between nuclear ancestry and mtDNA haplogroup. Re-

analysis of data from Zaidi and Makova46 shows that

that the interaction between mtDNA and nuclear ancestry

is also not significantly associated with mtDNA copy

number in the original study. Altogether, this shows

that there is no evidence for an effect of mito-nuclear in-

compatibility on mtDNA copy number in admixed

individuals.

No effect of mito-nuclear incompatibility on health-

related traits

We further tested whether there are general phenotypic ef-

fects of mito-nuclear incompatibility with a PheWAS on

1,208 health-related phenotypes in the admixed AFR

cohort. As before, we fitted ordinary least-squares regres-

sion for quantitative traits and logistic regression for bi-

nary traits, using nuclear ancestry, mtDNA ancestry, and

the interaction between the two as predictors and sex,

age, and age2 as covariates. The proportion of African

ancestry in the nuclear genome was positively correlated
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(at the 0.005 FDR) with a range of phenotypes, including

hypertension, hepatitis B, blood pressure (systolic and dia-

stolic), triglyceride levels, serum creatinine levels, and cre-

atine kinase levels, and negatively correlated with neutro-

phil count (Figure 6)—all consistent with worse health

outcomes for people with higher African ancestry and

also consistent with previously known associations.31,48,49

In fact, of the 1,158 phecodes tested (out of total 1,208

phenotypes), 713 were positively associated with African

ancestry (binomial test p ¼ 3:253 10�15). In contrast,

mtDNA haplogroup was only associated with kidney dis-

ease (glomerulonephritis, renal sclerosis) at the 0.05 FDR,

with the European haplogroup conferring a higher risk.

However, the interaction between mtDNA and nuclear

ancestry was not significant at the 0.005 or 0.05 FDR for

any phenotype (Figure 6). We show using simulations

that, for quantitative traits, we have more than 80% power

to detect a negative interaction if the effect of ancestry

is larger than 0.5 (in units of standard deviation)

(Figure S11). By ‘‘negative interaction,’’ we mean that the

effect of ancestry on the phenotype is reversed in direction

between the two haplogroups but equal in size (material

and methods). We have relatively limited power for binary

traits but can detect a negative interaction with 80% prob-

ability for common diseases (i.e., prevalence >0.35) where

the effect of ancestry is greater than an odds ratio of 3.5

(Figure S11). For comparison, the effect of African ancestry

on hypertension, which was one of the only binary traits

to be significantly associated at the 0.005 FDR, translates

to an odds ratio of 3.4. This suggests that the effects of

mito-nuclear incompatibility, if present, are not large.



Figure 5. The relationship between nu-
clear ancestry (x axis) and residual mtDNA
copy number (y axis) is similar in different
mtDNA backgrounds (colors)
Variation in mtDNA copy number due
to sex, age, age2 and blood counts was
removed.
Discussion

The mitochondrial content (total mitochondrial number

and volume) of a cell that varies across cell types can be

correlated with its mitochondrial activity and bioener-

getic needs.4 Mitochondrial content and activity are

also correlated with the number of mtDNA copies in a

cell4, which is easier to assay in a high-throughput

manner. As such, there has been interest in using mtDNA

copy number as a proxy for mitochondrial (dys-) func-

tion in large-scale studies. Many studies have tested for

the associations between mtDNA copy number and com-

mon diseases (e.g., see Filograna et al.9 for review) but

such associations are inconsistent likely because most

studies are under-powered and/or they analyze mtDNA

copy number from peripheral blood without appropri-

ately accounting for variation in blood cell composition.

This makes it difficult to interpret genetic and pheno-

typic associations of mtDNA copy number. In this study,

we analyzed lab measurements and disease outcomes

derived from EHRs as well as genetic data to study the ge-

netics of mtDNA copy number and understand the

extent to which it is a useful biomarker of health-related

phenotypes in a diverse cohort with African and Euro-

pean ancestry.

MtDNA copy number was associated with several

health-related phenotypes, particularly those involving

metabolically active tissues such as heart and liver. These

associations were largely consistent between the AFR and

EUR cohorts. For example, there was a negative association

with markers of liver damage and a positive association

with phenotypes related to certain cardiovascular diseases.

The association between mtDNA copy number and liver

damage seems to be mediated largely by alcohol use.

The positive association between copy number and atrial

fibrillation is consistent with previous studies38,39 and is
Human Genetics and Gen
thought to be driven by an increase in

cell-free circulating mtDNA released

by cardiomyocytes in patients with

atrial fibrillation, as a result of mito-

chondrial dysfunction.39 The associa-

tion between copy number and other

cardiovascular disease (e.g., cardiome-

galy) was in the opposite direction to

previous reports,10 and we show that

this discrepancy might be due, in

part, to differences in how blood cell

composition is modeled across studies.
Some phenotypic associations were also different within

our study between the AFR and EUR cohorts. For example,

epilepsy, which is a common symptom of mitochondrial

disorders, including mtDNA depletion syndrome, was

negatively correlated with mtDNA copy number but only

in the EUR cohort. One possibility is that these discrep-

ancies might be driven by differences in environment

(e.g., alcohol use) that covary with ancestry.50,51 Alto-

gether, our results suggest that mtDNA copy number is

associated with a range of diseases, but most of these asso-

ciations are difficult to interpret because they are sensitive

to environmental and cellular heterogeneity in peripheral

blood and also to methodological choices. As such, pheno-

typic associations of mtDNA copy number should be inter-

preted with caution. That said, some associations (e.g.,

alcohol-related liver disease and atrial fibrillation) were

robust and replicated across ancestry groups, suggesting

that mtDNA copy number might be a useful biomarker

of some diseases.

The genetic architecture of mtDNA copy number was

less sensitive to blood cell composition and othermodifiers

but was strongly associated with ancestry. The heritability

of mtDNA copy number was higher in the AFR cohort

ð� 30%Þ compared with the EUR cohort ð� 10%Þ. This dif-
ference did not appear to be driven by the heritability of

blood traits that vary with ancestry (e.g., neutrophil counts

and AST levels). In fact, we found that the effect sizes of

variants discovered in previous GWASs were highly corre-

lated with their effects in our study, in both EUR and

AFR cohorts, despite differences in phenotype construc-

tion and ancestry. Interestingly, the difference in heritabil-

ity of mtDNA copy number between the AFR and EUR

cohort was not due to a difference in the frequency or ef-

fect sizes of associated variants discovered in previous

GWASs.11 Instead, our admixture mapping analysis sug-

gests that the difference in heritability between the AFR
omics Advances 4, 100202, July 13, 2023 9



Figure 6. Phenome-wide association of nuclear ancestry (upper), mtDNA haplogrup (middle), and interaction between nuclear and
mitochondrial ancestry (lower) in the AFR cohort
The effects were estimated jointly using linear and logistic regression for quantitative and case/control phenotypes, respectively, with
sex, age, and age2 as covariates. Phenotypes are ordered on the x axis grouped into broader categories based on the PheWAS catalog
and the y-axis shows -log10 p value of association. Associationmodels were either logistic regression (binary phecodes) or linear (labmea-
surements) with the same covariates: sex, age, and age2. Associations that pass a false discovery rate of 0.005 are highlighted in red, while
those that pass an FDR of 0.05 are shown in yellow.
and EUR cohorts might be driven by variants that are com-

mon in AFR but rare in European ancestry populations,

and they were therefore not discovered in previous

GWASs. If true, larger multi-ethnic studies would be

needed to discover these variants and to understand

whether they affect mtDNA copy number directly or

through other phenotypes that are more heritable among

individuals of African ancestry.

We also tested for an effect of mito-nuclear incompatibil-

ity onmtDNA copy number. Mito-nuclear incompatibilities

have been demonstrated in other organisms (e.g.,

Drosophila and marine copepods52–54), but the extent to

which they contribute to health risk in humans is widely

debated with tangible social consequences, e.g., for mito-

chondrial replacement therapy.55–59 An analysis of cell lines

from admixed individuals from the 1000 Genomes Project

previously showed that increasing mito-nuclear ancestry

discordance measured as the fraction of autosomal ancestry

that is divergent from mtDNA ancestry leads to a reduction

in mtDNA copy number.46 This was interpreted as an effect

of incompatibility between mitochondrial and nuclear

ancestry. However, here we show that this does not replicate

in primary tissue from a much larger sample of admixed in-

dividuals and further show that the original result was due
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to a statistical artifact that captured the effect of nuclear

ancestry, as opposed to that of incompatibility. In conclu-

sion, there is so far no evidence thatmito-nuclear incompat-

ibility affects mtDNA copy number in admixed individuals.

We also did not detect any significant effects of mito-nu-

clear incompatibility in a phenome-wide analysis of 1,208

health-related phenotypes. For example, we did not observe

an effect of mito-nuclear ancestry interactions on any preg-

nancy-related phenotypes (e.g., miscarriage, stillbirth, early

onset delivery, pre-term birth, and preeclampsia) in contrast

to a previous study.47 That we did not detect such effects

in admixed individuals suggests that they do not contribute

substantially to variation in medically relevant phenotypes.

Our study highlights the difficulty in interpreting pheno-

typic associations ofmtDNA copynumber, as they aremedi-

ated by and sensitive to both genetic and environmental

modifiers (e.g., ancestry, blood cell composition, and

alcohol use). Differences between studies in the distribution

of such modifiers and how they are modeled can lead to

different results. Blood cell composition can also vary quite

drastically with time,7 and complete blood counts in bio-

bank studies may not come from the same time point as

the samples that were used to estimate mtDNA copy num-

ber. Thus, even the best methods of correction cannot
3



guarantee that the associations that we and others observe

are independent of the effect of blood counts. This limita-

tion is not unique to mtDNA copy number but to analyses

of all cellular readouts (e.g., gene expression) measured in

heterogeneous tissues. To further complicate matters, pe-

ripheral blood copy number is also a function of cell-free

mtDNA, elevated levels of which can be a biomarker of

physiological stress and inflammation60 but which are not

measured as part of complete blood counts. These consider-

ations complicate the interpretation of the phenotypic asso-

ciations of mtDNA copy number. Prospective studies with

detailed environmental information and direct quantifica-

tion of cell-free mtDNA copy number60, in addition to ge-

netic data and complete blood counts, will be needed to

determine whether any associations between copy number

and health risk are causal.
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Individual-level genotype and phenotype data from the
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However, all summary statistics relevant to this work are

made available in Tables S1–S4. The code is publicly avail-

able and can be accessed on GitHub (https://github.com/

Arslan-Zaidi/mtcn_pmbb). Summary statistics from the

GWASs are available on the GWAS catalog under study ac-
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log: GCST90267373.
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Figure S1: Manhattan plot of GWAS on rmtCN (A) before and (B) after correction for blood cell counts

in the AFR cohort. Only chromosome 1 is displayed.
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Figure S2: Sensitivity of association of mtDNA copy number with cardiac phenotypes to model choice.

(A) The x-axis shows phenotypes arranged in order of phecode number such that similar phenotypes

cluster together, and the y-axis shows the negative log of the association p-value. (Top panel) A model

closely mimicking that used by Hägg et al. where, in addition to lrmtCN, we include sex, age, age2,

neutrophil %, lymphocyte %, total white blood cell count, and 20 PCs as predictors. (Middel panel)

The same as previous model except for the addition of platelet count as a covariate. (Bottom panel) The

model used in this study where we use rlrmtCN (residuals from the model described in the main text),

sex, age, and age2, and 20 PCs as predictors. (B) Forest plot illustrating the change in effect size for one

phenotype (hypertension and renal disease) in the EUR cohort.
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Figure S3: The heritability of lab measurements in the PMBB shown separately for the AFR and EUR

cohort. Only lab measurements where the lower bound of the 95% CI was greater than 0 in at least in

one of the cohorts is shown

Figure S4: Heritability of neutrophil count partitioned by chromosome in the AFR cohort. The colors

represent two models with and without genotype at the Duffy-null allele as a covariate. Both models

included sex, age, age2, and 20 PCs as covariates.
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Figure S5: SNP heritability of rlrmtCN in the AFR (first 7 columns) and EUR (last columns) cohorts

estimated using GCTA. All models included 20 genetic PCs calculated separately in each cohort. For

the AFR cohort, the heritability was estimated with additional covariates: AST = amino aspartate

transferase levels; APOL1 = genotype at the APOL1 locus; DARC (add.) = genotype at the rs2814778

SNP coded additively; DARC (add. + rec.) = additive and recessive coding for rs2814778; PRS (Blood)

= polygenic risk scores for blood counts which were measured in the PMBB; PRS (Blood ext.) polygenic

risk scores for an extended set of blood traits (see Methods for details).

Figure S6: Effect sizes for variants discovered in Chen et al. [28] are correlated with their effects estimated

in the PMBB EUR cohort. The red line represents y = x. The effects could only be re-estimated for

traits which were available in the PMBB. One variant which can be seen as having a large effect size on

platelet counts as estimated by Chen et al. was removed (see Methods for more details). The numbers

in each plot show the correlation coefficients.

Page 28



Figure S7: Polygenic risk scores (PRS) constructed using effects from Chen et al. [28] are strongly

correlated with the actual phenotypes in both PMBB cohorts. The blue line represents the linear

regression line.

Figure S8: Admixture mapping of rlrmtCN in the AFR cohort. The x-axis shows the position along

the genome and the y-axis shows the -log10 of the p-value of association between local ancestry at

each position and rlrmtCN. Global ancestry proportion and the Duffy-null genotype were included as

covariates.
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Figure S9: GWAS of mtDNA copy number (rlrmtCN) carried out separately in the AFR and EUR

cohorts. The x-axis shows the genomic position, grouped by chromosomes (vertical panels) and the

y-axis shows the -log10 of the association p-value. The dotted horizontal line represents the genome-wide

significance threshold of 5 × 10−08. The first 20 PCs, computed separately within each cohort, were

included as covariates.
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Figure S10: Power to detect a significant interaction effect between mitochondrial and nuclear ancestry

for binary traits (case/control data) and quantitative traits (e.g. lab measurements). The x-axis lists

the effect size, i.e., odds ratio (OR) or in units of standard deviation, for binary and quantitative traits,

respectively and the y-axis shows the power of detecting an interaction effect at α = 5 × 10−05. For

quantitative traits, the color represents the sample size and for binary traits, it represents the effective

sample size (Neff): nϕ(1− ϕ) where ϕ is the proportion of cases and n is the sample size.

Page 31



Figure S11: Mean sequencing depth (across individuals in the PMBB) of off-target reads aligning to the

Revised Cambridge Reference Sequence (rCRS) of human mtDNA. Note that the y-axis is on a log-scale.

Depth values from the region between the dotted red lines were filtered out for subsequent analysis.
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