nature metabolism

Article

https://doi.org/10.1038/s42255-023-00803-0

SIRT2 regulates extracellular vesiclemediated liver-bone communication

In the format provided by the authors and unedited

Figure.1a Western blot analysis of SIRT2 protein expression in primary hepatocytes of aged female and male mice

Figure.1c IHC images of SIRT2 protein expression in liver tissues from young and aged mice

Figure.1e

Figure.1e

Figure.1g

Figure.1g

Figure.1kTRAP staining on paraffin-embedded femur sections in aged mice

Figure.1mTRAP staining on paraffin-embedded femur sections in aged mice

Figure.2a TRAP staining images of osteoclasts administered with the plasma of aged mice

Figure.2e TRAP staining images of osteoclasts treated with the sEVs derived from LoxP or SIRT2-KOhep plasma

Figure.2i TRAP staining of osteoclasts treated with sEVs derived from the medium of the primary hepatocytes of aged female mice

Figure.2I TRAP staining of osteoclasts treated with sEVs derived from the medium of the primary hepatocytes of aged male mice

Figure.3e immunofluorescence images of murine femurs in aged mice

Figure.3e immunofluorescence images of murine femurs in aged mice

Figure.3g immunofluorescence images of murine femurs in aged mice

Figure.3g immunofluorescence images of murine femurs in aged mice

sham Loxp-ctrl

sham SIRT2-KO^{hep}-ctrl

OVX Loxp-ctrl

OVX SIRT2-KO^{hep}-ctrl

OVX SIRT2-KO^{hep}-shLRG1

Figure.4b TRAP staining of osteoclasts treated with sEVs from AML-12 cells

sham NC-sEVs

OVX NC-sEVs

OVX shSIRT2-sEVs

OVX shSIRT2-shLRG1-sEVs

OVX LRG1-sEVs

Figure.4k TRAP staining on paraffin-embedded femur sections in each group after corresponding sEVs treatment

Figure.4k TRAP staining on paraffin-embedded femur sections in each group after corresponding sEVs treatment

dan.

Figure.4k TRAP staining on paraffin-embedded femur sections in each group after corresponding sEVs treatment

Figure. 5c

Figure. 5f

Figure.5d Immunofluorescence analysis of p65 (red) location in RANKL-induced BMDMs treated with LRG1-GFP-sEVs

CTRL

Figure.5d

RANKL

Figure.5d

RANKL+GPF-LRG1-sEVs

Figure.5g immunofluorescence images of primary BMDMs isolated from aged mice

Aged female mice SIRT2-KOhep

 Figure.5i
 immunofluorescence images of primary BMDMs isolated from aged mice

 Aged male mice Loxp
 Aged

Aged male mice SIRT2-KOhep

Figure.5k TRAP staining of osteoclasts treated with LRG1-sEVs and the inhibitors of p65 nuclear translocation

Figure.5n TRAP staining of RAW264.7 cells overexpressed p65 and treated with LRG1-sEVs

Figure.6b

55kDa—	LRG1
40kDa—	– – – – – β-actin
55kDa—	LRG1
40kDa—	***** **** **** ***** ***** ***** TSG101

Figure.6c

sham

OVX

Figure.6c

OVX+AGK2

Figure.6e

OVX+Loxp

Figure.6e

OVX+SIRT2-KOhep

Figure.6e

OVX+SIRT2-Kohep+AGK2

Figure.7b TRAP staining images of human PBMCs cultured with RANKL and sEVs

Figure.7f TRAP staining images of human PBMCs cultured with RANKL and sEVs

Figure71IHC images of SIRT2 expression levels in human liver tissues

Figure71IHC images of SIRT2 expression levels in human liver tissues

Figure71IHC images of SIRT2 expression levels in human liver tissues

Figure.7nwestern blot analysis of the protein expression of plasma-sEVs-LRG1 from patients

Young female mice

Extended Data Fig.1e

Young male mice-Loxp

Extended Data Fig.1e

Young male mice-SIRT2-KO^{hep}

Extended Data Fig.1i H&E staining on paraffin-embedded femur sections in aged mice

Extended Data Fig.1m

Extended data fig.2a

ALP and ARS staining after osteogenesis from BM-MSCs treated with plasma

PBS

Extended data Fig.4a TRAP staining images of osteoclasts treated with the sEVs derived from AML12 hepatocytes

Extended Data Fig.6a TRAP staining on paraffin-embedded femur sections in young mice

Extended Data Fig.6c immunofluorescence images of murine femurs in young mice

Extended Data Fig.6c immunofluorescence images of murine femurs in young mice

Extended Data Fig.7d IHC detection of CD31 in the paraffin-embedded bone section of distal femur of aged mice

Extended data fig.8a

TRAP staining images of BMDMs treated with RANKL and AGK2

Extended data fig.9e

aged female mice loxp

Extended data fig.9e

aged female mice SIRT2-KO^{lyz}

Extended data fig.9g

aged male mice loxp

Extended data fig.9g

aged male mice SIRT2-KOlyz

Extended data fig.9i

OVX loxp

OVX SIRT2-KOlyz

Extended data fig.9k BMDMs were isolated from LoxP and SIRT2-KOlyz mice and cultured with RANKL to generate osteoclasts.

Extended data fig.9n BMDMs were isolated from LoxP and SIRT2-KOlyz mice and cultured with RANKL to generate osteoclasts.

Extended data fig.10

TRAP staining images of human PBMCs cultured with RANKL and sEVs from HepG2 cells treated with control or AGK2

