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Supplemental Method I – Measurements for Aging Phenotypes  

The phenotypic variables used for the analysis presented in this manuscript were collected in 

BLSA participants during a two-/three-day clinical visit and the National Institute on Aging 

Clinical Research Unit. Descriptions below are consistent with those previously reported1, and 

the cross-sectional correlation structure of these 35 phenotypes at baseline are shown in the 

Supplemental Figure 11.   

 

Body composition domain  

Changes in body composition are evident across the life span. Traditional body size measures are 

collected in BLSA, including waist circumference as well as weight and height, used to estimate 

body mass index (BMI) 2. Anthropometric measurements were made using a standardized 

protocol: participants are assessed in light clothing, waist circumference was measured by tape 

measure, height and weight were assessed using a stadiometer and calibrated scale, respectively. 

Total lean mass, appendicular lean mass and total fat mass were assessed using total body dual-

energy X-ray absorptiometry (DEXA; Prodigy Scanner, GE, Madison, WI) with Encore 

Software. While total lean mass is composed of both muscle and visceral organs, appendicular 

lean mass (both arms and legs) is primarily muscle mass 3. DEXA measures are complemented 

with computerized tomography cross-sectional images (10 mm) at the mid-thigh area (10mm, 

Somatom Sensation 10, Siemens, Malvern PA) quantified using the Geanie 2.1 software 

(BonAlyse Oy, Jyvaskla, Finland) and Tibia Estimation Tool (TibEsT v.1.4, Makrogiannis, 

NIH)4 . 

  

Energetic domain  

Both parameters of energy availability and energy consumption change with aging. In the BLSA, 

we collect information on oxygen consumptions (VO2) from resting to maximal exertion. 

Resting metabolic rate (kcals/day), the minimal amount of energy required for living, was 

assessed by indirect calorimetry 5,6, using a Cosmed k4b2 portable metabolic analyzer (Cosmed, 

Rome, Italy) after awakening in the morning in a quiet, thermo-neutral environment, in a fasted, 

rested state 7. Peak VO2 (ml/kg/min) was assessed during a modified Balke protocol maximal 

treadmill test as a proxy measure of maximal energy availability (VO2 max) 8. The balance 

between energy availability and demand for physical functioning was estimated by a ratio of the 

energy cost of slow walking to peak walking capacity (“cost-capacity ratio”) 9-11. The energetic 

cost of slow walking (ml/kg/min) was assessed via indirect calorimetry (Medical Graphics Corp, 

St Paul, MN) during 5 minutes of slow treadmill walking at 0.67 m/sec (1.5 mph), zero percent 

slope 9. Peak walking capacity was assessed during a 400 meter walk test performed in an 

uncarpeted corridor with the participant wearing a portable metabolic analyzer, the Cosmed K4b
2 

(Cosmed, Rome, Italy) 7,9. Forced vital capacity (FVC) and the forced expiratory volume in the 

first second (FEV1), indicators of respiratory capacity and functions, were measured using a 

MedGraphics Gas Exchange System (Medical Graphics Corp, St Paul, MN ) through closed-

circuit breath collection 12.    

 



Homeostatic mechanisms domain 

A stable homeostatic equilibrium is essential for healthy life. Some homeostatic biomarkers that 

are particularly relevant for the study of aging and can be measured “in vivo” in a clinical study 

are assessed in the BLSA. They include: chronic inflammation, insulin sensitivity/resistance, 

cardiovascular parameters, circulating lipids, and renal function. As biomarkers of chronic 

inflammation, we considered Interleukin-6 (IL-6), C-reactive protein, albumin, hemoglobin, red 

cell distribution width and neutrophil count. IL-6 was measured by commercial ELISA kits 

(R&D System, Minneapolis, MN, USA), and C-reactive protein (CRP), by ELISA (ALPCO 

Diagnostics, Salem NH, or Alpha Diagnostic International, San Antonio, TX or 

Immundiagnostik AG) 4,13. Albumin was measured using dye binding BCG 14,15. Hemoglobin, 

red blood cell width (RDW), and absolute neutrophil counts were measured by Sysmex's 

multiple methods15. Fasting plasma glucose was measured in the morning after at least 10 hours 

overnight fast 4,16,17. Cardiovascular parameters included blood pressures and pulse-wave 

velocity. Blood pressures were measured in the supine position 18-20. Carotid-femoral pulse wave 

velocity was measured using either Transcutaneous Doppler probes (model 810A, 9 to 10- Mhz 

probes, Parks Medical Electronics, Inc., Aloha, Oregon) or Complior SP device (Artech Medical, 

Paris, France) or SphygmoCor system (AtCor Medical, Sydney, Australia) by well-trained 

technicians 18. Concentrations of plasma triglycerides and total cholesterol were determined by 

an enzymatic method (ABA-200 ATC Biochromatic Analyzer; Abbott Laboratories, Irving, TX) 
21,22 and the concentration of high-density lipoprotein (HDL) cholesterol was determined by a 

dextran sulfate–magnesium precipitation 21,22. Renal function was measured by body surface area 

adjusted 24-hour creatinine clearance, derived from 24-hour urine collection 23. Other widely 

used estimation of glomerular filtration rate (ex: Modification of Diet in Renal Disease Study 

(MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)) were avoided 

because they include an “age” parameter 23. Creatinine concentrations in serum and urine were 

measured either by the enzymatic Vitros CREA method performed on the Ortho Fusion 5.1 

Analyzer (Ortho-Clinical Diagnostics, Rochester, NY), or the isotope dilution mass spectrometry 

(IDMS)-traceable serum creatinine assay 23. 

 

Neurodegeneration/Neuroplasticity domain   

Phenotypes used to represent neurodegeneration/neuroplasticity domain cover both the central 

nervous system and peripheral nervous system. The central nervous system was assessed by 

brain volumes (total brain volume, white matter volume, grey matter volume, and ventricular 

volume), and the peripheral nervous system was assessed by nerve conduction velocity. Brain 

volumes were measured using a 3T Philips Achieva Magnetic Resonance Imaging (MRI) system 

to acquire magnetization-prepared rapid gradient echo (MPRAGE) scans (repetition time 

=6.8ms, echo time =3.2ms, flip angle=8°, image matrix=256×256, 170 slices, pixel 

size=1×1mm, slice thickness=1.2mm; sagittal acquisition). Anatomical labels and global and 

regional brain volumes were obtained using Multi-atlas region Segmentation using Ensembles of 

registration algorithms and parameters (MUSE) 24. To measure the fibular nerve conduction 

velocity, a trained technician performed a standard nerve conduction velocity test on the peroneal 

nerve. To measure the fibular nerve conduction velocity, a trained technician performed a 

standard nerve conduction velocity test on the peroneal nerve 25.  
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Supplemental Method II – Measurements of Functional Outcomes 

 

Physical Functions 

In BLSA, physical function was measured using usual gait speed over 6 meters, time to walk 400 

meters as quickly as possible (1), and the Health Aging, and Body Composition short physical 

performance battery (HABC SPPB) (a continuous score derived from gait speed, chair stand, and 

balance test, with higher scores indicating better function) (1, 2).  For the measurement of usual 

gait speed, BLSA participants stood with their feet behind a taped starting line and were asked to 

walk at a “normal comfortable pace” over a course of 6m. For the measurement of endurance 

walking, BLSA participants completed a self-paced endurance walk test over 400m as fast as 

possible, which was performed over a 20-m course (1).  

 

Cognitive Functions 

Several cognitive tests were administered to assess cognition in the BLSA (3). These tests 

included digit symbol substitution test (DSST), the Digit Span Forward and Backward subtest of 

the Wechsler Adult Intelligence Scale – Revised (WAIS-R) (4),  time needed to completed the 

Trail Making Tests (TMT) Part A & B (5), number of correct words recalled in immediate recall 

and long-delay free recall (20 – 30 minutes) from the California Verbal Learning Test (CVLT) 

(6), letter fluency (7), category fluency (8),  and card rotations tests (3, 9, 10).  DSST reflected 

the multiple cognitive domains. Trails Making Tests A & B, Digits Forward, and Digits 

Backward were used to capture executive function and attention. CVLT was used to assess the 

memory ability. Letter and category fluency tests were used to measure language ability. Card 

Rotations test was used to capture visuospatial abilities of participants.  

As to the analysis, we kept the DSST (Digit Symbol Substitution Test) aside because it is 

thought to involve more than one domain. A memory score was constructed as the average of 

standardized immediate recall and long-delay free recall from California Verbal Learning test. A 

language score was constructed as the average of standardized letter fluency and standardized 

category fluency scores. An attention score was constructed as the average of standardized log-

transformed Trail Making Tests Part A and Digit Span Forward scores. An executive function 

function score was constructed as the average of the standardized log-transformed Trail Making 

Tests Part B and Digit Span Backward. Visuospatial ability is calculated by standardized Cart 

Rotations test.  

 

Multimorbidity Index and Mortality  

Multimorbidity is defined as the condition of simultaneous occurrence of two or more diseases. 

Multimorbidity was assessed at each visit as number of diagnosed chronic diseases from a 

predefined list. The conditions include hypertension, diabetes mellitus, coronary artery disease, 

congestive heart failure, stroke, chronic obstructive pulmonary disease, chronic kidney disease, 



cognitive decline, cancer, anemia, Parkinson’s disease, Peripheral Arterial Disease, history of hip 

fracture, and lower extremity joint disease. The multimorbidity index was computed as the 

number of these conditions that were adjudicated based on pre-defined criteria (11). Vital status 

was determined using telephone follow-up, correspondence, and searches of the National Death 

Index. 
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Supplemental Method III - Statistical Analysis  

 

Part 1: Creating global and domain-specific longitudinal phenotypic scores 

Three steps were used to calculate the global longitudinal phenotypic score.  

Step 1: For each phenotype, quantile normalization was used to account for the different units of 

measure (1). Sex-specific mixed effects models of the normalized phenotypes, with random 

intercept, random slope, and time since first analytic visit as timescale, were fit to calculate the 

difference between individual’s rate of change and estimated sex-and age-specific rate of change 

in the overall study population. Details on how the rate of changes in each phenotype were 

modelled are as follows. For analyses within the body composition domain, body height was 

included as covariates to provide an index of body size. For the energetics domain, body 

composition measures (fat mass, lean mass) were included as covariates in analyses concerning 

resting metabolic rate, peak oxygen consumption (during treadmill test and during 400m walk), 

and cost-capacity ratio. Height was included as a covariate for analyses concerning forced 

expiratory volume in the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC. For the 

neurodegeneration/neuroplasticity domain, intracranial volume was included as a covariate in 

analyses concerning brain volume measurements, and the analysis was limited to those >= 40 

years old (due to limited data below this age). Models with and without additional terms 

(baseline age squared, time X baseline age, time X baseline age squared) were performed to 

account for the nonlinear baseline age trend. 

 

To calculate the difference between individual’s rate of change and estimated sex- and age- 

specific rate of change in the population, we used the linear mixed model with random intercept 

and random slope (as following) for male and female separately. In such model, b_i is then 

extracted, and used as the difference between individual’s rate of change and estimated sex-and-

age specific rate of change. Below, we report the notations for the analysis described. The age- 

trajectories estimated for each phenotype, separately for men and women are shown in 

supplemental figures 2 and 3.  

𝑊𝑖𝑡ℎ 𝑎𝑖 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑎𝑛𝑑  𝑏𝑖 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑙𝑜𝑝𝑒,   

𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑒 𝑓𝑖𝑡 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟𝑚: 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑖𝑗 = 𝛼(𝑐𝑜𝑣𝑖) + 𝑎𝑖 + ( 𝛽(𝑐𝑜𝑣𝑖) + 𝑏𝑖) ∗ 𝑡𝑖𝑗 + 𝑒𝑖𝑗  𝑓𝑜𝑟 𝑠𝑢𝑗𝑒𝑐𝑡 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑗,  

𝑤ℎ𝑒𝑟𝑒 (𝑎𝑖, 𝑏𝑖)~ 𝑁(0, 𝐺), 𝑒𝑖𝑗 ~ 𝑁(0, 𝜎2𝑅),  

𝛼(𝑐𝑜𝑣𝑖) 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 𝑎𝑏𝑜𝑣𝑒,  

𝑎𝑛𝑑 𝛽(𝑐𝑜𝑣𝑖) 𝑖𝑠 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑔𝑒𝑖  

 

 

  



 

A List of Polynomial Functions (Beta(cov_i)) for each phenotype 

 

Phenotypic Domain Phenotype 𝛽(𝑐𝑜𝑣𝑖) 

 

Body Composition Waist 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖
2    

 

Body Composition Waist-Height 

Ratio  
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Body Composition Body Mass 

Index 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Body Composition Lean Mass 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖
2    

 

Body Composition Appendicular 

Lean Mass 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Body Composition Fat Mass 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖
2    

 

Body Composition Mid-Thigh Area 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖
2    

 

Energetics  Resting 

Metabolic Rate 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Energetics  Peak VO2 

during treadmill 

test 

𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Energetics  Peak VO2 

during 400m 

walk 

𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Energetics  Cost-capacity 

ratio 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Energetics  FEV1 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Energetics  FVC 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Energetics  FEV1/FVC 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Homeostasis 

Mechanisms 

Interleukin – 6 𝛽0  
 

Homeostasis 

Mechanisms 

C-reactive 

protein 
𝛽0  

 

Homeostasis 

Mechanisms 

Albumin 𝛽0  
 

Homeostasis 

Mechanisms 

Hemoglobin 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 



Homeostasis 

Mechanisms 

Red Blood Cell 

Distribution 

Width 

𝛽0  
 

Homeostasis 

Mechanisms 

Absolute 

Neutrophil 

Count 

𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Homeostasis 

Mechanisms 

Fasting Glucose 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Homeostasis 

Mechanisms 

Systolic Blood 

Pressure 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Homeostasis 

Mechanisms 

Diastolic Blood 

Pressure 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Homeostasis 

Mechanisms 

Pulse Pressure 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖
2    

 

Homeostasis 

Mechanisms 

Carotid-Femoral 

pulse wave 

velocity 

𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Homeostasis 

Mechanisms 

Creatinine 

clearance 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Homeostasis 

Mechanisms 

Total cholesterol 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Homeostasis 

Mechanisms 

Low-density 

lipoproteins 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Homeostasis 

Mechanisms 

High-density 

lipoproteins 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Homeostasis 

Mechanisms 

Triglyceride 𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  
 

Neuroplasticity / 

Neurodegeneration 

Total Brain 

Volume 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Neuroplasticity / 

Neurodegeneration 

White Matter 

Volume 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Neuroplasticity / 

Neurodegeneration 

Grey Matter 

Volume 
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖  

 

Neuroplasticity / 

Neurodegeneration 

Ventricular 

Volume  
𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 +  𝛽2 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖

2    
 

Neuroplasticity / 

Neurodegeneration 

Fibular Nerve 

Conduction 

Velocity 

𝛽0 +  𝛽1 ∗ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝑔𝑒𝑖 

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; VO2, oxygen 

consumption 

 

 

 



Further, the difference between individual’s rate of change and sex-and-age specific population’s 

rate of change was standardized (to mean=0 and SD = 1). Those standardized values with 

absolute value >= 5 were considered as outliers and excluded (n excluded are small and shown in 

the table titled “Number of participants with repeated measurements and number of participants 

with rate of changes within 5SD for each phenotype” at the end of this supplemental method 

section). The standardized values (for each individual, for each phenotype) were then 

transformed to -3, -2, -1, 0, 1, 2, 3, termed “individual-phenotype-specific score”, based on these 

standardized values (3, 2, 1 corresponding to 2.5 to 5 SD, 1.5 to 2.5 SD, 0.5 to 1.5 SD 

faster/accelerated decline in phenotypes; 0 corresponding to within 0.5 SD from changes in 

phenotypes; -1, -2, -3, corresponding to 0.5 to 1.5 SD, 1.5 to 2.5 SD, and 2.5 to 5 SD 

slower/decelerated decline in phenotypes). See Figure 3 for a conceptual illustration of 

accelerated and decelerated aging.   

Step 2: For each domain, we calculated the domain-specific longitudinal phenotypic scores for 

each individual by averaging the available “individual-phenotype-specific score” for phenotypes 

within each domain, followed by quantile normalization. The main rationale for the quantile 

normalization in this step is due to the unequal number of phenotypes across domains. 

(Generally, the distribution of the domain with more phenotypes tend to appear “narrower” than 

the distribution of the domain with less phenotypes.) 

Step 3: The global longitudinal phenotypic score was then summarized by averaging the four 

domain-specific longitudinal phenotypic scores, for those with all four domain-specific scores 

available.   

 

Part 2: Examining the relationship between longitudinal phenotypic score(s) and functional 

outcomes/mortality 

 

Part 2-1: Examining the relationship between longitudinal phenotypic score(s) and 

functional outcomes (physical function/cognitive function/multi-morbidity) 

To estimate the relationship between global and domain-specific longitudinal phenotypic score 

and rate of functional decline and changes in multi-morbidities, linear mixed models with 

random intercept and random slope were used. Time since baseline was used as time metric, and 

baseline age was defined as the age at the first analytic visit. Below is the general form of linear 

mixed model we fit to evaluate the association between longitudinal phenotypic score and rate of 

changes in physical and cognitive functions:  

𝑊𝑖𝑡ℎ 𝑎𝑖 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑎𝑛𝑑  𝑏𝑖 𝑑𝑒𝑛𝑜𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑙𝑜𝑝𝑒,   

𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑒 𝑓𝑖𝑡 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟𝑚: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑗 = 𝛼(𝑐𝑜𝑣𝑖) + 𝑎𝑖 + ( 𝛽(𝑐𝑜𝑣𝑖) + 𝑏𝑖) ∗ 𝑡𝑖𝑗 + 𝑒𝑖𝑗  𝑓𝑜𝑟 𝑠𝑢𝑗𝑒𝑐𝑡 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑗,  

𝑤ℎ𝑒𝑟𝑒 (𝑎𝑖, 𝑏𝑖)~ 𝑁(0, 𝐺), 𝑒𝑖𝑗 ~ 𝑁(0, 𝜎2𝑅),  

𝛼(𝑐𝑜𝑣𝑖) 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 (𝑒𝑥: 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑔𝑒𝑖 , 𝑠𝑒𝑥𝑖 ),  

𝑎𝑛𝑑 𝛽(𝑐𝑜𝑣𝑖) 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙_𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐_𝑠𝑐𝑜𝑟𝑒𝑖 , 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑔𝑒𝑖 , 𝑎𝑛𝑑 𝑠𝑒𝑥𝑖 



Specifically, for cognitive function, the models included sex, baseline age, years of education, 

race, longitudinal phenotypic aging score (global longitudinal phenotypic score or domain-

specific longitudinal phenotypic scores), time since baseline age, interaction between baseline 

age and time since baseline age, interaction between sex and time since baseline age, and 

interaction between longitudinal phenotypic aging score and time since baseline age. The data 

used for modeling the rate of changes in cognitions come from all the cognitive tests given at age 

50 and above. 

For physical function, the models included sex, quadratic function of baseline age, height, 

weight, longitudinal phenotypic aging score, time since baseline age, interaction between 

baseline age and time since baseline age, interaction between sex and time since baseline age, 

and interaction between longitudinal phenotypic aging score and time since baseline age.  

For multi-morbidity index, the model included sex, quadratic function of baseline age, 

longitudinal phenotypic aging score, time since baseline age, interaction between baseline age 

and time since baseline age, interaction between sex and time since baseline age, and interaction 

between the longitudinal phenotypic aging score and time since baseline age.  

With these linear mixed models, the coefficient for the interaction term between longitudinal 

phenotypic aging score and time since baseline age can be interpreted as the difference in rate of 

change per one point higher in longitudinal phenotypic aging score (i.e. the accelerated aging) 

[for global longitudinal phenotypic score or domain-specific longitudinal phenotypic scores]. 

Similarly, the coefficient for the interaction term between baseline age and time since baseline 

age can be interpreted as the difference in rate of change per one year older in chronological age. 

Because the scales of cognitive functions, physical functions, and multi-morbidities are different, 

to improve the interpretability of results, we translated the results as “age-equivalent,” which can 

be interpreted as the equivalent effect of the number of years chronological age increase on rate 

of changes per one point higher in summarized score (global longitudinal phenotypic score or 

domain-specific longitudinal phenotypic scores).  

To visualize the results, we plotted the scatterplot between summarized global score and slopes 

of changes in cognitive functions, physical functions, and multi-morbidities. To facilitate the 

understanding of our results, the rate of changes in physical and cognitive functions and multi-

morbidities were reported in the Supplemental Table 3, and the incremental changes in rate of 

changes due to older chronological age, estimated by the coefficients interaction term between 

longitudinal phenotypic aging score and time since baseline age, were reported in the 

Supplemental Table 4.  

To better understand the rank contribution of different domain-specific longitudinal phenotypic 

scores to the changes in physical and cognitive functions, we first regressed the rate of changes 

on each domain-specific longitudinal phenotypic score separately, and then ranked them by the 

amount of variability explained using adjusted r-squared.  

Age-stratified scatterplots were also provided to explore the relationship between the global 

longitudinal phenotypic score and changes in physical and cognitive functions across different 

age strata. For physical functions, cutoffs for three groups are 50 and 80. Because for cognitive 

functions some measures were obtained only in participants who were age 50 and above at the 

time of their visit, cutoff for three groups are 65 and 80. Since the relationship between 

longitudinal phenotypic score and changes in physical/cognitive functions appear to be stronger 



among older adults, we further tested whether the relationship between global longitudinal 

phenotypic score and change in physical and cognitive functions differed by age. To do this, we 

included all the two-way and three-way interactions between baseline age, time since baseline 

age, and the global longitudinal phenotypic score, so that the three-way interaction term 

empirically tests whether the relationship between global longitudinal phenotypic score and 

change in physical and cognitive functions is stronger among older participants. 

Linear mixed effects models were performed using R package `lme4` (version 1.1.23). Part of 

data wrangling were performed using R package `dplyr` (version 0.8.5), and `tidyverse` (version 

1.3.0). 

 

Part 2-2: Examining the relationship between global longitudinal phenotypic score and 

mortality  

To understand the relationship between the global longitudinal phenotypic score and mortality, 

we used survival analysis with both semi-parametric Cox models and parametric Weibull 

distribution to quantify the relationship between summarized global score and mortality risk 

using age starting from 60 years old as timescale with adjustment for age, sex and education. For 

the Cox model, we found no evidence of violation of the proportional hazard assumption in the 

analysis concerning the global longitudinal phenotypic score. For the parametric survival 

analysis, we fitted the survival curve with Weibull distribution. We further reported time ratios, 

which is better for clinical interpretation and physician-patient communication. These analyses 

were conducted using Stata version 15.1 (StataCorp, College Station, Texas), R packages 

`flexsurv` (version 1.1.1) and `survival` (version 3.2.7).  

 

Part 3: Evaluation the association between cross-sectional measurements and changes in 

physical and cognitive functions 

To understand the potential difference between the cross-sectional aging summary and our global 

longitudinal phenotypic scores mortality, we also computed the association between global 

cross-sectional phenotypic score, 6 epigenetic age acceleration measurements, and changes in 

physical and cognitive functions.   

 

The global cross-sectional phenotypic score is created with the same approach as the global 

longitudinal phenotypic score except that only cross-sectional data are used. Specifically, in the 

first step, we calculated the difference between cross-sectional phenotypic measurement and the 

age-and-sex specific population average (which is created from cross-sectional data and fitted 

with the best fit polynomial curve to capture non-linearity). The second and the third step 

replicate those used to calculate the global longitudinal phenotypic score.  

As to measurement of epigenetic age accelerations, we included 6 popular epigenetic age 

accelerations (Horvath’s clock – both intrinsic and epigenetic age acceleration, Hannum’s clock, 

Levine’s PhenoAge, Lu’s GrimAge, and Belsky’s PaceOfAging Estimation) (2-7). In BLSA, 

DNA methylation was assayed using DNA extracted from blood samples collected at visits 

between November 1993 and March 2010 (8). CpG methylation status of 485,577 CpG sites was 



determined using the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San 

Diego, CA) per the manufacturer's protocol. Data processing included NOOB and BMIQ 

normalization using R package “minfi” (9). Multi-dimension scaling-defined outliers, as well as 

sex and SNP discordant samples were excluded in quality control. Epigenetic ages were 

calculated using the Horvath online calculator (https://dnamage.genetics.ucla.edu/ ) or 

“projector” package (https://github.com/danbelsky/DunedinPoAm38 ). The following 

chronological age independent epigenetic measures were then derived: intrinsic and epigenetic 

age acceleration—“IEAA” & “EEAA”(10), Hannum age acceleration—

“AgeAccelerationResidualHannum”, PhenoAge acceleration—“AgeAccelPheno”, GrimAge 

acceleration—“AgeAccelGrim”, and methylation-based pace of aging estimation —

“ Dunedin_PoAm_38”.  

To estimate the relationship between aging summaries derived from cross-sectional data (global 

cross-sectional phenotypic score and epigenetic age acceleration measurements) and rate of 

functional decline and changes in multi-morbidities, we used linear mixed models with random 

intercepts and random slopes. This is the same approach as what described in ”Part 2-1: 

Examining the relationship between longitudinal phenotypic score(s) and functional 

outcomes (physical function/cognitive function/multi-morbidity)”, except that the 

longitudinal phenotypic scores are replaced by these aging summaries based on cross-sectional 

data. 

All the analysis was performed using R 3.6.2, Stata version 15.1 (StataCorp, College Station, 

Texas), and SAS 9.4. The point estimates and 95% confidence intervals of the associations are 

reported. Two-sided tests were used, and the displayed p-value was not adjusted for multiple 

comparisons.  

https://dnamage.genetics.ucla.edu/
https://github.com/danbelsky/DunedinPoAm38


 

Number of participants with repeated measurements and number of participants with rate of 

changes within 5SD for each phenotype 

Aging Phenotype 

Number of participants 

with repeated 

measurements 

Number of participants 

with repeated 

measurements (and the 

slope is within 5 SD) 

 
N N 

Body composition domain 
  

Waist (cm) 1212 1210 

Waist-height ratio  1212 1210 

Body mass index (kg/m2) 1256 1252 

Lean mass (kg) 1117 1116 

Appendicular lean mass (kg) 1117 1113 

Fat mass (kg) 1117 1116 

Mid-thigh area (mm2) 987 984 

Energetics Domain 
  

Resting metabolic rate (kcal/day) 926 926 

Peak VO2 (400m walk) (ml/kg/min) 836 835 

Peak VO2 (treadmill) (ml/kg/min) 836 832 

Cost-capacity ratio 755 755 

FEV1 (L) 955 952 

FVC (L) 955 952 

FEV1/FVC 955 949 

Homeostasis Domain 
  

Interleukin - 6 (pg/mL) 1277 1277 

C-Reactive Protein (mg/L) 1134 1134 

Albumin (g/dL) 1164 1163 

Hemoglobin (g/dL) 1201 1199 



Red blood cell distribution width (%) 1179 1177 

Absolute neutrophil count (cells/uL) 1200 1198 

Fasting glucose (mg/dL) 1084 1084 

Systolic blood pressure (mmHg) 1013 1012 

Diastolic blood pressure (mmHg) 1013 1009 

Pulse pressure (mmHg) 1013 1011 

Carotid-Femoral pulse wave velocity 

(m/s) 1022 1020 

Creatinine clearance 

(ml/min/1.73*m2) 1074 1074 

Total cholesterol (mg/dL) 1156 1156 

Low-density lipoproteins (mg/dL) 1156 1156 

High-density lipoproteins (mg/dL) 1155 1155 

Triglyceride (mg/dL) 1163 1163 

Neurodegeneration/Neuroplasticity 

domain 
  

Total brain volume (cm3) 572 572 

White matter (cm3) 572 570 

Grey matter (cm3) 572 571 

Ventricular volume (cm3) 572 572 

Fibular nerve conduction velocity 

(m/s) 966 965 

FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; VO2, oxygen 

consumption 
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Supplemental Figure 1. Follow-up structure of the 968 participants with global longitudinal phenotypic score 

 



Supplemental Figure 2. Rate of changes in 35 aging phenotypes among male participants 

  
Abbreviation: VO2 = oxygen uptake, FVC = forced vital capacity, FEV1 = forced expiratory volume in the first second, RBC = red blood cell 

  



Supplemental Figure 3. Rate of changes in 35 aging phenotypes among female participants 

 
Abbreviation: VO2 = oxygen uptake, FVC = forced vital capacity, FEV1 = forced expiratory volume in the first second, RBC = red blood cell 



Supplemental Figure 4. Domain-specific Longitudinal Phenotypic Scores  

 

The above figures show the distribution of domain-specific scores over baseline age. The colors are shown based on the values ("red" for >2.5, 

"pink" for 1.5 ~ 2.5, “orange” for 0.5 ~ 1.5, “green” for -0.5 ~ 0.5, “cyan” for -1.5 ~ -0.5, “blue” for -2.5 ~ -1.5, “purple” for < -2.5). 

  



Supplemental Figure 5. Global Longitudinal Phenotypic Score 

 

The above figures show the distribution of global longitudinal phenotypic scores over baseline age. Red dots are for women, and blue dots are for 

men. 

  

 

 



Supplemental Figure 6. Age Equivalence of One-Point Difference in Domain-specific Longitudinal Phenotypic Scores  

 



The above figures show the age equivalence of domain-specific longitudinal phenotypic scores. Age equivalence presented here is a scaled regression 

coefficient between the domain-specific longitudinal phenotypic score and rate of changes in functions, meaning to how many years older in 

chronological age is a point higher in the domain-specific longitudinal phenotypic score equivalent. Results are shown as point estimates with 95% 

confidence interval.  [Number of participants: n = 921 (DSST), n = 922 (memory), n = 929 (executive function), n = 929 (attention), n = 929 

(language), n = 919 (visual spatial ability), n = 968 (usual gait speed), n = 943 (time to finish 400m walk), n = 968 (HealthABC SPPB), n = 828 

(multi-morbidity index), also see Supplemental Table 1B for more details”.] 

 

Abbreviation: HealthABC = Health Aging, and Body Composition; SPPB = short physical performance battery   



Supplemental Figure 7. Predicted probability of death by global longitudinal phenotypic score from 60 years old. 

 

The survival curves are derived from the parametric survival models we fit for the population aged 60 and above. Because the oldest observed death 

is at age 104, the extrapolated part (above 104 years) is shown in dashed lines. 

  



Supplemental Figure 8. Age-stratified scatterplots for the relationship between global longitudinal phenotypic score and changes in physical 

functions.  

 

 

 



 

Higher global longitudinal phenotypic score indicates accelerated phenotypic aging trajectories. Higher annual decrease in gait speed and Health 

hABC SPPB scores, along with higher annual increase in the time to 400m walk indicate faster decline in physical function. The three-age groups are 

defined as following: young (<=50 years), middle (51-79 years), old (80+ years). To formally test the hypothesis that the relationship between global 

longitudinal phenotypic score and changes in physical functions increase with baseline age we tested three-way interactions, and they were all 

significant (p = 0.002 for usual gait speed, and p < 0.001 for both time to finish 400 m walk and HealthABC SPPB). Two-sided tests were used, and 

the displayed p-value was not adjusted for multiple comparisons. 

 

Abbreviation: Health ABC = Health Aging, and Body Composition; SPPB = short physical performance battery  

 

  



Supplemental Figure 9. Age-stratified scatterplots for the relationship between global longitudinal phenotypic score and changes in cognitive 

functions   

  

 

 

 



  

 

 

 



 

 

 



 

 

Higher global longitudinal phenotypic score indicates accelerated phenotypic aging trajectories. Higher annual decrease in Digital Symbol 

Substitution Test (DSST), and executive function, attention, memory, language, and visuospatial ability indicate faster decline in cognitive function. 

Memory score is constructed by the average of standardized immediate recall and long-delay free recall from California Verbal Learning. Language 

score is calculated as the average of standardized letter fluency and standardized category fluency. Attention score is calculated as the average of 

standardized log-transformed Trail Making Tests Part A and Digit Span Forward. Executive function is calculated as the average of the standardized 

log-transformed Trail Making Tests Part B and Digit Span Backward. Visuospatial ability is estimated by the standardized Cart Rotations test. The 

three-age groups are defined as following: young (50-65 years), middle (66-79 years), old (80+ years). To formally test the hypothesis that whether 

the relationship between global longitudinal phenotypic score and changes in cognitive functions increase with baseline age we tested the three-way 

interactions. The three-way interactions were significant for memory (p < 0.001) and attention (p = 0.001), but not significant for DSST (p = 0.472), 

executive function (p = 0.124), language (p = 0.162), and visuospatial ability (p=0.051). Two-sided tests were used, and the displayed p-value was 

not adjusted for multiple comparisons. 

 

  



Supplemental Figure 10. Age Equivalence of Epigenetic Age Acceleration 

 



The plot shows the estimated age-equivalence of one standard deviation difference in epigenetic age acceleration for different functional outcomes, 

including cognitive function, physical function, and multi-morbidities. Epigenetic age clocks considered include Hannum’s clock, Horvath’s clock, 

Levine’s methylation-based estimation of PhenoAge, Lu’s GrimAge, and Belsky’s methylation-based pace of aging estimator. Except for Belsky’s 

DunedinPOA_m_38, the epigenetic age accelerations were calculated based on the instruction on Horvath’s website 

(http://dnamage.genetics.ucla.edu/ ). Belsky’s pace of ageing was not designed to use “years” as unit and thus scaled at a unit of 1 standard deviation 

within analytic samples. Age equivalence presented here is a scaled regression coefficient between the epigenetic age acceleration and rate of 

changes in functions, meaning to how many years older in chronological age is one standard deviation higher in epigenetic age acceleration 

equivalent. Results are shown as point estimates with 95% confidence interval. [Number of participants: n = 489 (DSST), n = 487 (memory), n = 491 

(executive function), n = 491 (attention), n = 491 (language), n = 485 (visual spatial ability), n = 504 (usual gait speed), n = 487 (time to finish 400m 

walk), n = 504 (HealthABC SPPB), n = 447 (multi-morbidity index)] [Abbreviation: IEAA = intrinsic epigenetic age acceleration, EEAA = extrinsic 

epigenetic age acceleration, HealthABC = Health Aging, and Body Composition, SPPB = short physical performance battery] 

  

  

http://dnamage.genetics.ucla.edu/


Supplemental Figure 11. Pairwise Cross-sectional Correlation between the 35 phenotypes considered in our analysis 

 

 

  



Supplemental Figure 12. Pairwise Cross-sectional Correlation between functional outcomes 

 

 

 

Abbreviation: HealthABC PPB = Health Aging, and Body Composition short Physical Performance Battery 



############################################################ 

##### Complementary Codes 

##### Creating the global longitudinal phenotypic score 

############################################################ 

 

### Pre-requisit 

## Save the standardized slope difference for each phenotype 

## Tips: random slope can be extracted by `ranef` after 

## fitting the linear mixed model (with random intercept and slope) 

## using `lmer` (under package `lme4`) 

## standardization is conducted by  

## (1) minus the mean, and then (2) divided by standard deviation 

 

 

rm(list = ls()) 

library(dplyr) 

library(tidyverse) 

 

## Read in all the files 

# dir.out <- "D:/BLSA/data/slopeout" 

# each file is for one phenotype 

# with the information of `idno` and slope(`stdqqrslope_PHENONAME`) 

x <- list.files(dir.out) 

 

### Read in all the slope data data 

for(i in 1:length(x)){ 

  if(i==1){ 

    merge.all = read.csv(paste0(dir.out,x[i])) 

    merge.all$idno = as.integer(merge.all$idno) 



  }else{ 

    temp = read.csv(paste0(dir.out,x[i])) 

    temp$idno = as.integer(temp$idno) 

    merge.all = merge.all %>% 

      dplyr::full_join(.,temp,by = c("idno")) 

    merge.all$idno = as.integer(merge.all$idno) 

  } 

 

} 

 

# varlist 

bc.list = c("bmi","waist","waist_htcm", 

            "leanmass","alm","fatmass","thigh") 

 

ener.list = c("rmr_kcal","vo2kg_400","vo2_max", 

              "cost_ratio", 

              "fev1","fvc","fev1fvc") 

 

homo.list = c("il6raw","crpraw", 

              "albumin","hb","rdw","anc", 

              "glucose000_adjusted", 

              "sbp","dbp","pp","cfpwv", 

              "crcl_cor_use", 

              "tc","ldl","hdl","tg") 

 

neuro.list = c("tbcln","wmcln","gmcln","logvv", 

               "ncvpf") 

 

 



# Example of a selected list within a domain 

# Take neuroplasticity/neurodegeneration domain for example 

need.list.ex = c("idno", 

              paste0("stdqqrslope_",neuro.list)) 

 

merge.need.ex = merge.all[names(merge.all) %in% need.list.ex] 

 

 

# Creating a score 

# Take neuroplasticity/neurodegeneration domain for example 

merge.use.as.raw = merge.all %>%  

  dplyr::select(idno,starts_with("stdqqrslope")) 

 

# Assigning the score depending on the distance from population average 

# for each phenotype 

merge.use.as.v2 = merge.use.as.raw 

 

for(i in 2:ncol(merge.use.as.v2)){  

  # starting from 2 b/c first column is `idno` 

  merge.temp <- merge.use.as.raw[,i] 

  merge.temp[!is.na(merge.temp) & merge.temp <= -2.5 & merge.temp >= -5] <- -3 

  merge.temp[!is.na(merge.temp) & merge.temp <= -1.5 & merge.temp > -2.5] <- -2 

  merge.temp[!is.na(merge.temp) & merge.temp <= -0.5 & merge.temp > -1.5] <- -1 

  merge.temp[!is.na(merge.temp) & merge.temp < 0.5 & merge.temp > -0.5] <- 0 

  merge.temp[!is.na(merge.temp) & merge.temp < 1.5 & merge.temp >=  0.5] <- 1 

  merge.temp[!is.na(merge.temp) & merge.temp < 2.5 & merge.temp >=  1.5] <- 2 

  merge.temp[!is.na(merge.temp) & merge.temp <= 5 & merge.temp >=  2.5] <- 3 

  # In case you need to see how the process goes: 

  # table(merge.temp, useNA = "always") %>% print(.) 



  merge.use.as.v2[,i] <- merge.temp 

} 

 

# If you want a positive value means accelerated aging 

# then you want to compare the population trends and reverse if necessary 

# For example, albumin declines over time,  

# so if one experienced faster decline, 

# you need to flip the sign.  

# Here's an example how to flip the sign 

merge.use.as.v2$stdqqrslope_albumin = -merge.use.as.v2$stdqqrslope_albmin 

 

 

# After appropriate flip the sign 

# You can create domain-specific and global scores 

 

merge.use.as.v2$score.temp <- NA 

merge.use.as.v2$score.b <- NA 

merge.use.as.v2$score.n <- NA 

merge.use.as.v2$score.e <- NA 

merge.use.as.v2$score.h <- NA 

 

# Now we'll use the var list that we listed in the beginning 

# bc.list;neuro.list;ener.list;homo.list 

 

for(i in 1:nrow(merge.use.as.v2)){ 

   

  # Look at each participant 

  score.i <- merge.use.as.v2[i,] 

   



  # select domain-specific phenotpyes 

  score.i.b <- score.i[names(score.i) %in% paste0("stdqqrslope_",bc.list)] 

  score.i.n <- score.i[names(score.i) %in% paste0("stdqqrslope_",neuro.list)] 

  score.i.e <- score.i[names(score.i) %in% paste0("stdqqrslope_",ener.list)] 

  score.i.h <- score.i[names(score.i) %in% paste0("stdqqrslope_",homo.list)] 

 

  temp.x.b <- t(as.vector(score.i.b)) 

  temp.x.n <- t(as.vector(score.i.n)) 

  temp.x.e <- t(as.vector(score.i.e)) 

  temp.x.h <- t(as.vector(score.i.h)) 

   

  # Use all available phenotypes to create the domain-specific scores 

  mean.score.i.b <- mean(temp.x.b, na.rm = TRUE) 

  mean.score.i.n <- mean(temp.x.n, na.rm = TRUE) 

  mean.score.i.e <- mean(temp.x.e, na.rm = TRUE) 

  mean.score.i.h <- mean(temp.x.h, na.rm = TRUE) 

   

  # Note:  

  # missing domain-available score is allowed in this temp step 

  # We will restrict to those with all four domain-available later on 

  mean.score.i.a <- mean(c(mean.score.i.b,mean.score.i.n, 

                           mean.score.i.e,mean.score.i.h), 

                         na.rm = TRUE) 

   

  merge.use.as.v2$score.b[i] <- mean.score.i.b 

  merge.use.as.v2$score.n[i] <- mean.score.i.n 

  merge.use.as.v2$score.e[i] <- mean.score.i.e 

  merge.use.as.v2$score.h[i] <- mean.score.i.h 

  merge.use.as.v2$score.temp[i] <- mean.score.i.a ## across domains  



} 

 

 

temp <- merge.use.as.v2 %>% 

  dplyr::rename(acchigh_score.temp = score.temp,  

                # higher value is accelerated aging 

                acchigh_score.b = score.b, 

                acchigh_score.e = score.e, 

                acchigh_score.h = score.h, 

                acchigh_score.n = score.n) 

 

# Do quantile normalization for each domain 

# This is important because number of phenotpyes vary across domain! 

# This step can put them on the same scale 

 

temp$acchigh_qq.b <- NA; 

temp$acchigh_qq.b[!is.na(temp$acchigh_score.b)] <- 

qqnorm(temp$acchigh_score.b[!is.na(temp$acchigh_score.b)])$x 

 

temp$acchigh_qq.e <- NA; 

temp$acchigh_qq.e[!is.na(temp$acchigh_score.e)] <- 

qqnorm(temp$acchigh_score.e[!is.na(temp$acchigh_score.e)])$x 

 

temp$acchigh_qq.h <- NA; 

temp$acchigh_qq.h[!is.na(temp$acchigh_score.h)] <- 

qqnorm(temp$acchigh_score.h[!is.na(temp$acchigh_score.h)])$x 

 

temp$acchigh_qq.n <- NA; 

temp$acchigh_qq.n[!is.na(temp$acchigh_score.n)] <- 

qqnorm(temp$acchigh_score.n[!is.na(temp$acchigh_score.n)])$x 



 

# `temp.out` and `simple.out` are what we need 

temp.out = temp %>%  

  mutate(acchigh_score.qq = rowMeans(select(., starts_with("acchigh_qq.")), 

                                    na.rm = FALSE),  

         # Note: 'na.rm = FALSE' here 

         # This will make those without all 4 domain-specific scores 

         # become NA. 

         # `acclow_score.qq` is simply flipping the sign 

         # so that lower score means accelerated aging 

         # People have different feelings about it,  

         # and you can make your own decision. 

         acclow_score.qq = -acchigh_score.qq)  

 

 

simple.out = temp.out %>% 

  # Now, we keep only those with four domain-specific scores available 

  # into our final analytic dataset 

  # We integetrate the scheme of four phenotypic domains and  

  # all the available longitudinal trajectories.  

  # Note that we do pay some price here. 

  # We give all the phenotypes equal weights within domain,  

  # and we give all four domains equal weights for the construction  

  # of final score. We also have some Bayesian mindset with  

  # the prior that some unmeasured phenotypes can be presented by  

  # other measured phenotypes for the construction  

  # of domain-specific score.  

  dplyr::filter(!is.na(acchigh_score.qq)) %>% 

  dplyr::select(idno,starts_with("acc")) 



 

# You can save the scores and do more aging research. 

write.csv(simple.out, PATH) 
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