
Appendix A: Validation of MDAC data compared to NVSS 
To calculate raw mortality rates using the NVSS data, we first need to obtain an 

estimate of the population at risk in each demographic group from a different dataset.1  

We proceed by using the IPUMS ACS 2008 to estimate the total U.S. born population at 

risk in the different age and gender cells. The 2008 ACS is collected throughout the 

year, which complicates the comparison of death statistics between the MDAC dataset 

and the NVSS. Based on the sampling design of the 2008 ACS, the matched deaths in 

2008 in the MDAC are skewed towards the end of the year. To roughly match the 

follow-up period of the ACS 2008, we only include the deaths of US born individuals 

reported in the NVSS for the period July 2008 – December 2015. 

We note that individuals in the MDAC are linked to the National Death Index 

using Social Security Numbers (SSNs). In case information about SSNs is missing or 

invalid, a combination of other personally identifiable information (first name, last name, 

date of birth) is used to match individuals to the National Death Index. Overall, less than 

0.8% of all the US born respondents ages 50 and older by the time of the 2008 ACS 

interview did not provide valid SSNs, or complete information on their first name, last 

name, and date of birth. Furthermore, the proportion of individuals with missing 

identifying information does not vary substantially across age groups. 

We find that the average mortality statistics across the two different datasets are 

similar. However, there are small differences in the mortality rates across datasets for 

the youngest age groups in the sample. Overall, the raw mortality rates for the age 

groups 50-54, 55-59, and 60-64 are smaller in the MDAC compared to the estimates 

that use the NVSS data. The respondents in the ACS that died in the follow-up period 

appear to be slightly underrepresented compared to the respondents that were alive by 

the end of the follow-up period.2 

 
1 The calculation of raw death rates with the MDAC sample does not require the use of a secondary 
dataset. Both the numerator (number of deaths) and denominator (population at risk) are obtained from 
the same data source, which gets rid of the numerator-denominator bias. For our analysis of life 
expectancy by state of birth, this is an important advantage of the MDAC dataset with respect to other 
data sources. Precise intercensal population estimates by state of birth are not readily available. 
Additionally, in the NVSS data state of birth is missing for close to 2 percent of the sample. Both factors 
might play a role in increasing the numerator-denominator bias in mortality rates by state of birth. 
2 Another subtle difference between the sampling framework of the MDAC and the NVSS is that the 
MDAC has a closed design. Only individuals that were residing in the U.S. by the time of the ACS 
interview are considered in the raw mortality rate calculations. In contrast, the NVSS death records 



Appendix Figure 1 shows the scatterplot of the cumulative probability of dying at 

any point during the follow-up period by five-year age-group and state (either state of 

residence or state of birth) comparing the observed rates from the MDAC with the 

equivalent rates from the NVSS data. Even though the raw mortality rates from the 

MDAC are smaller than the equivalent mortality rates obtained from the NVSS system, 

the correlation between the cumulative mortality probabilities is equal to 0.98 for both 

mortality rates by state of residence and mortality rates by state of birth.3 This provides 

evidence that the geographical patterns of mortality from the MDAC sample are quite 

close to the patterns of the U.S. population.4  

 
consider individuals that were residing outside of the U.S. in 2008 and that later returned to the country 
and died at any time in the follow-up period. However, these individuals are not considered in the 
denominator of population at risk. 
3 However, there are important differences in the survival probabilities by state of birth in the states of 
Alaska and Nevada. In the ACS 2008, only few individuals report Alaska or Nevada as their state of birth. 
In some cases, the estimated number of deaths in the follow-up period using the NVSS data is even 
higher than the estimate of the population at risk using IPUMS 2008 ACS. 
4 The correlation between the mortality rates by state of residence in the MDAC and the NVSS is quite 
high, considering that the conceptual definition of state of residence is not the same across the two 
datasets. In the MDAC, the state of residence of an individual corresponds to the state where the 
individual was interviewed in 2008. In contrast, in the NVSS the state of residence of an individual 
corresponds to the state of residence of the individual at the time of death. 



Appendix B: Construction of life expectancies using the MDAC data 
 

Period life expectancies are typically constructed with the observed one-year 

mortality rates at different ages. For the purposes of this paper, 𝑚!
",$(𝑎, 𝑡) denotes the 

one-year mortality rate in year 𝑡 of individuals of gender 𝑔 and age 𝑎, associated to 

state 𝑠 using the method of aggregation 𝑀, where 𝑀 corresponds to aggregation by 

place of residence or by place of birth. The vector of one-year mortality rates 

*𝑚!
",$(𝑎, 𝑡)+

%&'(
)̅  is the required input for the construction of life expectancies at age 50 

for a given sub-population described by {𝑠, 𝑔,𝑀} in a given period 𝑡, where 𝐴̅ denotes 

the maximum years of life a person can live. We fix the subsequent analysis on a given 

state, gender, and method of aggregation and drop these three indexes to simplify 

notation. 

We do not observe 𝑚(𝑎, 𝑡) directly in the disclosed data from the MDAC dataset. 

Instead, we have disclosed the cumulative probability of surviving the 7+ year follow-up 

period, which starts by the time of the ACS interview in 2008 and ends by December 31, 

2015. A second data constraint with the disclosed data from the MDAC is that the 

cumulative survival probability is aggregated into five-year age groups, based on the 

age of the individual at the time of the 2008 ACS interview. We will refer to the 

cumulative survival probability of the individuals in the five-year age group 𝑋 in 2008 as 

𝑆+, where 𝑋 ∈ 	𝕏 = {50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+}. 

To estimate life expectancies for this sub-population, we proceed in two steps. In 

the first stage, we obtain estimates of the one-year mortality rates 𝑚(𝑎, 𝑡)4 , for 50 ≤ 𝑎 ≤

	𝐴̅, from the observed cumulative survival probabilities 𝑆+ , with	𝑋 ∈ 	𝕏. Once that we 

have estimates of the one-year mortality rates, in the second stage we obtain life 

expectancy measures using conventional demographic methods (Preston et al., 2001). 

Assuming for now that all individuals were surveyed at the same point in the 

beginning of 2008, the proportion of individuals in age group 𝑋 that were surveyed in the 

ACS 2008 and that did not die in the follow-up period, denoted by 𝑆+, can be described 

in terms of one-year mortality rates 𝑚(𝑎, 𝑡) as follows: 



𝑆+ = < Share% ∗ S(a)
%	∈	+

	= 	 < Share% ∗B(1 −𝑚(𝑎 + 𝑦, 2008 + 𝑦))
.

/&(%	∈	+

 

 
Where in the second equality S(a) corresponds to the cumulative probability of 

surviving after 2015 if you are exactly 𝑎 years old at the time of the interview and 

Share%	corresponds to the proportion of people in age group 𝑋 that is exactly 𝑎 years old 

by the 2008 interview. The first equality shows that the cumulative survival probability by 

five-year age-group that we observe in the data is a weighted average of the cumulative 

survival probabilities of exact one-year age groups. The second equality comes directly 

from the relationship between cumulative survival probability in the follow-up period and 

one-year mortality rates for different years. 

We assume that the time variation in mortality rates over the years across this 

short follow-up period time is substantially less important than the variation in mortality 

rates across the age dimension. To simplify the estimation, we assume that for a given 

cell (age x state x gender x method of aggregation), the mortality rates are smooth over 

time and do not change drastically over the follow-up period. We omit the index on time 

from 𝑚(𝑎, 𝑡) in all of what follows and refer to 𝑚(𝑎) as the average death rate at age 𝑎 

during the follow-up period. 

In order to parametrize the previous equation, we make use of the well-known 

property of mortality rates discovered by Benjamin Gompertz in 1825 that the growth in 

the mortality rate can be fitted quite precisely by an exponential function after a certain 

critical age in adolescence. Our youngest age group corresponds to the 50-54-year-old, 

so we do not need to consider the age period in childhood and adolescence in which 

mortality risk temporarily declines with respect to age.5 By the Gompertz law of 

mortality, 𝑚(𝑎) can be closely approximated with only two parameters as follows: 

𝑚(𝑎) ≈ exp	(𝛽( + 𝛽0	𝑎) 

 

Substituting this expression into the original formula of 𝑆+, we approximate 𝑆+ a as a 

nonlinear function of two parameters (𝛽(, 𝛽0)	 as follows: 

 
5 In unreported robustness checks, we explore two alternative mortality models to describe mortality rates 
as a function of age. We instead assume that mortality rates follow the Kannisto or Logistic models. 



𝑆+(𝛽(, 𝛽0) ≈ < Share% ∗B(1 − exp(𝛽( + 𝛽0𝑎))
.

/&(%	∈	+

 

 

For each cell in our data, we have eight different data points on 𝑆+ (which 

correspond to the eight different five-year age groups) and Share% is directly observed 

using the IPUMS version of the 2008 ACS. Finally, we assume that we observe the 

cumulative survival probabilities with classical measurement error: 

𝑆+(𝛽(, 𝛽0, 𝜀) = < Share% ∗B(1 − exp(𝛽( + 𝛽0𝑎))
.

/&(%	∈	+

+ 	𝜀 

 

We run weighted nonlinear least squares to estimate 𝛽N( and 𝛽N0.using this 

equation. We use analytic weights given by the number of individuals in each age group 

in the 2008 ACS to weigh each of the eight data points. As a final adjustment, we 

multiply the probability of dying in 2008 by one-half in order to correct the fact that the 

ACS 2008 was collected continuously throughout 2008, and that the follow-up period 

varies between 7 and 8 years across individuals. 

For the previous explanation, we have fixed the explanation on a given sub-

population of individuals of gender 𝑔, that are associated to state 𝑠, using the 

aggregation method 𝑀. In practice, we estimate 𝛽N(,!
",$  and 𝛽N0,!

",$  with weighted NLLS for 

each {𝑠, 𝑔,𝑀} combination separately. We proceed by substituting 𝛽N(
",$,! and 𝛽N0

",$,! into 

the expression of the Gompertz mortality function to obtain estimates for O𝑚!
",$(𝑎)4 P

%&'(

)̅
. 

We further assume that 𝐴̅ = 110, and that 𝑚!
",$(110)4 = 1. 

Gompertz approximations of mortality rates tend to overestimate mortality rates 

at older ages. We thus follow the methodology in Chetty et al. (2016) and assume that 

the sex-specific mortality rate after age 90 is constant across different states. We use 

official national life tables from the National Center for Health Statistics (NCHS) to 

impute mortality rates up to age 99. For ages 100-109, we use life tables from the 

Social Security Administration (SSA). 



In a second stage, with the estimates of mortality rates at each age, we apply 

standard life table methods to obtain estimates of life expectancies from one-year 

mortality rates for each sub-population separately (Preston et al., 2001). 

 

Standard Errors 

In our preferred specification, we adapt a parametric Bootstrap specification 

following the methodology in Chetty et al (2016) to compute standard errors of the life 

expectancies (either by state of birth or state of residence). We assume that the true 

vector of parameters (𝛽(,!
",$ , 𝛽0,!

",$ ) is distributed as a bivariate normal distribution with 

mean (𝛽N(,!
",$ , 𝛽N0,!

",$ ) and variance equal to the estimated variance-covariance matrix of 

(𝛽N(,!
",$ , 𝛽N0,!

",$ ) in the weighted NLLS estimation. For each sub-population (𝑠, 𝑔,𝑀), we draw 

100 draws from the normal distribution. For each draw, we estimate the vector of 

mortality rates by age and then calculate an estimate of life expectancy. Finally, we 

construct a bootstrapped 95 percent confidence interval for the life expectancy in sub-

population using the 25th and 975th ordered values of the simulated life expectancies as 

lower and upper bounds of the confidence interval, respectively. 

As a second alternative to compute standard errors, we use the classical formula 

in Chiang (1984) which requires the complete distribution of deaths by one-year age 

group and year. We thus first use the estimates of O𝑚!
",$(𝑎)4 P

%&'(

)̅&00(
 to further distribute 

the total number of deaths observed for each five-year age group in the follow-up period 

into deaths by one-year age group and year. 

We present all the results using Bootstrapped standard errors in the main text, 

which are slightly bigger that the standard errors using the Chiang method. 

Nonetheless, the two different sets of standard errors are highly correlated, with a 

correlation above 0.7 in the standard errors for both types of life expectancy measures 

(state of residence or state of birth), for both genders and at different ages (at age 50 

and at age 65). 

The main hypothesis that we test in the paper is whether the life expectancy by 

state of residence in each sub-population is significantly different than the life 

expectancy measured by state of birth. In order to test whether this difference is 



statistically significant, we would ideally need to obtain an estimate of the standard error 

of the difference in life expectancies across the two measures. As such, the original 

formula to obtain the standard of the difference in life expectancies in a fixed state is the 

following: 

𝑠𝑒S𝐿𝐸V123 − 𝐿𝐸V124W = 	XS𝑠𝑒(𝐿𝐸V123)W
5 + S𝑠𝑒(𝐿𝐸V124)W

5 − 2𝐶𝑜𝑣(𝐿𝐸V123 , 𝐿𝐸V124 	)4  

 

We do not have the required data to compute the last term, which requires 

disclosed tables of survival rates for all possible combinations of state of birth and state 

of residence. We instead compute the standard error of the difference in life 

expectancies across measures in a conservative way using an upper bound. It is very 

likely that the two different estimators of life expectancy are highly positively correlated, 

as a substantial proportion of individuals never leave their state of birth and are 

considered in both measures. Thus, a conservative lower bound on 𝐶𝑜𝑣V (𝐿𝐸V123 , 𝐿𝐸V124) is 

0. In turn, this means that 

𝑠𝑒S𝐿𝐸V123 − 𝐿𝐸V124W = 	XS𝑠𝑒(𝐿𝐸V123)W
5 + S𝑠𝑒(𝐿𝐸V124)W

5 − 2𝐶𝑜𝑣(𝐿𝐸V123 , 𝐿𝐸V124 	)4

≪ XS𝑠𝑒(𝐿𝐸V123)W
5 + S𝑠𝑒(𝐿𝐸V124)W

5 

 

Throughout the paper, we use XS𝑠𝑒(𝐿𝐸V123)W
5 + S𝑠𝑒(𝐿𝐸V124)W

5 as an upper bound 

estimate of the standard error of the difference in life expectancy measures in a given 

sub-population. For all the set of results, we are conservative when we reject that the 

hypothesis that the difference in life expectancy measures in a given state is equal to 

zero at a given significance level. 

  



Appendix C: Assessment of fit and robustness checks 

In this section we assess the fit of the weighted NLLS model to the aggregate 

probabilities of surviving throughout the follow-up period disclosed by the Census. 

Across all our 204 regressions, the distribution of 𝑅5 has an unweighted mean of 0.9999 

and a negligible standard deviation. This shows that the Gompertz mortality model 

provides a very close empirical approximation to how mortality rates grow with respect 

to age.6 

In Appendix Figure 2A we plot the observed and predicted values of the 7+ year 

cumulative survival probabilities for all the (gender x age groups x state x method of 

aggregation) combinations. We highlight a handful of data points for which the absolute 

value of the residual is more than 0.05. Overall, we conclude that the fit of the 

parsimonious nonlinear model based on the Gompertz mortality model is good. 

With respect to the second step of our estimation approach, life expectancy estimates 

have been shown to be particularly sensitive to the assumptions about the mortality 

rates of the oldest age group in the life table (Németh and Missov, 2018). In our set-up, 

the oldest age group corresponds to the 85+ group. We perform three different 

robustness in order to mitigate concerns that assumptions about the oldest age group 

are driving the empirical patterns about the discrepancies between life expectancies 

measures that we documented in the previous section. 

In our first two robustness exercises, we vary the age at which we stop fitting 

mortality rates using the weighted NLLS estimation and start using the gender-specific 

national mortality rates. We instead use ages 85 and 110 as alternative cut-offs. 

Overall, the cut-offs affect the levels of the life expectancy by state of residence and 

state of birth. The usage of the age cut-off of 85 is associated with a decrease of 0.17 

and 0.19 years on average for men and women, respectively. In contrast, life 

expectancy estimates that use the alternative age cut-off of 110 are 0.22 and 0.33 years 

higher for men and women, respectively. 

 
6 We also assess the fit with the distribution of the mean absolute error across the 204 regressions. This 
measure is directly interpretable as the average distance between the observed and predicted survival 
probabilities. The average of the mean absolute error is equal to 0.01. 



In our last robustness check, we drop the sample of 85+ individuals entirely from 

our main sample to assess how influential these observations are on the estimates of 

differences in life expectancy measures. We instead fit cumulative survival probabilities 

from the remaining five-year age groups and derive mortality rates from those estimates 

as in our preferred specification, up to age 90. Afterwards, we use constant mortality 

rates by gender as in the main specification. We find that dropping individuals in the 

oldest age group does not change our estimates. The correlation in the difference 

between life expectancy by state of residence and life expectancy by state of birth is 

equal to 0.99 for both men and women. 

The comparison between the life expectancy estimates in the baseline scenario 

with the estimates in the alternative scenarios is shown in the graphs in the left side of 

Appendix Figure 2b. From both graphs of Appendix Figure 2b, we conclude that 

different cut-offs shift life expectancy estimates uniformly across states. 

However, the relevant outcome in our analysis is the difference in life expectancy 

by state of residence and state of birth for a given state. We show how the estimated 

differences in life expectancy by state of residence and state of birth vary when we 

modify the assumptions of mortality at very old ages in the graphs in the right side of 

Appendix Figure 2b. The use of different cut-offs has a negligible effect on the 

differences between the two life expectancy measures within states. The unweighted 

correlation between the differences in life expectancy by state of residence and state of 

birth in our preferred specification and each of the robustness exercises mentioned 

above is higher than 0.94, for both men and women. 

  



Appendix D. Differences between life expectancy measures under counterfactual 

migration scenarios 

We perform three different counterfactual scenarios in which we reshuffle the 

final destination of out-migrants in order to assess how the destination choice of out-

migrants affects the life expectancy measures by state of residence and state of birth. In 

these counterfactual exercises, we hold fixed the number and composition of out-

migrants from every state but modify their final destinations. 

We require counterfactual relocation probabilities conditional on moving to 

perform our exercises. We construct these counterfactual probabilities separately by 

five-year age group in 2008 and gender. In our first counterfactual exercise, we consider 

that the probability to relocate to a given destination is proportional to the relative 

importance of that state as a final destination for migrants from all other states. Under 

this counterfactual scenario, in-migration rates by age and gender are closely related to 

the in-migration rates observed in the data. However, we modify the state of origin and 

unobserved mortality risk of the in-migrants that each state receives from the observed 

patterns in the data. 

In our second counterfactual exercise, we instead consider probabilities of 

relocating to destinations conditional on moving that are proportional to the stayer 

population across states. Thus, in this second reshuffling exercise we additionally 

equalize the in-migration rates across states. In our final counterfactual exercise, we 

instead consider probabilities of relocating to destinations conditional on moving that are 

proportional to the out-migrant population across states. In this counterfactual exercise 

we equalize the net migration rate in each (age x gender x state) cell to zero. 

Importantly, in all counterfactual exercises the allocation of out-migrants from a given 

state of origin to destinations is independent of unobserved mortality risk.7 

 
7 In mathematical terms, we define the relative importance of state 𝑢 as a final destination for the sub-
population of age group 𝑎 and gender 𝑔 (𝑤!

",$) as follows: 𝑤!
",$ =	 %&'()$*"&+,!

",$

∑ .!+'()$*"&+,%
",$

%	'!
 for the first 

counterfactual exercise, 𝑤!
",$ =	 /+"01*,!

",$

∑ /+"01*,%
",$

%	'!
 for the second counterfactual exercise, and 𝑤!

",$ =

	 .!+'()$*"&+,!
",$

∑ .!+'()$*"&+,%
",$

%	'!
 for the third counterfactual exercise. Notice that the sum of 𝑤!

",$ across all states in 𝑆 

does not need to add up to one. Given the vector )𝑤!
",$*

!	∈/
, we assume that the counterfactual probability 

that individuals from age group 𝑎 and gender 𝑔 move out of state 𝑠 to state 𝑡 is a scaled version of 𝑤+
",$, 



In order to assess how the reshuffling of migrants to destinations affects the life 

expectancy measures by state of residence and state of birth, we need to take a stance 

on the relative importance of causal “place effects” in explaining geographical disparities 

in mortality outcomes across states (Deryugina and Molitor, 2020; Finkelstein et al, 

2021). In a first approach (“No Place Effects”), we assume that out-migrants are not 

affected by the “place effects” of their final destinations. In other words, we assume that 

the counterfactual average mortality rates of out-migrants from a given state are not 

affected when we modify their final destinations. Thus, only the life expectancies by 

state of residence change in our counterfactuals as a result of modifying the 

composition of in-migrants, while the life expectancies by state of birth remain 

unchanged. 

In a second approach, we instead assume that “place effects” play an important 

role in explaining differential mortality patterns of out-migrants (“Constant Place 

Effects”). We run the following auxiliary regression in order to get a reasonable estimate 

of how mortality patterns of out-migrants across states are affected by the causal place 

effects of different destinations: 

𝑚_𝑂𝑢𝑡𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝑠"
%,$ =	𝛽(

%,$ + (1 − 𝛾$)	𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠"
%,$ + 𝛾$	𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠_𝑅𝑒𝑝𝐷𝑒𝑠𝑡"

%,$ +	𝜀"
%,$ 

 

where the dependent term is the average probability of dying in the follow-up period for 

out-migrants from age group 𝑎 and gender 𝑔 that were born in state 𝑠, while the two 

independent variables are the average probability of dying in the follow-up period for 

stayers from state 𝑠 (𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠"
%,$) and the average mortality of stayers at the 

representative destination where out-migrants from 𝑠 relocate to 

(𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠_𝑅𝑒𝑝𝐷𝑒𝑠𝑡"
%,$), respectively. 8 In order to construct the second term, the 

mortality probabilities of stayers from all states other than 𝑠 are weighted by the 

proportion of out-migrants from state 𝑠 that move to each state. 

 
given by 𝑝,→+

",$ =	 5(
",$

∑ 5%
",$

%')
 if 𝑠	 ≠ 𝑡, and 𝑝,→,

",$ = 0 by construction. The denominator is required in order to 
construct relocation probabilities that add up to 1 across all possible destination choices for a given state 
of origin. 
8 This simple regression specification assumes, among other things, that the “place effects” of a given 
state are constant for stayers and in-migrants, and that the relative importance of the final destination in 
determining mortality outcomes is constant across age groups. 



In this simplified model, the parameter 𝛾$ ∈ [0,1] assesses the extent to which 

the mortality of out-migrants is associated to the mortality of the stayers from their state 

of birth and to the mortality of stayers at their representative destination. We allow this 

coefficient to vary by gender in our main specification. The “No Place Effects” approach 

corresponds to the limit case in which 𝛾$ = 0. Meanwhile, the vector of coefficients 𝛽(
%,$ 

captures the overall mortality advantage of out-migrants with respect to stayers across 

states for the sub-population of individuals in age group 𝑎 and gender 𝑔. 

We run constrained least squares imposing the constraint that the sum of the 

coefficients in front of 𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠"
%,$ and 𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠_𝑅𝑒𝑝𝐷𝑒𝑠𝑡"

%,$ adds up to one. We 

weigh observations by the number of out-migrants in each cell. In our main 

specification, we estimate that 𝛾 is equal to 0.385 (s.e. = 0.06) for men. We use the 

estimate 𝛾$V to compute counterfactual mortality profiles of out-migrants when we modify 

their final destinations. Under a counterfactual scenario where the representative 

destination of out-migrants is given by 𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠i "
%,$, we assume that the counterfactual 

average mortality rate of out-migrants from state 𝑠 (𝑚_𝑂𝑢𝑡𝑀𝚤𝑔𝑟𝑎𝑛𝑡𝑠i "
%,$) will be given by: 

𝑚_𝑂𝑢𝑡𝑀𝚤𝑔𝑟𝑎𝑛𝑡𝑠i "
%,$ = 𝑚_𝑂𝑢𝑡𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝑠"

%,$ + 𝛾%,$V 	S𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠i "
%,$ −𝑚_𝑆𝑡𝑎𝑦𝑒𝑟𝑠"

%,$W 

 

In Appendix Figure 10 we plot the observed and the three counterfactual 

differences in male life expectancies at age 50 by state of residence and state of birth 

for the subset of states where the differences in life expectancy measures are 

significant at the 10 percent level. Panel A shows the observed and counterfactual 

differences in life expectancy measures under the assumption of “No Place Effects”. In 

contrast, Panel B shows the observed and counterfactual differences in life expectancy 

measures under the assumption of “Constant Place Effects”, in which the mortality rates 

of out-migrants are affected by the final destination choice. 

From Panel A of Appendix Figure 10 we observe that there are important 

changes between the observed differences in life expectancy measures and the 

differences in the first counterfactual scenario where we reshuffle individuals into 

destinations in a way that preserves in-migration rates but modifies the composition of 

in-migrants that each state receives. This means that we would expect an absolute 

difference between life expectancy measures that is below 0.5 for the states of OK, OH, 



IL, IN, and LA if in-migrants to these states were selected randomly from the pool of 

available out-migrants. However, in the data the absolute differences are considerably 

higher. Thus, our counterfactual exercise provides supportive evidence that these states 

attract migrants with ex-ante higher mortality risk under the “No Place Effects” 

assumption. In contrast, our results are suggestive that states like SC, CO, VA, and MD 

appear to attract in-migrants with lower ex-ante mortality risk. Overall, the mean 

absolute difference between life expectancy measures for these thirteen states is equal 

to 0.87 years in the data, but only between 0.51 years in the first counterfactual 

exercise. 

Comparing the results between the first counterfactual scenario and the other 

counterfactual exercises, we find that the equalization of in-migration or net migration 

rates across states further contributes to the attenuation of the differences in life 

expectancy measures across states. However, it plays a quantitatively smaller role than 

the homogenization of the ex-ante mortality risk of in-migrants for most states. Only in 

the case of the state of Florida, which has an in-migration rate of more than 80 percent 

in the sub-population of men ages 50 and above, the further equalization of migration 

rates modifies the difference in life expectancy measures by more than 0.5 years. 

Overall, the cross-standard deviation in the difference between life expectancy 

measures for the thirteen selected states is equal to 0.95. This standard deviation is 

reduced to 0.61 when we reshuffle in-migrants, holding fixed state immigration rates. 

Finally, when we further equalize in-migration or net migration rates the cross-state 

standard deviation lowers to 0.36 and 0.33, respectively. Thus, we find that 36 percent 

of the cross-state standard deviation in life expectancy measures in the subset of states 

where the difference between life expectancy measures is significant can be attributed 

to the non-random sorting of out-migrants to locations. After accounting for the 

composition of in-migrants, the differences in migration rates across states contributes 

to a remaining 26 to 30 percent of the observed cross-state standard deviation.9 

 
9 We also perform the decomposition of the cross-state deviation in the difference between life expectancy 
measures for all 43 states where we can compute male life expectancies of stayers. We find that the non-random 
sorting of out-migrants to locations accounts for 20 percent of the cross-state standard deviation across states, 
while the further equalization of migration rates accounts for 6 to 11 percent. 



An alternative assumption about “place effects” is that the differences in the 

mortality risk of in-migrants across destinations is a joint outcome determined by the 

differential sorting of in-migrants from different states of birth and unobserved mortality 

risk and cross-state variation in destination place effects. In Panel B of Appendix Figure 

10 we show the observed and counterfactual differences in life expectancy measures 

under the “Constant Place Effects” scenario. The counterfactual differences in Panel B 

are quite similar to those presented in Panel A. Hence, the key takeaway that the non-

random sorting of in-migrants across final destinations is an important driver behind the 

cross-state variation in the difference of life expectancy measures continues to hold 

under the “Constant Place Effects” scenario and is not driven by the assumptions about 

the relative importance of “place effects” in determining mortality outcomes later in life.10 
  

 
10 Under the “Constant Place Effects” assumption, the non-random sorting of out-migrants to locations accounts 
for 49 percent of the cross-state standard deviation across the subset of selected states, while the further 
equalization of migration rates accounts for 22 to 23 percent. 



Appendix Figure 1: Comparison of cumulative mortality probability in the follow-up 
period, MDAC and NVSS 

 
Panel A: Mortality probabilities, by state of residence 

 
 

Panel B: Mortality probabilities, by state of birth 

 
 

Note: Panel A (B) of Appendix Figure 1 shows the comparison between the raw cumulative mortality probabilities by 
state of residence (state of birth) observed in the MDAC dataset and equivalently constructed cumulative rates using 
the NVSS data. Each dot corresponds to a (five-year age group x gender x state) combination. To estimate cumulative 
mortality rates using the NVSS data, all deaths that occurred between July 2008 and December 2015 were clustered 
by age group of the individual in 2008, as well as gender and state. 
  



Appendix Figure 2a: Assessment of fit in cumulative survival probabilities in 7+ follow-up 
period 

 
Note: Appendix Figure 2a shows the fit of the mortality models to the observed data. The average survival probability 
of being alive after the 7+ follow-up period by five-year age group, state, gender, and method of aggregation is shown 
on the x-axis. The predicted probabilities generated from weighted NLLS regressions that are run separately by state, 
gender, and method of aggregation are depicted on the y-axis. The size of each bubble is proportional to the number 
of individuals surveyed in the 2008 ACS in each cell. Cells in which the difference between the actual and predicted 
value is higher than 0.05 are highlighted.  



Appendix Figure 2b: Life expectancies at age 50 by state of residence and state of birth 
under different assumptions of mortality at very old ages 

 
Panel A: Men 

 
Levels 

 

 
 

Differences 
 

 

 
Panel B: Women 

 
Levels 

 

 
 

Differences 
 

 

 
Note: Appendix Figure 2b shows the life expectancy estimates under three different robustness checks. Panel A shows 
the estimates for men, while Panel B shows the estimates for women. On the x-axis of the graphs in the left side, we 
plot the life expectancy estimates from our preferred specification, in which we stop using the mortality rates derived 
from the weighted NLLS estimation at age 90. On the y-axis, we include the life expectancy estimates from models that 
use different assumptions about mortality patterns at very old ages. The dots in blue color correspond to estimates 
where we use the fitted mortality rates from the Gompertz model to estimate mortality rates up to age 85. The dots in 
red correspond to life expectancy estimates where we use the fitted mortality probabilities from the weighted NLLS 
estimation up to age 110. The dots in green correspond to life expectancy estimates that entirely discard the observed 
survival probabilities for the age group 85+ in the data. Each dot within a series corresponds to a sub-population 
characterized by a (state x method of aggregation) combination. Observations where the difference between the 
baseline life expectancy estimate and the alternative life expectancy measure is bigger than one year are highlighted. 
In the graphs on the right hand side, we instead plot in the x-axis the difference between the life expectancy by state 
of residence and life expectancy by state of birth in our preferred specification and in the y-axis the difference between 
the life expectancy measures using alternative assumptions about mortality patterns at very old ages.  



Appendix Figure 3: Life expectancies at age 50 by state of birth and state of residence, 

White population only 
Panel A: Men 

 
 

Panel B: Women 

 
Note: Appendix Figure 3 shows the relationship between life expectancy at age 50 excluding Black and Latino 
individuals by state of birth and state of residence separately by gender. Life expectancies were constructed using 
data disclosed from the MDAC dataset with Census disclosure numbers CBDRB-FY20-CES004-022, using the 
methods explained in the paper and further detailed in Technical Appendix A. Panel A shows the relationship 
between the two alternative measures of life expectancy for men. Panel B shows the relationship for women. States 
that have a significant difference between life expectancy measures at the 10% level are marked in black. The rest of 
the states are depicted in gray.  



Appendix Figure 4: Life expectancies at age 65 by state of birth and state of residence 
Panel A: Men 

 
 

Panel B: Women 

 
Note: Appendix Figure 4 shows the relationship between life expectancy at age 65 by state of birth and state of 
residence separately by gender. Life expectancies were constructed using data disclosed from the MDAC dataset 
with Census disclosure numbers CBDRB-FY19-304 and CBDRB-FY20-092, using the methods explained in the 
paper and further detailed in Technical Appendix A. Panel A shows the relationship between the two alternative 
measures of life expectancy for men. Panel B shows the relationship for women. States that have a significant 
difference between life expectancy measures at the 10% level are marked in black. The rest of the states are 
depicted in gray.  



Appendix Figure 5: Male life expectancy at age 65, 2008-2015  
Panel A. Life expectancy by state of residence 

 

 

Panel B. Life expectancy by state of birth 
 

 
  

Panel C. Difference in life expectancy measures 
State of residence – State of birth (all) 

 

 

Panel D. Difference in life expectancy measures State 
of residence – State of birth (significance) 

 

 
 
Note: Panel A of Appendix Figure 5 presents male life expectancies at age 65 grouping individuals by their state of 
residence in 2008, while Panel B of Appendix Figure 5 presents life expectancies at age 65 grouping individuals by 
their state of birth. Panel C of Appendix Figure 5 shows the differences between life expectancies by state of residence 
and life expectancies by state of birth for each of the states. Panel D of Appendix Figure 5 shows in red states in which 
the life expectancy by state of residence is significantly lower than the life expectancy by state of birth at the 5 and 10 
percent significance levels. States in which the life expectancy by state of residence is significantly higher than the life 
expectancy by state of birth at the 5 and 10 significance levels are shown in green.  



Appendix Figure 6: Female life expectancy at age 65, 2008-2015  
Panel A. Life expectancy by state of residence 

 

 

Panel B. Life expectancy by state of birth 
 

 
  

Panel C. Difference in life expectancy measures 
State of residence – State of birth (all) 

 

 

Panel D. Difference in life expectancy measures State 
of residence – State of birth (significance) 

 

 
 
Note: Panel A of Appendix Figure 6 presents female life expectancies at age 65 grouping individuals by their state of 
residence in 2008, while Panel B of Appendix Figure 6 presents life expectancies at age 65 grouping individuals by 
their state of birth. Panel C of Appendix Figure 6 shows the differences between life expectancies by state of residence 
and life expectancies by state of birth for each of the states. Panel D of Appendix Figure 6 shows in red states in which 
the life expectancy by state of residence is significantly lower than the life expectancy by state of birth at the 5 and 10 
percent significance levels. States in which the life expectancy by state of residence is significantly higher than the life 
expectancy by state of birth at the 5 and 10 significance levels are shown in green. 
  



Appendix Figure 7: Distribution of ex-post relative mortality advantage of male in-
migrants and out-migrants across states 

 
Note: Appendix Figure 7 shows the histogram and smoothed distribution of the relative health advantage of male in-
migrants and out-migrants relative to stayers across states.  
 
  



Appendix Figure 8: Relationship between life expectancy of male stayers at age 50 and 
regional migration rates 

 
Panel A: Regional out-migration rates 

 
 

Panel B: Regional in-migration rates 

  
Note: Panel A (B) of Appendix Figure 8 shows the relationship between male life expectancy of stayers at age 50 and 
regional out-migration (in-migration) rates at the state level. We define out-migration rate of state 𝑠 as the proportion 
of 50-64 year-old men that were born in state 𝑠 that are out of their region of birth by the time of the 2008 ACS 
interview. Similarly, the in-migration rate of state 𝑠 is calculated as the proportion of 50-64 year-old men that are 
observed in 𝑠 by the time of the ACS interview that were born in a different region. In both panels, states are 
weighted by the inverse variance of the male life expectancy of stayers at age 50.  



Appendix Figure 9: Relationship between life expectancy of male stayers at age 65 and 
migration rates 

 
Panel A: Out-migration rates 

 
 

Panel B: In-migration rates 

 
 
Note: Panel A (B) of Appendix Figure 9 shows the relationship between male life expectancy of the stayer sub-
population at age 65 and out-migration (in-migration) rates at the state level. The out-migration rate of state 𝑠 is 
calculated as the proportion of 65-79-year-old men that were born in state 𝑠 that are out of their state of birth by the 
time of the 2008 ACS interview. Similarly, the in-migration rate of state 𝑠 is calculated as the proportion of 65-79-year-
old men that are observed in 𝑠 by the time of the ACS interview that were born in a different state. In both panels, 
states are weighted by the inverse variance of the male life expectancy of stayers at age 65.  



Appendix Figure 10: Counterfactual differences in male life expectancies at age 50 in 
selected states 

 
Panel A: No Place Effects 

 
Panel B: Constant Place Effects 

 
Note: Appendix Figure 10 shows the observed and counterfactual differences in male life expectancies by state of 
residence and state of birth in the three different reshuffling exercises for the subset of states where the difference 
between life expectancy by state of residence and state of birth was significant at the 10 percent level. Panel A (B) 
shows the observed and counterfactual differences under the assumption of “No Place Effects” (“Constant Place 
Effects”). Appendix D explains how the counterfactual migrations probabilities and mortality rates were constructed.  



Appendix Table 1: Relative importance of ex-post relative mortality advantage of in-
migrants and out-migrants for differences in male life expectancies at age 50 

 
Dependent variable:  
1(𝐿𝐸123 − 𝐿𝐸124 > 0) 
 

(1) (2) 

𝐿𝐸67 − 𝐿𝐸18%/ 0.290 
(0.031) 

 

0.235 
(0.062) 

 
𝐿𝐸9:8 − 𝐿𝐸18%/ -0.065 

(0.110) 
 

-0.192 
(0.171) 

𝐿𝐸18%/  
- 

-0.101 
(0.100) 

 
   
𝑅5 0.887 0.896 

Number of observations 13 13 
 

Note: Appendix Table 1 shows the relative importance of the ex-post relative mortality advantage of out-migrants and 
ex-post relative mortality advantage of in-migrants in determining the sign of the difference in the life expectancy by 
state of residence and life expectancy by state of birth. The dependent variable is equal to one if the difference between 
life expectancy by state of residence and state of birth is positive. We included the set of 13 states with significant 
differences. The results show that the ex-post relative health advantage of out-migrants is only weakly related to the 
sign of the difference in life expectancy measures. In contrast, an additional year in the differential health advantage of 
in-migrants is associated with a significant 24 to 29 percentage point increase in the probability that the difference is 
positive (p-value: 0.000). Column (1) only includes the ex-post relative mortality advantage of in-migrants (𝐿𝐸!" −
𝐿𝐸#$%&) and out-migrants (𝐿𝐸'($ − 𝐿𝐸#$%&) as regressors. Column (2) also includes the life expectancy of stayers 
(𝐿𝐸#$%&) as an additional regressor. In both columns, states are weighted by the inverse variance of the male life 
expectancy of stayers at age 50. This table was constructed from information disclosed by the Census with DRB review 
numbers CBDRB-FY19-304 and CBDRB-FY20-092. 
 


