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1 SUPPLEMENTARY METHODS

In this section, first, we describe the primary data source for mobility models (WIMOB), the data used
for calibrating our simulations, and for comparison of contact networks with methods using enrollment
data (EN). Next, we describe how we construct counterfactual mobility networks under the two main
policies of interest in our study: remote instruction (RI) and localized closures (LC). Finally, we describe
an agent-based-model (ABM) of disease transmission, which has a contact structure based on WIMOB,
and how this model was calibrated.

1.1 Data

1.1.1 WiFi Mobility

We use data provided by the IT management facility at Georgia Institute of Technology (GT) which
accumulates WiFi access point (AP) logs over time. The primary use of WiFi network logs is for
maintenance and security purposes. We mine these logs post-hoc to describe the mobility of individuals on
campus, which we refer to as WIMOB. Here mobility is expressed by visits to certain locations that are
demarcated by a corresponding AP. WIMOB can also describe dwelling (duration of visits) and collocation
(dwelling in the presence of others around the same AP).

The campus WiFi network spans 6959 APs distributed between 240 buildings (and some outdoor
locations). We label APs according to which building they are inside, along with the closest room or space
(e.g, hallway, lobby, suite, cafe, etc.). The AP may or may not reside inside the room, however, in most
cases, only a single AP is associated with space. For less than 5% of the APs, the AP shared association to
space with another AP. This many-to-one mapping is typically in the case of large halls and auditoriums.
We resolve such many-to-one associations by using APs as a proxy of the space they are associated with.
Therefore, individuals connected to different APs in the same space will still be identified as collocated.
Similarly, an individual could connect to the network with multiple devices. However, less than 1% logs
show that a user is connected to multiple APs around the same time. Therefore, WIMOB is agnostic to
which device connects to the APs to proxy the presence of the individual. For this study, we obtain the WiFi
network logs retrospectively for all of Fall 2019, and the data for Fall 2020 was provided on a per-day basis.
Each day, approximately 33, 000 different people connect their devices to the WiFi network on campus.
Overall in Fall 2019, approximately 40, 000 different people connected to the campus network.

1.1.2 Asymptomatic surveillance testing data

We calibrated the ABM using the publicly reported positivity rate on the GT campus as reported through
the asymptomatic surveillance and diagnostic testing program [28]. The testing program used pooled
saliva sample surveillance with follow-up diagnostic testing. The positivity rate was reported each day, but
individuals must wait at least 1 week between tests. We aggregated the positivity rate by week during the
Fall 2020 semester.
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1 SUPPLEMENTARY METHODS

1.1.3 Confirmed case data

When calibrating our ABM, we considered the reported confirmed cases in Fulton County [27], the
county in which GT is located. The ‘Confirmed COVID-19 Cases’ reported in this dataset are cases that
have been confirmed with a positive molecular (PCR) test. We considered cases during the Fall 2020
semester to inform external transmissions in the ABM.

1.1.4 Enrollment network summary statistics

We compare structural properties of contact networks constructed with WIMOB to contact networks
constructed from GT’s course enrollment transcripts (EN) To ensure that individuals cannot be identified
by combining anonymous WiFi network logs and course enrollment transcripts, we only use aggregate
statistics from EN— structural characteristics of the contact networks described in Table S2. The EN

network was based on Fall 2019 transcripts for GT’s Atlanta campus. These were cleaned to account for
cross-listed courses and was used to determine which students were classmates with each other to form a
contact network.

1.2 WiFi Mobility Models

1.2.1 Inferring location from Logs

WIMOB is our approach to describe contact between people and movement of people between locations.
The first step requires using WiFi network logs to infer when individuals were at specific locations on
campus by determining when devices were connected to the corresponding APs. Our system mines the
WiFi network logs that are populated via the Simple Network Management Protocol (SNMP) — a standard
and widely used monitoring protocol to organize device association behavior to a WiFi network. Periodic
SNMP updates can be caused either by poll requests to the APs that log which devices are associated with
it at that time. However, devices can appear invisible to detached from an AP for multiple reasons, for
example, when devices are idle. Otherwise. SNMP updates can occur whenever a new device connects,
which is typical when individuals move between APs. Our approach exploits this factor to first mine periods
when individuals are moving, then identify periods of dwelling between movements, and finally determine
collocation when two or more individuals are dwelling near the same AP. This system follows from other
studies that mine WiFi logs [12, 36] and the detailed processing pipeline and evaluation is presented in [8].
This system to infer collocations has been tested against lecture attendance and reports a high precision of
0.89, but a relatively lower specificity of 0.79 [8]. While it is not likely to show false-positives, it has a
possibility to erroneously mark people absent from a location even though they were there. However, for the
purposes of our study, a contact network is made over an entire day and it only needs a single collocation
instance for us to consider contact. And therefore we believe this limitation would not significantly affect
our models.

1.2.2 Characterizing Logs as Contact and Movement Networks

After inferring where an individual is located on campus, we represent the entire community behavior
as graphs. We describe a bipartite graph, K, that shows when a user is at a given location on campus
(Figure Figure S1). This bipartite graph has edges connecting a set of m people, P , to a set of n locations,
L. An individual can have multiple edges connecting to the location if they visited that location multiple
times (e.g., t1, t2). The edge data contains the start and end times of these dwelling periods. For these
bipartite graphs, we make a projection on set P to describe collocation. This projection graph, G, contains
an edge between users if they were visiting the same location during overlapping times. Since we do
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not use RTLS, our approach can only identify if people were in the vicinity of the same AP, but does
not describe the distance between them. However, it can reasonably determine collocation in the same
room [8]. Since our study is limited to localizing people indoors, we adapt the definition of proximate
contact [17] where people might be “more than 6 feet but in the same room for an extended period”.
In our work, we use a lower bound threshold of 40 minutes to determine proximate contact. Therefore,
individuals are only considered in contact when they are collocated in a room for 40 minutes or more. This
threshold was set up to account for typical lecture duration on campus (for standard 3-credit hour courses
taught 3 times a week). Additionally, we compared the clustering coefficient of the contact networks for
different days by varying contact thresholds as 30 and 40 minutes. The Pearson’s r correlation of these was
very high 0.97. Thus, we chose to use the 40 minute threshold as it produced structurally similar graphs
while requiring lower space constraints. Every edge between two individuals contains a list of locations
where they were possibly in contact. G forms the basis of the contact-network that we use an agent-based
model to simulate. Alternatively, we also make a projection on the set L. This projection is a directed
graph, H , where an edge from Li to Lj represents movement from the first location to the next within a
span of 60 minutes. GT’s large urban campus with pedestrian pathways and motorized transit services
enables direct movement between any two places on campus within the threshold. The 60 minutes threshold
helps discount erroneously labeling returning from outside campus (e.g., non-residential students visiting
two different locations between 2 days). H effectively describes how locations are connected and which
locations could be more conducive to attracting and disseminating the virus. As a consequence, the H
helps inform policy design. We compute the bipartite graph and its projections for each day of the semester.

1.3 Modeling Policies and Scenarios

1.3.1 RI: Offering Large Classes Online

As a response to COVID-19, prior work has recommended using EN to enforce a form of RI— moving
classes large to an online remote instruction setup while other classes are offered in–person [16, 5, 38].
While we have access to aggregate insights on EN contact networks, our study protocol prohibits us from
accessing course-specific information at an individual level. Therefore to infer individual enrollment,
we analyze the edges of the bipartite graph K. For this, we first scrape the GT’s course roster for Fall
2019 (filtered to only represent the Atlanta campus). This process provides us with a location and weekly
schedule for every lecture conducted on campus, including its various sections. With this information, we
are able to identify which edges represent visits to lectures, and subsequently, we can account for unique
visitors to a lecture. Thus, we can first identify the number of unique individuals on campus who are
enrolled in classes. The aggregate data from course enrollment reports that 21, 299 students were enrolled
in Fall 2019. In comparison, our inference identifies 22, 248 students. The excess number can be explained
by the fact that our method does not distinguish between instructors, TAs, and students. Next, we study
the unique visitors to every lecture in the scraped course schedule which gives us an estimate for the size
of every class. Given the limitations of our data processing, actual enrollment sizes could be larger, but
our process is less likely to count false positives [8]. Finally, to model RI, for the contact network Gt, we
create a counterfactual network G′

t for each day t. These exclude collocations that took place at lecture
locations during lecture times. If two people were connected solely by proximity during lectures — in a
class with large enrollment — they will appear disconnected in the counterfactual network.
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1.3.2 LC: Closing Important Locations

This article demonstrates the effectiveness of localized closures,LC, which are targeted interventions
to seize mobility at different spaces on campus. For this, we identify important locations on campus by
analyzing H . In the main paper, LC uses PageRank [29] as an illustrative algorithm to identify important
location nodes. For robustness, we apply various additional algorithms to identify highly authoritative
nodes in H — betweenness centrality [13], eigenvector centrality [4], and load centrality [25]. In the SI
Appendix, we distinguish these different policies as LCPRank, LCBCen, LCECen, LCLCen. Since RI captures a
weekly schedule to determine enrollment, LC is implemented to find locations based on behavior from the
past 7 days of mobility. We apply the weighted version of the algorithms mentioned earlier on the directed
graph representing movement, H . The edge weight is based on the number of instances of movement
between any Li and Lj . After sorting the locations by importance, we determine the number of locations to
shut down based on different budgets induced by RI— mobility and risk of exposure. For this purpose,
we take the approach of a greedy algorithm which successively removes highly-ranked locations till the
constraint is met (within 1% margin of error). Similar to RI, LC also render counterfactual collocation
networks, G”t for each day t. In these networks, we remove instances of collocations that occurred at the
shutdown locations. Figure S18d and Figure S19 shows the categories of buildings where different spaces
are closed by LC policies.

1.3.3 Inducing Budgets and Characterizing Behavioral Scenarios

We now describe how we compare the RI and LC policies. First, we consider the effects of these policies
under three behavioral scenarios. These scenarios express the spillover effects of closure that lead to
students avoiding campus entirely because their entire schedule is forced online. This analysis assumes
that the motivation to be present on campus is determined primarily by enrollment. We consider that,
if a student has a full course load (enrolled in a minimum of 3 classes) and all their classes are offered
online, that student might have less incentive to visit campus at all (for any engagement) and thus practice
Avoidance. Since LC could end up closing classrooms, it can also lead to academic schedules being affected
and elicit Avoidance behavior. As a result, we describe three behavioral scenarios. Persistence, is the
preliminary, or null scenario, which represents no Avoidance. This counterfactual collocation graph only
removes edges directly affected by RI or LC. The second scenario we model is Non-Residential Avoidance
where only non-residential students with full online schedules stop visiting campus entirely. Here the
counterfactual graph will remove all edges of non-residential students with fully online schedules. Lastly,
the third scenario we model is Complete Avoidance where any student with fully online schedules stops
activity on campus entirely (including residential students). Here the counterfactual graph will remove all
edges from any student with fully online schedules. Since our study protocol prohibits us from mapping
our data to other sources, we heuristically infer which individuals are likely to be residential and which are
not. We label individuals as residential when they dwell an average of at least 15 minutes at residential
locations between 6pm and 10am, on workdays (Monday–Thursday).

Under each behavioral scenario, we limit the number of locations that can be closed under the LC
policy to ensure the level of restriction is constrained to be similar to the RI policy. We limit the number
of locations under two types of restrictive budgets. The first budget is based on mobility, which is the
percentage of edges remaining in the bipartite graph if a policy were to be implemented. The second
budget is based on exposure risk, which is the number of unique individuals who would be in the 1-hop
collocation neighborhood of positive individuals. We compute this budget by randomly sampling 2.5%
of the population as positive, based on the highest 7-day average positivity rate reported by GT [15] in
Fall 2019. Note, however, the effect of RI on campus can vary in different behavioral scenarios, thereby
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changing the budget available to design a comparable LC policy. For instance, the number of people at
exposure risk is much lower in Complete Avoidance. As a result, we build multiple alternate networks
representing the effect of policies under counterfactual behavioral scenarios.

The infection reduction outcomes and burdens of different policy interventions (under various behavioral
scenarios and budgets) is described in Table S4—Table S7 presents boxplots that compares the distribution
of disease control outcomes. Figure S10—Figure S13 show cumulative plots of disease control outcomes

1.4 Agent-based Model

We constructed an agent-based model (ABM) that captures the spread of COVID-19 between individuals
active within the GT community. The model is used to evaluate the effectiveness of different policy
interventions. We consider a modified version of the SEIR framework for simulating the spread of COVID-
19 [34, 7] by using an underlying contact network given by WIMOB. Figure S2 shows the compartments of
the framework. The susceptible state (S) represents individuals who have not been infected and can contract
the disease by having contact with an infectious individual. The exposed state (E) is canonically equivalent
to the “incubation period” and is similar to the pre-symptomatic state found in related work [39, 18].
Individuals are considered infectious when they are in either the asymptomatic state (Asym) or symptomatic
state (Sym). Individuals in the asymptomatic state are assumed to be the major “spreaders” [18] and
transmit the infections to susceptible individuals before they are recovered (R) [23] — after 7 days [18].
Since asymptomatic is considered a state of mild severity [32], individuals in this state do not have a risk
of fatality. By contrast, for individuals in the symptomatic state, will be eventually isolated (Iso) (e.g.
self-quarantine, or hospitalization on campus). Once in the isolated state, they cannot transmit the disease
to individuals in the susceptible state. Unlike the asymptomatic track, the symptomatic state is considered
critical severity. Therefore, after moving to the isolated state, individuals have risk of fatality and entering
the death state (D). If the isolated individual survives, they enter the recovered state. We assume immunity
is preserved and therefore after recovery the individual is no longer susceptible.

1.4.1 Definitions

Let t = {0, 1, 2, 3, ..., T} be the index of days in simulations. We denote the sequence of dynamic
collocation networks indexed by day t, as {Gt(At, Bt)}Tt=0. At is the set of vertices, i.e. individuals on
campus, and Bt is the set of edges. The universe set of the population throughout the simulation time
period is given by M =

⋃T
i=1At. For convenience, we use ai ∈ M to index every person in the universe

population set.

The SEIR model consists of seven compartments. Each of these corresponds to a function of population
subsets with respect to day t: susceptible S(t), exposed E(t), asymptomatic Asym(t), symptomatic Sym(t),
isolation I(t), recovered R(t), and dead D(t). For example, ai ∈ I(t) means ai is in the isolation state at
day t. We use N t

S→E , N t
E→Asym, N t

E→Sym, N t
Asym→R, N t

Sym→I , N t
I→R, and N t

I→D to denote the transitions
between states between day t and day t+ 1.

1.4.2 Model Initialization

The entire population M is fixed where M = S(t) + E(t) + Asym(t) + Sym(t) + I(t) + R(t) +D(t)
for all t. To capture the positivity out of the students coming back to campus at the start of the semester,
we initialize the system by setting a subset of M into Asym(0) and the reminder into S(0). The initial
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1 SUPPLEMENTARY METHODS

percentage of asymptomatic is described by:

Asym(0) ∼ Binomial(M, I0)

S(0) ∼ M − Asym(0)

where I0 is a parameter defined as the initial percentage of Asymptomatic at day t = 0.

1.4.3 New exposures

We consider two ways that an individual in the ABM could be exposed: (i) exposures that occur due to
contacts among individuals captured by the mobility network (internal transmission) and (ii) exposures
that occur due to contacts that occur outside of the mobility network (external transmission).

Internal transmissions happen exclusively among individuals in the model. On any given day, an edge
becomes effective, when one of the susceptible individual comes in contact with the other which is
infectious, i.e. asymptomatic or symptomatic, individual. Therefore, for every effective edge between two
such people, the probability of the susceptible individual getting exposed is described by the transmission
probability p, which is another model parameter. The probability for an susceptible individual ai entering
exposed at the end of day t is given by the following function:

fp(ai, t, p) =

{
1− (1− p)e(t,ai), if ai ∈ Vt

0, otherwise

Here, e(t, ai) is the number of effective edges of individual ai at time t. Since (1 − p)e(t,ai) is the
probability that ai does not contracted the disease at time t under e(t, ai) Bernoulli trials, 1− (1− p)e(t,ai)

is the probability that at least one effective edge leading ai to exposed.

In addition to exposure due to internal transmission, we also consider new exposure due to external
transmission. We consider external transmission to be exposure resulting from the physical collocations
outside the scope of mobility network. For instance, the WIMOB does not capture the connections between
individuals without access to the campus WiFi or someone contacting infectious persons outside the
campus. To reflect this risk in our model, for any day t, Iout(t) describes the probability of infection on day
t from a collocation that is external to the mobility network. We assume that the probability an individual
is infected due to an external source is proportional to the number of cases in the broader community.
Therefore, we model the probability of external infection as a function of confirmed cases in Fulton county,
where GT is located [27]. Ct represents the confirmed cases reported by Fulton County where Cmax is the
maximum number of the cases over the whole period, Iout(t) is given by

Iout(t) = α ∗ Ct

Cmax
(S1)

where α is a parameter scaling the normalized confirm cases in the surrounding county. The resulting
number of external infections on day t is then modeled to be are Binomial with |S(t)| trials with probability
of success Iout(t).
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In summary, for every day t > 0, the overall number of individuals that become newly exposed is
represented as N t

S→E which is the result of both external and internal transmissions.

N t
S→E ∼ Binomial(|S(t)|, Iout(t))︸ ︷︷ ︸

external infections

+
∑
ai∈M

fp(ai, t, p)︸ ︷︷ ︸
internal transmissions

1.4.4 Model dynamics after exposure

After exposure, individuals in the model will progress through other disease states in our model. We
update the number of individuals in each state daily to reflect transitions between them. The transitions
between the states on day t are summarized according to the following equations:

S(t+ 1)− S(t) = −N t
S→E

E(t+ 1)− E(t) = N t
S→E −N t

E→Asym −N t
E→Sym

Asym(t+ 1)− Asym(t) = N t
E→Asym −N t

Asym→R

Sym(t+ 1)− Sym(t) = N t
E→Sym −N t

Sym→I

I(t+ 1)− I(t) = N t
Sym→I −NI→D −NI→R

R(t+ 1)−R(t) = NI→R

D(t+ 1)−D(t) = NI→D

After an individual has been exposed, they will spend ∆S days in an incubation period. At day ∆S after
their exposure, individuals will become a symptomatic infection with probability pS . Otherwise the agent
will become an asymptomatic infection This process is given by the following two equations:

N t
E→Sym ∼

{
Binomial(|E(t−∆S)|, pS), t ≥ ∆S

0, otherwise

N t
E→Asym ∼

{
|E(t−∆S)| −N t

E→Sym, t ≥ ∆S

0, otherwise

Individuals who enter the asymptomatic state will recover after ∆Asym→R days since they were first
exposed. Thus, we represent the number of transitions from asymptomatic to recovered on day t as:

N t
Asym→R ∼

{
N

t−∆Asym→R

E→Asym , t ≥ ∆Asym→R

0, otherwise

On the other hand, individuals who enter the symptomatic will eventually enter the isolation state [18].
The time that individuals spend in the symptomatic state before entering the isolated state is normally
distributed δtI ∼ Normal(∆I , σ

2
I ). We simulate each individual’s transition between symptomatic and
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isolated by using a sampling function Γ(ai, t,∆t) and a function τ(ai, t) that returns the days since exposed
respectively:

Γ(ai, t, δ
t
I) =

{
1, t− τ(ai, t) ≥ δtI
0, otherwise

τ(ai, t) =

{
first day of ai entering exposed, ai ∈ Sym(t)

+∞, otherwise

The aggregated transitions N t
Sym→I between symptomatic and isolated is the sum of the distribution above

on each day t.

N t
Sym→I ∼

∑
ai∈M

Γ(ai, t, δ
t
I)

Individuals who enter the isolated state may end up with one of two states: dead or recovered. We defined
N t

I→D as following another binomial distribution with parameter pD:

N t
I→D ∼ Binomial(|I(t)|, pD)

The transitions between isolation and recovered is quite similar to the transitions between symptomatic and
isolation except δtR ∼ Normal(∆R, σ

2
R) where ∆R and σR are the two parameters standing for the mean

and standard deviation of days for an individual in the isolation state entering recovered since the first
day of infection. This leads to:

N t
I→R ∼

∑
ai∈M

Γ(ai, t, δ
t
R).
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Table S1. Model Parameters of the ABM

Parameter Definition Value Std Source
p Transmission probability: For any edge between a susceptible

and infectious individual in the contact network, p is the
probability that the susceptible person will enter into the exposed
state. This only dictates internal transmission

0.034 0.007 Calibration

α Scaling factor of the normalized confirmed cases in the
surrounding county (S1). This is the parameter for us to generate
Iout(t)

0.032 0.0032 Calibration

I0 Proportion of population that is asymptomatic at day 0 0.012 0.0009 Calibration
pS Probability of exposed persons becoming symptomatic 0.66 - [18]
∆S Incubation period (days) since the first day of exposure 5 - [18]
∆Asym→R Asymptomatic duration (days); it is the time taken for an

asymptomatic person to recover since the first day of exposure
7 - [18]

∆I , σI Time of an symptomatic entering isolated since the first day of
exposure of a symptomatic person

8 2 [14]

∆R, σR Time for recovery for a symptomatic, since the first day of
exposure

12 2 [20]

pD Death rate under isolation 0.0006 - [20]
The variables p, α, and I0 are estimated by calibrating the simulation model on the first 5 weeks of

positivity rates provided by GT surveillance for Fall 2020, while incorporating external cases from Fulton
County. These parameters were found by validating the ABM on the remaining weeks of Fall 2020. Figure

S3 shows model estimate during the calibration and validation period.

1.4.5 Model calibration

Most of our model parameters can be estimated from previous studies (see Table S1). However, three
parameters in our study are not easily estimated from previous studies: (i) the proportion of the agents
that begin the semester asymptotically infected, I0, (ii) the probability of transmission between a given
infectious individual and susceptible individual given a contact in the mobility network, p, and (iii) the
scaling factor α used to determine probability of transmission due to contact outside of WIMOB network on
day t, Iout(t) (see (S1)). We fit these three parameters to the published weekly positivity rate (percentage
of asymptomatic cases) as reported by GT’s asymptomatic surveillance testing program [28]. To fit the
parameters, we performed calibration to minimize the root mean square of error(r.m.s.e) between the
simulation estimates of the weekly positivity rate and the observed weekly positivity rate on GT’s campus
of the Fall 2020 semester as reported by the surveillance testing program.

To perform the calibration, we used two sets of public data pertaining to 2020 Fall semester at GT: (i)
the confirmed cases in Fulton County [27], and (ii) the aggregated surveillance test positivity rate for each
week [28]. The former helps estimate the daily external infection percentage. The latter is the ground
truth trajectory we fit our model on. We consider the data aggregated by week because each individual
on campus can only get tested once per week. The positivity rate provided by the surveillance testing
data can be interpreted as the estimated percentage of new asymptomatic cases out of the total testable
population which includes susceptible, exposed, and asymptomatic — with an assumption that every
testable population get tested at the same rate.
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1 SUPPLEMENTARY METHODS

To formalize the calibration problem, let Rw be the surveillance-testing aggregated result at week w. Let
S(I0, α, p, w) be the function of the simulation model which returns the percentage of new asymptomatic
in week w out of the total testable population. For every combination of parameters, the predicted result for
each week w is estimated by taking the average of N simulation outputs. The objective function is:

f(I0, α, p) =

√√√√ 1

W

W∑
w=1

(∑N
i=1 S(I0α, p, w)

N
−Rw

)2

The optimization problem is:
min
I0,α,p

f(I0, α, p)

We fit our model to the first 5 weeks of Fall 2020 and validate the results on the remaining weeks. After
obtaining the optimal set of parameters, for robust comparison of policies with different viral variants,
we generate a range of parameters by compromising the r.m.s.e within 40% of the minima [7]. First, we
implement the Nelder Mead method [22] to discover the optimal set of parameters that minimizes the
r.m.s.e. Next, we sample 40 different combinations of parameters within 40% of the minimum r.m.s.e to
estimate the means and standard deviations of these parameters ( Table S1). Throughout this paper, we
pool together all simulation results across those parameters over multiple runs (N = 15) and report the
2.5th and 97.5th percentiles of the simulation outputs for every policy experiment.

1.5 Sensitivity Analyses

In this section, we design complementary experiments to inspect the robustness LC policies under
different setups and calibration approaches. These variations are defined as follows:

Calibration periods (V1) : For the results in the main paper, we discuss results with our ABM calibrated
on the first 5 weeks of surveillance testing data. For additional analyses, the model parameters are
re-estimated based on the surveillance data from week 5 − 9 and 10 − 14 in Fall 2020 at GT. The
calibration is validated on the remaining weeks in the semester. Figure S3 shows the calibration
and validation. The results of policy comparison with these variations can be found in Table S8 and
Table S9, for weeks 5−9 and 10−14 respectively. Additionally, Figure S8 shows boxplots to compare
the distributions of different policies, while Figure S14 and Figure S15 show cumulative plots of the
disease control outcomes, for weeks 5− 9 and 10− 14 respectively.

Campuses and counties (V2) : For the results in the main paper, the calibration of our ABM reflects certain
latent factors inherent to GT that could affect both mobility behavior as well as testing results. To
complement this we consider calibrating our data under different settings informed by surveillance
testing from other similar large universities. This analysis is intended to represent the GT community
in a different geographic setting, which is influenced by a different surrounding community, policies
and resources. The new parameters are estimated based on the first 5 weeks of surveillance testing from
the University of Illinois at Urbana-Champaign (UIUC) and the University of California, Berkeley
(Berkeley) [26, 33], and the corresponding county data [10, 9] The calibration is validated on the
remaining weeks in the semester. Figure S4 and Figure ?? show the calibration and validation for
UIUC and Berkeley respectively. The results of policy comparison with these variations can be found
in Table S10 and Table S11. Additionally, Figure S9 shows boxplots to compare the distributions
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of different policies, while Figure S16 and Figure S17 show cumulative plots of the disease control
outcomes.

The estimated parameters with these calibration variations are described in Table S3. Both RI and LC are
evaluated in the same infection reduction metrics and burden metrics again under behavioral scenarios S1,
S2, and S3. Since the budgets are structural (mobility, and exposure risk) the LC policies are unchanged
among the variants. Moreover, since the burden metrics are structural, those results are invariant.

2 SUPPLEMENTARY DISCUSSION

2.1 Implications for Policy Design

To evaluate the efficacy of policies, we inspect infection reduction by simulating the disease with
contact networks from Fall 2019. Since managed WiFi networks accumulate logs for long periods of
time, policymakers can use WIMOB to model data from previous semesters and experiment with closure
policies like LC. We show that WIMOB can provide retrospective disease–mitigating insight into multiple
counterfactual behavioral scenarios. For instance, policymakers can consider studying seasonal behaviors
over multiple semesters for more robustness. Since the underlying data is longitudinal, it provides the
flexibility to realistically assess policy interventions at different time points and also study updating policies.
Restricting movement on campus at different time-points is known to exert varying degrees of control on
disease spread [7]. Our data also shows that mobility on campus varies across the semester and therefore,
allows policymakers to consider loosening shutdowns depending on the phase of the semester.

Policy design is determined by practical budgets. We model two kinds of budgets, mobility reduction
and risk of exposure. The former represents disruptions in space utilization, availing services, and social
life. The latter translates to the testing burden on campus. Our analysis determines the budget in different
behavioral scenarios by observing the changes to the graph when large classes are moved online. This
is to ensure an equitable comparison with targeted policies. However, in real situations, these budgets
can be relaxed or restricted based on that campus’ preparedness to tackle a pandemic. For instance,
a hypothetical campus that can test everyone every day might not be constrained by risk of exposure.
Alternatively, policymakers can model other tangible budgets such as the capacity in isolation wards or
available hospital beds. This can be informed by practical limitations of the campus. Similarly, this paper
only assesses limited forms of cost, e.g., students avoiding campus or closing locations. From a financial
perspective, university campuses can digitize their core service—education—but still realize losses from
other curtailed services [21, 3, 37]. When students avoid campus it can lead to direct losses from meal
passes and parking and also quantifiable losses to learning outcomes [1, 11] Policymakers can compute
actual costs by complementing this data with information from other sources (e.g., revenue generated
by cafes and stores on campus). This can help qualifying WIMOB to reflect different costs and in turn
help design policies that optimize for financial losses. Different campuses have different priorities and
challenges in implementing policies.

2.2 Privacy, Ethics and Legal Considerations

We purposefully compare our prototype targeted policies against moving classes online because of
practical budgets within the university. Both the WIMOB and EN based contact networks are derived from
archival data accumulated by universities. This does not require instrumenting campus or its community
with any new form of surveillance infrastructure. However, its use for a different purpose demands approval
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2 SUPPLEMENTARY DISCUSSION

by an IRB. Moreover, acquiring these kinds of data would require collaborating with data-stewards (e.g.,
the IT department) to establish a data-use agreement. This document must clarify how the data will be
de-identified, transferred, and stored.

For this form of data, the critical privacy challenge might not be localization itself, but rather the
aggregation of data over a period of time [35]. Data spanning a longer period are more susceptible to
cross-analyzing and identifying. To mitigate over-accumulation of data, we suggest an adherence to
principles of data minimization [31]. Instead of storing entire mobility graphs, the campus can compute
and preserve only high-level insights, such as the importance of locations. This redacts any underlying
individual behavior and corresponding identifiable information. Actually, for future purposes campuses
can consider a form of differential privacy that authorizes limited forms of data querying depending on the
privileges of the stakeholder [2].

An operational application would require the university to update the terms of use for its managed
network. Particularly, the university should disclose how this data can be used in critical circumstances that
invoke shared vulnerabilities [6]. On notifying the campus community of this change it offers individuals
the choice to refrain from using the university network. Prior work on a sample within the same university
campus shows that 90% of students are connected to the network on any given day [8]. Therefore, proposing
such an opt-out condition can be viewed as an unfair choice. As a result, the campus needs to develop a
contingency plan to accommodate network access to users who do not want their mobility behavior to
constitute the aggregated insights.

2.3 Limitations and Future Work

This work presents evidence that university campuses can repurpose existing data sources to inform
the design of LC policies that can control COVID-19. We evaluate these policies as alternatives to other
data-driven, but, broad impact policies that universities consider implementing, such as moving large
classes online. One of the drawbacks of this analysis, however, is that it assumes all edges to be the
same. For example, when constraining by mobility, in real scenarios losing certain visits might be more
valuable than others. Decline in mobility around profit-making services, such as shops and cafeterias,
versus losing mobility at common rooms have a different tangible effects on campus. Currently, we take
an agnostic stance towards the mobility behavior, where all visits at all locations are the same. In reality,
implementing policies could have inequitable qualitative impacts despite appearing to have a similar
network configuration. This can be improved by embedding more qualitative information into the network
and conceiving ingenious ways to associate costs to edges.

Similar to the assumption that all visits and locations, the current work also assumes all people to be
equal. However, different people have different underlying conditions that can make their vulnerabilities
more concerning [30]. The privacy safeguards of this study restricted the research team from acquiring
any additional demographic or historical information. Further work can attempt to characterize the nodes
by randomly seeding the network to reflect the approximate demographic break up of the community.
Alternatively, researchers could try to estimate some demographic based on behavior as well. However,
to leverage accurate individual information, even for operational use during a public health emergency,
policymakers and researchers need to develop new privacy protocols [24].

Lastly, this paper only studies three rudimentary behavioral scenarios, persistence, non-residential
avoidance, complete avoidance. Yet, other substitution behaviors are possible and the richness of networks
leveraged with WIMOB enables the exploration of various new scenarios that can be triggered by policy
interventions on campus. For instance, individuals might not even visit transitory spaces, such as lobbies
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2.3 Limitations and Future Work

or cafes between classes. Certain collocations could be the consequence of social ties which might never
be developed because of a shutdown (e.g., project teams meeting outside of class). Further research can
illuminate the effects of policies in more specific scenarios by modeling post-intervention behavior more
accurately.
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2 SUPPLEMENTARY DISCUSSION

Table S2. Comparison of Contact Network Structure (Fall 2019)

Cornell Georgia Tech

Contact Network EN EN WIMOB

Contact Situations Course
Lectures

RI Course
Lectures

RI All Spaces Course
Lectures

RI

Number of Active
Nodes

22051 21299 15379(±3353) 15379(±3353) 15380(±3353)

Average Contacts 529 22−41 341 30 152(±63) 86(±35) 86(±34)

Density 0.024 0.001 0.016 0.001 0.009(±0.002) 0.005(±0.001) 0.005(±0.001)

Largest Connected
Component(%)

0.991 0.763 0.994 0.627 0.999(±0.001) 0.999(±0.02) 0.978(±0.025)

Average Shortest
Path

2.47 3.75 2.54 3.54 2.67(±0.28) 3.26(±0.5) 2.953(±0.35)

We create a contact network of only students with WIMOB and compare it with insights from contact networks created with EN. On average, we find the contact
network constructed with WIMOB shows fewer average contacts, lower density and higher average shortest path (between reachable paths). Moreover, within
WIMOB itself, characterizing all spaces reveals more contacts and shorter paths than only focusing on contacts in lectures. While the proportion of the largest

component appears similar, note that with WIMOB, on average about only 70% of the students visit campus on a given week. We further inspect the
disease–mitigating structural changes of the RI policy on the network. We observe that the changes across all metrics with EN appear to be more drastic than

compared to WIMOB.

Table S3. Calibration outcomes with variations

Calibrating on Positivity Rate at GT Calibrating with University’s Behavior

Parameter weeks 0− 4 weeks 5− 9 weeks 10− 14 UIUC Berkeley

p 0.034± 0.007 0.073± 0.005 0.0024± 0.0003 0.024± 0.0009 0.041± 0.003

α 0.032± 0.0032 0.0042± 0.0006 0.0159± 0.002 0.0069± 0.0013 0.038± 0.006

I0 0.012± 0.0009 0.00057± 0.00007 0.0030± 0.0007 0.0039± 0.0013 0.0048± 0.0003

Optimal r.m.s.e 0.0034 0.0007 0.0015 0.0028 0.0031

Effective R0 (min - max), Fall
2020

1.15− 1.18 1.17− 2.14 0.33− 0.95 1.12− 1.19 1.24− 1.28

Effective R0 (min - max), Fall
2019

2.87− 5.68 5.15− 12.93 1.27− 1.36 3.35− 5.35 3.32− 7.00

The results in the main paper use variables p, α, and I0 as estimated by calibrating the simulation model on the first 5 weeks of positivity rates provided by GT
surveillance for Fall 2020, while incorporating external cases from Fulton County. For sensitivity analyses, we perform calibrations on GT data for weeks 5− 9

and 10− 14. Additionally, we perform calibrations on first five weeks of UIUC and Berkeley positivity rate (along with data from their respective county).
These parameters were found by validating the ABM on the remaining weeks of Fall 2020. To assess the basic reproductive number (R0) of our ABM we study
the first 4 weeks of the disease. We find the effective R0 to be higher for Fall 2019 than Fall 2020 as the mobility behaviors between the 2 semesters was vastly
different. Note, Fall 2020 exhibits only 39% of the mobility we observe in Fall 2019. In fact, the ABM is calibrated on Fall 2020, where behavior was subject to
pandemic related closures, but in Fall 2019 the mobility was not hindered by any interventions. Thus, Fall 2019 reflects a counterfactual of Fall 2020 without

any closures.

14



2.3 Limitations and Future Work

Table S4. Comparison of different LCPRank policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in Fall
2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LC RI LC RI LC

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

25.34(±12) 36.92(±14)∗∗34.30(±13)∗∗35.44(±10) 49.33(±11)∗∗52.19(±10)∗∗61.62(±7) 69.34(±5)∗∗ 64.44(±6)∗∗

Total Infections
(%)

6.99(±5) 10.63(±6)∗∗ 8.19(±5)∗∗ 14.88(±4) 13.96(±6)∗ 15.67(±6) 33.00(±5) 33.4(±5) 26.94(±5)∗∗

Internal
Transmissions
(%)

17.13(±9) 22.62(±11)∗∗21.01(±11)∗∗ 27.58(±8) 35.35(±12)∗∗39.20(±11)∗∗54.00(±8) 70.89(±7)∗∗ 60.90(±9)∗∗

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.20 0.45 27.21 12.45 6.57

Completely
Isolated on
Campus (%)

5.42 8.40 8.40 5.95 5.72 5.71 7.09 5.18 5.23

Note that this table is the same as ??. We repeat the results here for easier comparison of LCPRank to other algorithms shown in Table S5, Table S6 and
Table S7. Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCPRank with RI. We find that LCPRank leads to
significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are comparable in general but
can vary by specific scenarios. In addition, every policy also exerts some burden on campus, either in terms of locations affected, students avoiding campus or
isolation. We observe that LCPRank policies focus on fewer locations (except in S3 ). Moreover, these policies affect fewer student’s schedules and therefore
fewer people avoid campus due to completely remote schedules. Finally, LCPRank does not increase the percentage of people completely isolated on campus

(p-value: < 0.01:∗, < 0.001:∗∗).
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Table S5. Comparison of different LCBCen policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in Fall
2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCBCen RI LCBCen RI LCBCen

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

25.34(±12) 19.14(±12)∗∗30.93(±13)∗∗35.44(±10) 30.79(±13)∗∗51.87(±10)∗∗61.62(±7) 65.07(±6)∗∗ 61.38(±7)

Total Infections
(%)

6.99(±5) 4.85(±4)∗∗ 7.74(±5) 14.88(±4) 7.76(±5)∗∗ 15.30(±6) 33.00(±5) 25.32(±5)∗∗ 22.08(±6)∗∗

Internal
Transmissions
(%)

17.13(±9) 11.96(±9)∗∗ 19.64(±10)∗∗ 27.58(±8) 19.63(±10)∗∗38.74(±11)∗∗54.00(±8) 63.29(±8)∗∗ 54.00(±8)

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.07 0.45 27.21 11.47 6.74

Completely
Isolated on
Campus (%)

5.42 8.63 8.63 5.95 5.49 5.47 7.09 5.15 5.19

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCBCen with RI. We find that LCBCen leads to significantly
improved peak infection reduction and internal transmission, when designed with the exposure risk budget, but can be worse with the mobility budget. In terms

of reduction in total infections, the outcomes are typically worse. In addition, every policy also exerts some burden on campus, either in terms of locations
affected, students avoiding campus or isolation. We observe that LCBCen policies focus on fewer locations (except in S3 ). Moreover, these policies affect fewer
student’s schedules and therefore fewer people avoid campus due to completely remote schedules. Finally, LCLCen does not increase the percentage of people

completely isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S6. Comparison of different LCECen policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in Fall
2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCECen RI LCECen RI LCECen

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

25.34(±12) 36.15(±13)∗∗36.13(±13)∗∗35.44(±10) 44.52(±12)∗∗51.33(±10)∗∗61.62(±7) 65.13(±6)∗∗ 62.15(±7)

Total Infections
(%)

6.99(±5) 8.66(±6)∗∗ 8.69(±6)∗∗ 14.88(±4) 11.75(±6)∗∗ 14.96(±6) 33.00(±5) 25.39(±5)∗∗ 22.82(±6)∗∗

Internal
Transmissions
(%)

17.13(±9) 22.33(±11)∗∗22.37(±11)∗∗ 27.58(±8) 29.95(±12)∗ 37.94(±11)∗∗54.00(±8) 63.56(±8)∗∗ 57.07(±10)∗∗

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.20 0.55 27.21 13.11 6.96

Completely
Isolated on
Campus (%)

5.42 8.59 8.59 5.95 5.53 5.51 7.09 5.17 5.23

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCECen with RI. We find that LCECen leads to significantly
improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes vary by specific scenarios. In addition, every
policy also exerts some burden on campus, either in terms of locations affected, students avoiding campus or isolation. We observe that LCECen policies focus on
fewer locations (except in S3 ). Moreover, these policies affect fewer student’s schedules and therefore fewer people avoid campus due to completely remote

schedules. Finally, LCECen does not increase the percentage of people completely isolated on campus (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S7. Comparison of different LCLCen policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in Fall
2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy RI LCLCen RI LCLCen RI LCLCen

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

25.34(±12) 22.42(±13)∗∗30.73(±13)∗∗35.44(±10) 32.85(±13)∗ 51.44(±10)∗∗61.62(±7) 65.01(±6)∗∗ 61.40(±7)

Total Infections
(%)

6.99(±5) 5.48(±5)∗∗ 7.64(±5) 14.88(±4) 8.23(±5)∗∗ 15.03(±6) 33.00(±5) 25.33(±5)∗∗ 21.98(±6)∗∗

Internal
Transmissions
(%)

17.13(±9) 13.79(±9)∗∗ 19.37(±10)∗∗ 27.58(±8) 20.86(±11)∗∗38.08(±11)∗∗54.00(±8) 63.28(±8)∗∗ 55.28(±9)

Burdens on Campus

Locations Affected 58 18 19 58 38 50 58 192 124

Students Avoiding
(%)

0 0 0 9.30 0.07 0.43 27.21 11.47 6.73

Completely
Isolated on
Campus (%)

5.42 8.63 8.63 5.95 5.49 5.47 7.09 5.15 5.20

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCLCen with RI. We find that LCLCen leads to significantly
improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are comparable in some scenarios but can

vary in specific scenarios. In addition, every policy also exerts some burden on campus, either in terms of locations affected, students avoiding campus or
isolation. We observe that LCLCen policies focus on fewer locations (except in S3 ). Moreover, these policies affect fewer student’s schedules and therefore fewer
people avoid campus due to completely remote schedules. Finally, LCLCen does not increase the percentage of people completely isolated on campus (p-value:

< 0.01:∗, < 0.001:∗∗).

Table S8. Comparison of different LCPRank policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 5− 9 in Fall
2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

20.10(±4) 25.60(±3)∗∗ 25.63(±3)∗∗ 31.25(±3) 42.32(±4)∗∗ 47.29(±4)∗∗ 62.35(±2) 88.87(±2)∗∗ 76.89(±3)∗∗

Total Infections
(%)

8.89(±2) 10.50(±3)∗∗ 9.70(±3)∗∗ 20.26(±2) 20.02(±3) 23.71(±4)∗∗ 46.72(±2) 67.92(±4)∗∗ 51.30(±4)∗∗

Internal
Transmissions
(%)

9.97(±2) 11.51(±2)∗∗ 10.95(±2)∗∗ 21.84(±2) 22.51(±3) 26.64(±3)∗∗ 49.80(±2) 74.96(±3)∗∗ 56.89(±4)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCPRank with RI. We find that LCPRank leads to
significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are better in general but can be
comparable in specific scenarios. The burden exerted on campus is the same as structural impacts of LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S9. Comparison of different LCPRank policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 10− 14 in
Fall 2020 at GT

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

−1.75(±8) 3.65(±8)∗∗ −1.95(±8) 3.88(±8) −2.24(±8)∗∗ −2.06(±8)∗∗ 20.39(±7) 7.57(±8)∗∗ 2.81(±8)∗∗

Total Infections
(%)

3.93(±9) 10.36(±8)∗∗ 5.13(±9) 9.87(±8) 6.36(±9)∗∗ 6.48(±9)∗∗ 26.02(±7) 16.37(±8)∗∗ 11.80(±8)∗∗

Internal
Transmissions
(%)

42.33(±10) 61.15(±7)∗∗ 56.25(±8)∗∗ 49.83(±9) 67.10(±6)∗∗ 69.10(±6)∗∗ 74.74(±5) 84.80(±3)∗∗ 79.90(±4)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCPRank with RI. We find that LCPRank leads to
significantly improved peak infection reduction and internal transmission. In terms of reduction in total infections, the outcomes are better in general but can be
comparable in specific scenarios. The burden exerted on campus is the same as structural impacts of LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).
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Table S10. Comparison of different LCPRank policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in
Fall 2020 at UIUC

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

41.40(±3) 60.44(±2)∗∗ 59.52(±2)∗∗ 49.75(±2) 74.22(±2)∗∗ 76.44(±2)∗∗ 78.14(±1) 85.81(±1)∗∗ 83.71(±1)∗∗

Total Infections
(%)

18.46(±3) 27.12(±3)∗∗ 25.25(±3)∗∗ 27.09(±3) 38.00(±4)∗∗ 40.68(±4)∗∗ 51.97(±3) 59.93(±5)∗∗ 54.07(±5)∗∗

Internal
Transmissions
(%)

28.22(±3) 40.93(±3)∗∗ 39.09(±3)∗∗ 37.89(±3) 58.47(±2)∗∗ 65.45(±2)∗∗ 68.04(±2) 86.45(±1)∗∗ 80.08(±1)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCPRank with RI. We find that LCPRank leads to
significantly improved peak infection reduction, internal transmission and total infections. The burden exerted on campus is the same as structural impacts of

LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).

Table S11. Comparison of different LCPRank policies in terms of controlling the disease and impacts on campus in Fall 2019; calibrated from week 0− 4 in
Fall 2020 at UC Berkeley

Behavioral
Scenario

S1: Persistence S2: Non-Res Avoidance S3: Complete Avoidance

Policy Broad LCPRank RI LCPRank RI LCPRank

Budget - Mobility
(95.5%)

Exposure Risk
(18800)

- Mobility
(92.3%)

Exposure Risk
(16900)

- Mobility
(69.2%)

Exposure Risk
(12700)

Infection Reduction Outcomes

Peak Infections
(%)

29.13(±3) 36.46(±5)∗∗ 36.34(±5)∗∗ 38.83(±3) 54.95(±4)∗∗ 58.88(±4)∗∗ 66.69(±2) 78.18(±1)∗∗ 77.65(±2)∗∗

Total Infections
(%)

6.34(±3) 8.59(±3)∗∗ 7.28(±3)∗∗ 14.71(±3) 13.18(±4)∗∗ 14.83(±4) 33.86(±4) 33.98(±5) 27.10(±5)∗∗

Internal
Transmissions
(%)

15.99(±3) 20.43(±4)∗∗ 19.17(±4)∗∗ 27.01(±3) 34.60(±4)∗∗ 38.78(±4)∗∗ 55.01(±2) 74.65(±2)∗∗ 63.57(±3)∗∗

Within each behavioral scenario, we perform the Kruskal-Wallis H-Test [19] to compare outcomes of LCPRank with RI. We find that LCPRank leads to
significantly improved peak infection reduction, internal transmission and total infections. The burden exerted on campus is the same as structural impacts of

LCPRank (Table S4). (p-value: < 0.01:∗, < 0.001:∗∗).
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Figure S1: In a managed network, SNMP updates the logs by describing device association to an AP at a certain timestamp. WIMOB mines these logs to
characterize mobility as a bipartite graph. The nodes are partitioned to describe people nodes (e.g., P1, P2) connected to locations nodes (e.g., L1, L2). Every
edge across the partition describes people visiting locations on campus during different times (e.g., t1, t2). Projecting the bipartite on people nodes helps
construct a contact network (e.g., P1 and P2 were collocated at L1 at t1), while projecting it on locations helps construct a directed movement graph (P2

dwelled at L1 and then at L2).
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Figure S2: (a) The schematic of the compartments in our modified SEIR model. By the design of the GT surveillance testing [28, 15], the total testable
population is defined as the summation of susceptible, exposed, and asymptomatic. Infectious persons are in either symptomatic or symptomatic. For every
effective edge in the mobility network, a susceptible individual that is exposed to an infectious person becomes infected with probability p. Individuals may also
get infected due to an exposure not captured by the WIMOB network which occurs with probability Iout(t) on day t. account for new infected cases. (b) The
mobility behavior represented by WIMOB changes every day of the semester (shown weekly here). The contact network constructed from WIMOB forms the
underlying contact structure of the ABM.
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Figure S3b: Calibrating on the weeks 0-4
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Figure S3c: Calibrating on the weeks 5-9
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Figure S3d: Calibrating on the weeks 10-14

Figure S3: We calibrate ABM on positivity rates from Fall 2020 at GT. The objective function of the calibration is to minimize the r.m.s.e. with the weekly
average of positivity rate obtained from surveillance testing results at GT [15]. (a) The parameter that determines external transmission of infections on a given
day, Iout(t), is a function of cases in Fulton county (where GT is located). (b) The models discussed in the main paper are calibrated using the first 5 weeks of
data. We illustrate the output for a range of parameters that incorporate quantitative uncertainty, i.e., within 40% of the r.m.s.e. (c, d) illustrate calibration on the
second period of 5 weeks and third period of 5 weeks respectively. These only show the optimal parameter output. The shaded region around the lines show the
2.5th and 97.5th percentile.
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Figure S4b: Calibrating on the weeks 0-4 at UIUC

Figure S4: We calibrate ABM on positivity rates from first 5 weeks of Fall 2020 at UIUC. The objective function of the calibration is to minimize the r.m.s.e.
with the weekly average of positivity rate obtained from surveillance testing results at GT [15]. (a) The parameter that determines external transmission of
infections on a given day, Iout(t), is a function of cases in Champaign county (where UIUC is located). (b) We illustrate the output for a range of parameters
that incorporate quantitative uncertainty, i.e., within 40% of the r.m.s.e. The shaded region around the lines show the 2.5th and 97.5th percentile.
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Figure S5a: External cases
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Figure S5b: Calibrating on the weeks 0-4 at UC Berkeley

Figure S5: We calibrate ABM on positivity rates from first 5 weeks of Fall 2020 at UC Berkeley. The objective function of the calibration is to minimize the
r.m.s.e. with the weekly average of positivity rate obtained from surveillance testing results at GT [15]. (a) The parameter that determines external transmission
of infections on a given day, Iout(t), is a function of cases in Alameda county (where UIUC is located). (b) We illustrate the output for a range of parameters
that incorporate quantitative uncertainty, i.e., within 40% of the r.m.s.e. The shaded region around the lines show the 2.5th and 97.5th percentile.
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Figure S6a: Peak Transmission Reduction
Percentage (LCPRank)
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Figure S6b: Total Infections Reduction Percentage
(LCPRank)
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Figure S6c: Internal Transmission Reduction
Percentage (LCPRank)
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Figure S6d: Peak Infection Reduction Percentage
(LCBCen)
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Figure S6e: Total Infection Reduction Percentage
(LCBCen)
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Figure S6f: Internal Transmission Reduction
Percentage (LCBCen)

Figure S6: Disease control outcomes in Fall 2019 for different algorithms of LC with the ABM is calibrated on weeks 0 − 4 of Fall 2020 at GT. (a − c)
Comparison of RI with LCPRank. Under all behavioral scenarios, for peak infection reduction (b) and internal transmission reduction (c), LCPRank shows better
disease control outcomes than RI. For total infection reduction (b), LCPRank is better in S1 , worse in S3 when designed within an exposure risk budget, and
comparable in others. (d − f) Comparison of RI with LCBCen. Under all behavioral scenarios, for peak infection reduction (d) and internal transmission
reduction (f) LCBCen is better when designed within an exposure risk budget. For total infection reduction (e), LCBCen is always worse than RI
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Figure S7a: Peak Infection Reduction Percentage
(LCECen)
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Figure S7b: Total Infection Reduction Percentage
(LCECen)
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Figure S7c: Internal Transmission Reduction
Percentage (LCECen)
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Figure S7d: Peak Infection Reduction Percentage
(LCLCen)
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Figure S7e: Total Infection Reduction Percentage
(LCLCen)
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Figure S7f: Internal Transmission Reduction
Percentage (LCLCen)

Figure S7: Disease control outcomes in Fall 2019 for different algorithms of LC with the ABM is calibrated on weeks 0 − 4 of Fall 2020 at GT. (a − c)
Comparison of RI with LCECen. Under all behavioral scenarios, for peak infection reduction (b) and internal transmission reduction (c), LCECen shows better
disease control outcomes than RI. For total infection reduction (b), LCECen is better in S1 and worse in S3 when designed within an exposure risk budget.
(d− f) Comparison of RI with LCECen. Under all behavioral scenarios, for peak infection reduction (d) and internal transmission reduction (f), LCECen shows
better disease control outcomes than RI. For total infection reduction (e), LCECen is better in S1 and worse in S3 when designed within an exposure risk budget.
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Figure S8a: Peak Transmission Reduction
Percentage (Weeks 5 - 9)
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Figure S8b: Total Infections Reduction Percentage
(Weeks 5 - 9)
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Figure S8c: Internal Transmission Reduction
Percentage (Weeks 5 - 9)
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Figure S8d: Peak Transmission Reduction
Percentage (Weeks 10 - 14)

S1:
Persistence

S2:
Non-Residential

Avoidance

S3:
Complete
Avoidance

0

10

20

30

40

50

60

70

80

90

To
ta

l I
nf

ec
tio

ns
 R

ed
uc

tio
n 

(%
)

Figure S8e: Total Infections Reduction Percentage
(Weeks 10 - 14)
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Figure S8f: Internal Transmission Reduction
Percentage (Weeks 10 - 14)

Figure S8: Disease control outcomes in Fall 2019 for LCPRank. (a− c) The ABM was calibrated on weeks 5− 9 of Fall 2020 at GT. Under all behavioral
scenarios, for all outcomes, LCPRank is better than RI. (d− f) The ABM was calibrated on weeks 10− 14 of Fall 2020 at GT. Under all behavioral scenarios,
for all outcomes, LCPRank is better than RI.
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Figure S9: Peak Transmission Reduction
Percentage (UIUC)
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Figure S9a: Total Infections Reduction Percentage
(UIUC)
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Figure S9b: Internal Transmission Reduction
Percentage (UIUC)
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Figure S9c: Peak Transmission Reduction
Percentage (UCB)
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Figure S9d: Total Infections Reduction Percentage
(UCB)
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Figure S9e: Internal Transmission Reduction
Percentage (UCB)

Figure S9: Disease control outcomes in Fall 2019 for LCPRank. (a− c) The ABM was calibrated on weeks 0− 4 of Fall 2020 at UIUC. Under all behavioral
scenarios, for all outcomes, LCPRank is better than RI. (d− f) The ABM was calibrated on weeks 0− 4 of Fall 2020 at UC Berkeley. Under all behavioral
scenarios, for all outcomes, LCPRank is better than RI.



3 FIGURE CAPTIONS

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

10

20

30

40

50

60

To
ta

l I
nf

ec
tio

ns
 (%

)

Figure S10a: S1 (LCPRank)
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Figure S10b: S2 (LCPRank)
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Figure S10c: S3 (LCPRank)
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Figure S10d: S1 (LCPRank)
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Figure S10e: S2 (LCPRank)
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Figure S10f: S3 (LCPRank)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

5

10

15

20

25

30

Ex
te

rn
al

 T
ra

ns
m

iss
io

ns
 (%

)

Figure S10g: S1 (LCPRank)
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Figure S10h: S2 (LCPRank)
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Figure S10i: S3 (LCPRank)

Figure S10: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0− 4 of Fall 2020, GT. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention and is lowest in the S3 scenario. In this behavioral
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible
to infections from outside campus.
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Figure S11a: S1 (LCBCen)
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Figure S11b: S2 (LCBCen)
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Figure S11c: S3 (LCBCen)
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Figure S11d: S1 (LCBCen)
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Figure S11e: S2 (LCBCen)
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Figure S11f: S3 (LCBCen)
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Figure S11g: S1 (LCBCen)
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Figure S11h: S2 (LCBCen)
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Figure S11i: S3 (LCBCen)
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Figure S11: Cumulative infections in Fall 2019 while comparing RI and LCBCen with ABM calibrated on weeks 0− 4 of Fall 2020, GT. The bands show the
2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention and is lowest in the S3 scenario. In this scenario, the
mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020, we saw far
fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCBCen in comparison to RI, only
when constrained under the exposure risk budget. (g − i) External transmissions are higher with LCBCen in comparison to RI. Since internal transmission is
controlled, more individuals remain susceptible to infections from outside campus.
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Figure S12a: S1 (LCECen)
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Figure S12b: S2 (LCECen)
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Figure S12c: S3 (LCECen)
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Figure S12d: S1 (LCECen)
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Figure S12e: S2 (LCECen)
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Figure S12f: S3 (LCECen)
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Figure S12g: S1 (LCECen)
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Figure S12h: S2 (LCECen)
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Figure S12i: S3 (LCECen)
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Figure S12: Cumulative infections in Fall 2019 while comparing RI and LCECen with ABM calibrated on weeks 0− 4 of Fall 2020, GT. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario. In this
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCECen in comparison to
RI. (g − i) External transmissions are higher with LCECen in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible to
infections from outside campus.
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Figure S13a: S2 (LCLCen)
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Figure S13b: S3 (LCLCen)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

10

20

30

40

50

60

To
ta

l I
nf

ec
tio

ns
 (%

)

Figure S13c: S1 (LCLCen)
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Figure S13d: S2 (LCLCen)
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Figure S13e: S3 (LCLCen)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1
Date

0

10

20

30

40
In

te
rn

al
 T

ra
ns

m
iss

io
ns

 (%
)

Figure S13f: S1 (LCLCen)
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Figure S13g: S2 (LCLCen)
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Figure S13h: S3 (LCLCen)
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Figure S13: Cumulative infections in Fall 2019 while comparing RI and LCLCen with ABM calibrated on weeks 0− 4 of Fall 2020, GT. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario. In this
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCLCen in comparison to
RI. (g − i) External transmissions are higher with LCLCen in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible to
infections from outside campus.
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Figure S14a: S1 (ABM calibrated on weeks 5-9)
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Figure S14b: S2 (ABM calibrated on weeks 5-9)
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Figure S14c: S3 (ABM calibrated on weeks 5-9)
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Figure S14d: S1 (ABM calibrated on weeks 5-9)
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Figure S14e: S2 (ABM calibrated on weeks 5-9)
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Figure S14f: S3 (ABM calibrated on weeks 5-9)
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Figure S14g: S1 (ABM calibrated on weeks 5-9)
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Figure S14h: S2 (ABM calibrated on weeks 5-9)
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Figure S14i: S3 (ABM calibrated on weeks 5-9)

Figure S14: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 5− 9 of Fall 2020, GT. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario. In this
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible
to infections from outside campus.
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Figure S15a: S1 (ABM calibrated on weeks 10-
14)
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Figure S15b: S2 (ABM calibrated on weeks 10-
14)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

5

10

15

20

25

To
ta

l I
nf

ec
tio

ns
 (%

)

Figure S15c: S3 (ABM calibrated on weeks 10-14)
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Figure S15d: S1 (ABM calibrated on weeks 10-
14)
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Figure S15e: S2 (ABM calibrated on weeks 10-14)
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Figure S15f: S3 (ABM calibrated on weeks 10-14)
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Figure S15g: S1 (ABM calibrated on weeks 10-
14)
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Figure S15h: S2 (ABM calibrated on weeks 10-
14)

Figure S15i: S3 (ABM calibrated on weeks 10-14)
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Figure S15: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 10− 14 of Fall 2020, GT. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario. In this
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible
to infections from outside campus.
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Figure S16a: S1 (ABM calibrated on UIUC data)
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Figure S16b: S2 (ABM calibrated on UIUC data)
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Figure S16c: S3 (ABM calibrated on UIUC data)
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Figure S16d: S1 (ABM calibrated on UIUC data)
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Figure S16e: S2 (ABM calibrated on UIUC data)
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Figure S16f: S3 (ABM calibrated on UIUC data)
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Figure S16g: S1 (ABM calibrated on UIUC data)
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Figure S16h: S2 (ABM calibrated on UIUC data)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

2

4

6

8

10

12

14

Ex
te

rn
al

 T
ra

ns
m

iss
io

ns
 (%

)

Figure S16i: S3 (ABM calibrated on UIUC data)

Figure S16: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0− 4 of Fall 2020, UIUC. The bands show
the 2.75th and 97.25th percentile. (a− c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario. In this
scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in Fall 2020,
we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in comparison to
RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more individuals remain susceptible
to infections from outside campus.
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Figure S17a: S1 (ABM calibrated on Berkeley
data)
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Figure S17b: S2 (ABM calibrated on Berkeley
data)
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Figure S17c: S3 (ABM calibrated on Berkeley
data)
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Figure S17d: S1 (ABM calibrated on Berkeley
data)
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Figure S17e: S2 (ABM calibrated on Berkeley
data)
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Figure S17f: S3 (ABM calibrated on Berkeley
data)
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Figure S17g: S1 (ABM calibrated on Berkeley
data)

Figure S17h: S2 (ABM calibrated on Berkeley
data)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

5

10

15

20

25

30

Ex
te

rn
al

 T
ra

ns
m

iss
io

ns
 (%

)

Se
p-

01

Oc
t-0

1

No
v-0

1

De
c-0

1

Date

0

5

10

15

20

25

30

Ex
te

rn
al

 T
ra

ns
m

iss
io

ns
 (%

)

Figure S17i: S3 (ABM calibrated on Berkeley
data)

Figure S17: Cumulative infections in Fall 2019 while comparing RI and LCPRank with ABM calibrated on weeks 0− 4 of Fall 2020, UC Berkeley. The bands
show the 2.75th and 97.25th percentile. (a − c) Total infections of interventions is lower than no-intervention scenarios and is lowest in the S3 scenario.
In this scenario, the mobility budget is 69% of what it would be without interventions, and therefore the transmissions are also contained. In comparison, in
Fall 2020, we saw far fewer infections which is because the mobility was 39% of that in Fall 2019. (d− f) Internal transmissions are lower with LCPRank in
comparison to RI. (g − i) External transmissions are higher with LCPRank in comparison to RI. Since internal transmission is controlled, more individuals
remain susceptible to infections from outside campus.
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Figure S18a: S1 (LCPRank)
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Figure S18c: S3 (LCPRank)

Figure S18d: The locations shutdown by each policy are grouped into the the general building category. The distribution of locations is different between
policies, for example, in S1 (a) and S2 (b), LC closes fewer locations that RI. Even when targeting spaces in similar buildings, the locations are qualitatively
different — RI only affects classrooms, whereas LC also closes smaller spaces like breakout rooms, reading areas and cafes. LC In S3 (c) we find LC to target
locations in a greater variety of buildings, but it also targets more locations to utilize the budget.
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Figure S19a: S1 (LCBCen)
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Figure S19b: S2 (LCBCen)
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Figure S19c: S3 (LCBCen)
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Figure S19d: S1 (LCECen)
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Figure S19e: S2 (LCECen)
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Figure S19f: S3 (LCECen)
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Figure S19g: S1 (LCLCen)
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Figure S19i: S3 (LCLCen)

Figure S19: The locations shutdown by each policy are grouped into the the general building category. The distribution of locations is different between policies,
for example, in S1 (a) and S2 (b), LC closes fewer locations that RI. Even when targeting spaces in similar buildings, the locations are qualitatively different —
RI only affects classrooms, whereas LC also closes smaller spaces like breakout rooms, reading areas and cafes. LC In S3 (c) we find LC to target locations in a
greater variety of buildings, but it also targets more locations to utilize the budget.
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