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Supplemental Information 

 

Supplementary Figure Titles and Legends 

 

Fig. S1: Increased H3K27me3 is a signature of aging (related to Fig. 1) 

(A) H3.3/H3 % from LC-MS/MS raw area values in young and old livers. Data are summarized as mean ± 

S.E.M. * p<0.05 in a Welch’s two-tailed unpaired t-test with corrections for multiple comparisons at 1% FDR 

(two-stage step-up Benjamini, Krieger, and Yekutieli). (B) Abundance of monomethyl (me1), dimethyl (me2), 

trimethyl (me3) and acetyl (ac) -ated histones from LC-MS/MS in young and old livers. Data are summarized as 

mean ± S.E.M. A Welch’s two-tailed unpaired t-test did not yield any significant results. (C) Volcano plot of 

single hPTMs from LC-MS/MS data in muscle stem cells [1] and (D) human post-mortem brain samples [2]. 

The significantly increased (green) and decreased (blue) hPTMs are labeled (two-tailed unpaired t-test). (E) 

Representative H3K27me3 IF images (young 12 weeks and old 80 weeks). Scale bar is 10 µm. H3K27me3 

intensity is plotted on the right. * p<0.05 in a Welch’s two-tailed unpaired t-test. (F) Human spike-in alignment 

rate plotted as a % in H3, input and H3K27me3 immunoprecipitated samples. (G) PCA plot of H3 subtracted 

H3K27me3 genome coverage and (H) called peaks from liver ChIP-seq data. Note for (G-H), PC1 accounts for 

the variation in age and PC2 in sex. (I) Bar plot of liver H3K27me3 ChIP-seq peak numbers. Data are 

summarized as mean ± S.E.M. A Welch’s two-tailed unpaired t-test did not yield any significant results. (J) 

Violin plots of H3K27me3 peak characteristics in young and old livers. *** indicates p<0.001 from a Welch's 

two-tailed unpaired t-test. (K) Representative PhenoImager images for young and old liver stained with 

antibodies indicated on the right. Scale bar is 100 µm and 50 µm for young and old respectively. (L) Cell 

composition and (M) H3K27me3 signal in each cell type in young and old livers. For (K-M), data are 

summarized as mean ± S.E.M. * p<0.05 and ** p<0.01 in a Welch’s two-tailed unpaired t-test with corrections 

for multiple comparisons at 10% FDR (two-stage step-up Benjamini, Krieger, and Yekutieli). For (A-B) young 

11-12 weeks and old 79-95 weeks, n=3 biological replicates per group. For (E), young 12 weeks and old 80 

weeks, n=6 biological replicates per group. For (F-J) young 10-12 weeks and old 79-95 weeks, n=3 biological 

replicates per group. For (K-M), young 14 weeks and old 95 weeks, n=3 biological replicates per group.  

 

Fig. S2: Quality control of all genome-wide datasets (related to Figs. 1-5 and 7) 

(A) Sequencing depth of all mouse ChIP and human CUT&Tag libraries generated in this study. (B) The 

alignment rates of all mouse ChIP and human CUT&Tag libraries, plotted as a percentage of mapped 

fragments. For (A-B) young 10-12 weeks and old 79-95 weeks, n=3-10 biological replicates per group for mice 

and 19-26 years and old 71-79 years, n=3 young and 5 old biological replicates for humans. (C) Sequencing 

depth of libraries made from salt fractionated chromatin of young and old mouse livers. (D) The alignment rates 

of the libraries from different salt fractions, plotted as a percentage of mapped fragments. For (C-D) young 11 

weeks and old 81 weeks, n=2 replicates per group for mice. For (A-D), the boxes are bounded by the 25th and 

75th percentile values with the median represented as the bar in the middle. The whiskers extend to 1.5X the 

interquartile length. A Welch’s two-tailed unpaired t-test did not yield any significant results for young vs old 

comparisons.  

 

Fig. S3: H3K27me3 patterns in mouse and human livers (related to Fig. 1) 

(A) Schematic showing the samples and comparisons made in (B-E). (B) Genome browser snapshot of 

overlayed H3K27me3 ChIP signal (H3 subtracted) over chr5 in sex-matched pairs of young and old mouse 

livers. (C) Genome browser snapshot of H3K27me3 ChIP signal (H3 subtracted) over chr5 in individual young 

and old mouse livers. (D) Genome browser snapshot of overlayed H3K27me3 ChIP signal (H3 subtracted) over 

chr18 in sex-matched pairs of young and old mouse livers. (E) Genome browser snapshot of H3K27me3 ChIP 

signal (H3 subtracted) over chr18 in individual young and old mouse livers. For (B-E), young 10-12 weeks and 
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old 79-95 weeks, n=3 biological replicates per group and gray area in the whole chromosome is expanded on 

the right. (F) Volcano plot of diffReps output showing differential H3K27me3 peaks in young and old human 

livers. Significantly enriched H3K27me3 regions in old (FDR<0.05) are indicated in green and those depleted 

are in blue. (G) Top 20 GO terms for genes near the 1117 young peaks identified as differentially enriched in 

young (A). Young 19-26 years and old 71-79 years, n=3 young and 5 old biological replicates. p-values are 

from Fisher’s exact test. 

 

Fig. S4: Age-domains are heterochromatinized while H3K27me3 peak regions are euchromatinized 

during aging (related to Fig. 3) 

(A) Genome browser snapshot of salt fraction enrichments over chr18 in both young and old samples. Inset 1 is 

euchromatinized and inset 2 is heterochromatinized with age and expanded on the right. Note the overlap of 

350mM and pellet fractions in the old with a H3K27me3 domain in inset 2. Young 11 weeks and old 81 weeks, 

n=2 replicates per group. 

 

Fig. S5: Transcriptomic signatures of aging and regeneration (related to Figs. 4 and 6) 

(A) Schematic of experimental procedure, timeline, and assays. (B) Steps of 70% PH. (C) Age and sex 

distribution of mice used. Data are summarized as mean ± S.E.M. with individual data points representing each 

mouse (n=10 males and 20 females). (D) Volcano plot of differentially expressed mRNAs in young and old 

livers (young 10-11 weeks and old 79-95 weeks, n=3 biological replicates per timepoint). mRNAs significantly 

upregulated (p<0.05 from Benjamini-Hochberg procedure) in old are in green and those downregulated are in 

blue. Biological process GO terms are indicated for genes upregulated in the old (right). (E) Same as (D) except 

120 h post-resection (young 10-16 weeks and old 79-98 weeks, n=3 biological replicates per timepoint). Cell 

proliferation genes in the GO analysis are in red. (F) Same as (D) except 72 h post-resection (young 10-13 

weeks and old 79-98 weeks, n=3 biological replicates per timepoint). (G) Same as (D) except 240 h post-

resection (young 10-12 weeks and old 79-95 weeks, n=3 biological replicates per timepoint). For (F-G) genes 

were too few for GO analysis. (H) Quantification of % positive cells (left) and intensity (right) of Ki67 in an 

immunohistochemistry assay and (I) immunofluorescence assay across age and regeneration. For (H-I), young 

10-16 weeks and old 79-98 weeks, n=3 biological replicates per timepoint. ** p<0.01 and *** p<0.001 from a 

Kolmogorov-Smirnov test with corrections for multiple comparisons at 1% FDR (two-stage step-up Benjamini, 

Krieger, and Yekutieli). An individual data point indicates one field. (J) Heatmap of ImpulseDE2 output 

showing upregulated mRNAs (red) and downregulated mRNAs (blue) in young (young 10-15 weeks and old 

79-83 weeks, n=3 biological replicates per timepoint). p<0.05 from Benjamini-Hochberg procedure. (K) GO 

terms associated with transiently upregulated genes in the young identified in (J). Cell proliferation genes are in 

red. (L) GO terms associated with transiently downregulated genes in the young identified in (J). For all GO 

analyses, p-values are from Fisher’s exact test. 

 

Fig. S6: Delayed and reduced liver regeneration in aged mice (related to Fig. 6) 

(A) Representative images of Ki67 immunohistochemistry and (B) Ki67 immunofluorescence in young and old 

liver sections across age and regeneration. For both (A-B), young 11-16 weeks and old 83-86 weeks, n=5 

biological replicates per group and 1 per timepoint. Scale bar is 50µm. 

 

Fig. S7: Multiple tissues show features of hyper-quiescent chromatin during aging (related to Fig. 1) 

(A) Genome browser snapshot of overlayed H3K27me3 ChIP signal (H3 subtracted) over chr5 and (B) chr18 in 

individual young and old mouse liver, kidneys, muscle, and heart. For kidneys, young 11 weeks and old 80 

weeks, n=4 biological replicates per group. For muscle and heart, young 6 months and old 24 months, n=3 

biological replicates per group. Muscle and heart datasets were mined from Sleiman et al, 2020 [3] and 

replicates were merged. Location of age-domains are shown on the top of each browser snapshot. 
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