Supplementary Online Content

Yang S, Gill PJ, Anwar MR, et al; Canadian Paediatric Inpatient Research Network (PIRN). Kidney ultrasonography after first febrile urinary tract infection in children: a systematic review and metaanalysis. *JAMA Pediatr*. Published online May 30, 2023. doi:10.1001/jamapediatrics.2023.1387

eMethods. Search Strategy

eTable 1. Definition of Clinically Important Abnormalities on Ultrasound Reported in Studies

eTable 2. Study Quality Assessment Tool and Response Explanation

eTable 3. Quality Assessment of Studies

eTable 4. Additional Study Characteristics

eTable 5. Kidney Ultrasound Reporting in Studies

eResults. Sensitivity Analyses for Outcome of Urinary Tract Abnormalities

eTable 6. Prevalence of Specific Abnormalities Detected on Kidney Ultrasound After First Episode Febrile Urinary Tract Infection

eFigure 1. Pooled Prevalence of Urinary Tract Abnormalities Detected on Kidney Ultrasound After First Febrile Urinary Tract Infection in Children, Subgroup Analyses

eFigure 2. Pooled Prevalence of Specific Abnormalities Detected on Kidney Ultrasound After First Febrile Urinary Tract Infection in Children

eFigure 3. Pooled Prevalence of Surgical Intervention of the Urinary Tract

This supplementary material has been provided by the authors to give readers additional information about their work.

33	eMethods
34	
35	Search Strategy
36	estation strategy
30 37 38	Appendix 1. Search Strategy
39	MEDLINE (Ovid)
40	1. exp Urinary Tract Infections/
41	2. (urinary tract infection? or UTI or UTIs).tw,kf.
42	3. or/1-2
42	
	4. infant/ or exp infant, newborn/
44	5. Child, Preschool/
45	6. (babies or baby or infan* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or
46	peadiatric* or pediatric* or toddler?).tw,kf.
47	7. (pediatric* or paediatric* or infan* or child*).jn,jw. or (pediatric* or paediatric* or infan* or child*).in.
48	8. or/4-7
49	9. exp Ultrasonography/
50	10. (renal adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or
51	ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or
52	ultrasound?)).tw,kf.
53	11. (kidney? adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or
54	ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or
55	ultrasound?)).tw,kf.
56	12. RBUS.tw,kf.
57	13. or/9-12
58	14. 3 and 8 and 13
59	15. Animals/ not (Animals/ and Humans/)
60	16. 14 not 15
61	17. limit 16 to yr="2000 -Current"
62	
63	EMBASE (Ovid)
64	1. exp urinary tract infection/
65	2. (urinary tract infection? or UTI or UTIs).tw,kw.
66	3. or/1-2
67	4. exp infant/
68	5. preschool child/
69	6. (babies or baby or infan* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or
70	peadiatric* or pediatric* or toddler?).tw,kw.
71	7. (pediatric* or paediatric* or infan* or child*).jn,jw. or (pediatric* or paediatric* or infan* or child*).in.
72	8. or/4-7
73	9. ultrasound/
74	10. (renal adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or
75	ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or
76	ultrasound?)).tw,kw.
77	11. (kidney? adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or
78	ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or
79	ultrasound?)).tw,kw.
80	12. RBUS.tw,kw.
81	13. or/9-12
82	14. 3 and 8 and 13
83	15. Animal experiment/ not (human experiment/ or human/)
84	16. (rat or rats or mouse or mice or swine or porcine or murine or sheep or lambs or pigs or piglets or
85	rabbit or rabbits or cat or cats or dog or dogs or cattle or bovine or monkey or monkeys or trout or
86	marmoset\$1).ti. and animal experiment/
87	17. or/15-16

- 88 18. 14 not 17 89 19. limit 18 to yr="2000 -Current" 90 91 Cochrane Central Register of Controlled Trials (Ovid) 92 1. exp Urinary Tract Infections/ 93 (urinary tract infection? or UTI or UTIs).tw,kw. 94 3. or/1-2 95 4. infant/ or exp infant, newborn/ 96 5. child, preschool/ 97 6. (babies or baby or infan* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or 98 peadiatric* or pediatric* or toddler?).tw,kw. 99 7. (pediatric* or paediatric* or infan* or child*).in.jw. or (pediatric* or paediatric* or infan* or child*).in. 100 8. or/4-7 101 9. exp ultrasonography/ 102 10. (renal adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or 103 ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or 104 ultrasound?)).tw.kw. 105 11. (kidney? adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or 106 ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or 107 ultrasound?)).tw,kw. 108 12. RBUS.tw,kw. 109 13. or/9-12 110 14. 3 and 8 and 13 111 15. Animals/ not (Animals/ and Humans/) 112 16. 14 not 15 113 17. limit 16 to yr="2000 -Current" 114 115 PsycINFO (Ovid) 116 1. (urinary tract infection? or UTI or UTIs).tw. 117 2. (babies or baby or infan* or neonat* or neo-nat* or newborn* or new-born* or paediatric* or 118 peadiatric* or pediatric* or toddler?).mp. 119 3. ultrasound/ 120 4. (renal adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or 121 ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or 122 ultrasound?)).tw. 123 5. (kidney? adj5 (echograph* or echotomograph* or medical sonograph* or ultrasonic diagnos* or 124 ultrasonic imag* or ultrasonic tomograph* or ultrasonographic imag* or ultrasonograph* or 125 ultrasound?)).tw. 126 6. RBUS.tw. 127 7. or/3-6 128 8. 1 and 2 and 7 129 9. limit 8 to yr="2000 -Current" 130 131 **CINAHL Plus (EBSCO)** 132 1. (MH "Urinary Tract Infections+") 133 2. TI (("urinary tract infection#" or UTI or UTIs)) OR AB (("urinary tract infection#" or UTI or UTIs)) 134 3. S1 OR S2 135 4. (MH "Infant+") OR (MH "Infant, Newborn+") OR (MH "Child, Preschool") 136 5. TI (babies or baby or infan* or neonat* or "neo-nat*" or newborn* or new-born* or paediatric* or 137 peadiatric* or pediatric* or toddler#) OR AB (babies or baby or infan* or neonat* or "neo-nat*" or 138 newborn* or new-born* or paediatric* or peadiatric* or pediatric* or toddler#) 139 6. S4 OR S5 140 7. (MH "Ultrasonography+") 141
- 141
 142
 142
 143
 8. TI (renal N5 (echograph* or echotomograph* or "medical sonograph*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonographic imag*" or ultrasonograph* or ultrasonograph* or ultrasonograph* or "medical sonograph*" or "ultrasonic diagnos*" or ultrasonograph* or "ultrasonograph* or "ultrasonograph* or "medical sonograph*" or "ultrasonograph* or "ultrasonograph* or "medical sonograph*" or "ultrasonograph*" or "ultrasonograph* or "medical sonograph* or "medical sonograph* or "medical sonograph*" or "ultrasonograph* or "medical sonograph* or "medical sonograph*" or "medical so

- "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonographic imag*"
 or ultrasonograph* or ultrasound#))
- 9. TI (kidney# N5 (echograph* or echotomograph* or "medical sonograph*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonographic imag*" or ultrasonograph* or ultrasonograph* or ultrasonograph* or "ultrasonic diagnos*" or "ultrasonic diagnos*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic imag*" or "ultrasonic diagnos*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic imag*" or "ultrasonic imag*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic imag*" or "ultrasonic imag*" or "ultrasonic diagnos*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonographic imag*" or "ultrasonograph*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonograph*" or "ultrasonograph*" or "ultrasonic imag*" or "ultrasonic tomograph*" or "ultrasonograph*" or "ultrasono
- 151 10. TI RBUS OR AB RBUS
- 152 11. S7 OR S8 OR S9 OR S10
- 153 12. S3 AND S6 AND S11
- 154 13. (MH "Animals")
- 155 14. (MH "Animals") AND (MH "Human")
- 156 15. \$13 NOT S14
- 157 16. S12 NOT S15 158 17. Limiters - Publ
 - 17. Limiters Published Date: 20000101-20211231
- 160 ClinicalTrials.gov (NIH)
- 161 Ultrasonography | UTI | Child
- Urinary tract infection and Ultrasound
- Filters: Child (birth-17)
- 164

eTable 1. Definitions of clinically important abnormalities on kidney ultrasound reported in studies

Study	Clinically important abnormality definition described in study
Hoberman 2003*	Treatment was altered by the identification of abnormalities on renal ultrasound.
Hung 2016	Significant urologic abnormalities were defined as those that impacted on subsequent management with a change of therapy, investigations, or follow-up (e.g., surgical intervention, parental counseling, and need for follow-up of renal function) based on initial renal ultrasound findings. Parental counseling was defined as specified for children with hypoplastic kidney, solitary kidney, and multicystic dysplastic kidney, which needed long term follow-up of renal function and growth of the kidneys, and counseling for avoidance of potential nephrotoxic agents or factors. Significant urologic abnormalities included ureteropelvic junction obstruction, ureterovesical junction obstruction, hypoplastic kidney, duplex kidney, ureterocele, solitary kidney, and cystic kidney disease that were usually not visualized by voiding cystourethrography examination.
Jahnukainen 2006	Ultrasound findings that alone led to change in patient management.
Miron 2007*	Anomaly that affected management of patient.
Montini 2009*	Clinical management influenced by renal ultrasound results.
Wallace 2020	Abnormal renal ultrasounds were categorized into 3 categories based on the severity of findings. Abnormal findings were categorized into threshold A (mild abnormalities that could be incidental findings), B (moderate abnormalities that could lead to medical interventions, testing, or consultation), C (most severe, requiring close subspecialty follow-up and possible surgical intervention). The study provides further detail on which findings are classified as A, B, or C.
Wong 2010	Renal ultrasound detection of remediable abnormalities that require a change in management. Remediable urological abnormalities were arbitrarily defined as those abnormalities requiring surgical or medical intervention in addition to regular follow-up monitoring for urinary tract infection recurrence.
Zamir 2003 Descriptions include text fr	Impact on management was defined as a change of therapy, investigations, or follow up based on renal ultrasound results, that would not have been done otherwise.

170 171

Descriptions include text from primary studies *Description of clinically important abnormality reported in the study results and not methods

174 eTable 2. Study Quality Assessment Tool and Response Explanation

Criteria	Response Explanation (Responses: Yes, No, Unclear, Not Applicable)
a. Was the sample representative of the	Yes: Study focused on children with first febrile UTI, ages 0 to
target population?	24 months
	No: Study included children older than 24 months of age
b. Were study participants recruited in an	Yes if: planned recruitment of consecutive patients, all during
appropriate and clear way?	a specified time period
	No if: planned recruitment of non-consecutive patients, and/or
	recruitment of patients based on the performance of other
	imaging tests (e.g. only inclusion of children with ultrasound
	plus DMSA, VCUG)
c. Were the study subjects and the	Yes if: described in sufficient detail, including whether children
setting described in detail?	were hospitalized or not
0	No if: no description
d. Were objective, standard criteria	Yes if: provided criteria
described for the diagnosis of UTI?	No: did not provide criteria
e. Were standard criteria described for	Yes if: defined US abnormalities in methods
abnormalities on US?	No if: did not define US abnormalities
f: Was the condition measured reliably?	Yes if: description of how US was conducted
	Unclear if: no or unclear reporting of US methods
g: Was there appropriate statistical	Yes if: statistical analysis reported with 95% CI for US
analysis?	abnormalities prevalence
	No if: statistical analysis not reported for prevalence of US
	abnormalities with 95% CI
h: Was the sample size adequate?	Yes if: planned sample size was reported and justified for
	outcome of prevalence of US abnormalities
	No: if planned sample size was not met
	Unclear if: sample size not justified
i: Was the data analysis conducted with	Yes if: few withdrawals and/or missing data on ultrasound
sufficient coverage of the identified	abnormality outcome that are explained
sample?	No if: too many withdrawals and/or missing data on
•	ultrasound abnormality outcome or unexplained
j: Are all important confounding	Yes: authors identified and reported results for
factors/subgroups/differences identified	factors/subgroups (e.g. age, sex) that might be associated
and accounted for?	with ultrasound abnormalities
	No: no factors/subgroups identified or reported with respect to
	ultrasound abnormalities
k: Were subpopulations identified using	Yes: authors used objective criteria for defining
objective criteria?	subpopulations for US prevalence outcome
-	No: authors did not use objective criteria for defining
	subpopulations for US prevalence
	Not applicable: if no subgroups were identified and accounted

Quality assessment used adapted Joanna Briggs Institute Prevalence Critical Appraisal Tool

181 eTable 3. Quality Assessment of Studies

182

	Criteria										
Study	а	b	С	d	е	f	g	h	i	j	k
Arlen 2014	1	1	1	1	1	U	0	U	0	0	NA
Breinbjerg 2021	0	0	1	1	1	U	0	U	1	1	1
Cheng 2011	0	0	1	1	0	U	0	U	1	0	NA
Han 2016	0	0	1	1	0	U	0	U	1	0	NA
Harper 2016	1	1	0	1	1	U	0	U	1	0	NA
Hoberman 2003	1	1	1	1	1	U	0	U	1	0	NA
Hsu 2016	1	1	1	1	1	U	0	U	1	1	1
Huang 2008	0	1	1	1	0	1	0	U	1	0	NA
Hung 2016	1	1	1	1	1	1	0	U	1	0	NA
Ipek 2012	0	U	1	1	0	U	0	U	1	0	NA
Ismaili 2011	0	1	1	1	1	1	0	U	1	0	NA
Jahnukainen 2006	0	1	1	1	1	1	0	U	1	0	NA
Kawai 2019	1	0	1	1	1	U	0	U	1	0	NA
Kobayashi 2019	1	1	1	1	1	1	0	U	1	0	NA
Lee 2009	1	0	1	1	1	1	0	U	1	0	NA
Lertdumrongluk 2021	0	0	1	1	1	1	0	U	1	0	NA
Lytzen 2011	0	1	1	1	0	U	0	U	1	1	1
Miron 2007	1	1	0	0	1	U	0	U	1	0	NA
Montini 2009	1	1	1	1	1	1	0	U	1	0	NA
Pauchard 2017	1	1	1	1	1	1	0	U	1	0	NA
Pennesi 2012	0	1	1	1	1	U	0	U	1	0	NA
Pennesi 2021	0	0	1	1	1	U	0	U	1	1	1
Sasaki 2012	1	1	1	0	0	U	0	U	1	0	NA
Soccorso 2010	1	1	1	1	1	U	0	U	1	0	NA
Wallace 2020	1	1	1	1	1	U	0	1	1	1	1
Wongbencharat 2016	1	0	1	1	1	1	0	U	1	1	1
Wong 2010	1	1	1	1	_1	U	0	U	1	0	NA
Yilmaz 2016	0	1	0	1	1	U	0	U	1	1	1
Zamir 2004	0	1	1	1	1	1	0	1	1	0	NA

1 refers to Yes for criteria; 0 refers to No for criteria; U refers to Unclear; NA refers to Not Applicable

For criteria items a to k, refer to eTable 2 for criteria and explanation.

183 184 185 Quality assessment used adapted Joanna Briggs Institute Prevalence Critical Appraisal Tool

186

188 189 eTable 4 Additional Study Characteristics

Author and publicatio n year	<i>E.coli</i> UTI, No. (%)	Renal US timing	Surgical Outcome Description in Methods	Surgical Outcome Follow- up Period	UTI definition as described in study methods
Arlen 2014	313 (89)	NR	NR	NA	Positive urine culture defined as a single organism of greater than 50,000 CFU obtained by catheterization.
Breinbjerg 2021	376 (89)	Within 6 weeks	Surgical correction of VUR or anatomic anomalies were noted.	NR	Any growth of a known uropathogen in urine on suprapubic bladder aspiration, growth of $\ge 10^4$ CFU/ml in two consecutive clean catch midstream urine sample, or $\ge 10^3$ CFU/ml if sampling by catheterization, were considered positive. Children with bag-collected urine samples were excluded.
Cheng 2011	NR	1 st or 2 nd day of hospitalizatio n	NR	NA	UTI was diagnosed in the setting of a minimum of 10 ⁵ CFU pathogen per ml in freshly voided mid stream urine or urine collected from a urinary bag, or more than 10 ⁴ CFU bacteria per ml in catheterized urine, or any bacteria isolated from the urine of suprapubic aspirations.
Han 2016	NR	Within first 5 days of admission	NR	NA	Pyuria (≥5 WBCs per high-power field) and a positive urine culture collected from a clean-catch or catheterized specimen (defined as growth of a single organism to ≥100,000 CFU/ mL),
Harper 2016	293 (92)	Within 1 week of first episode	NR	NA	Positive urinalysis and urine culture results (>10 ⁵ CFU/ml urine), with urine specimens collected through catheterization in girls and clean-catch in boys.
Hoberman 2003	298 (96)	Within 48 hrs of diagnosis	NR (Outcome reported in results and discussion)	6 months	The presence of pyuria (10 or more WBC/mm ³ in uncentrifuged urine) and bacteriuria (1 or more gram-negative rods per 10 oil-immersion fields in a Gram's stained smear of uncentrifuged urine). Inclusion in the final study group required a positive urine culture (at least 50,000 CFU per mL, representing a single pathogen) from a specimen obtained by catheter.
Hsu 2016	336 (86)	Within first 3 days of admission	NR	NR	Presence of pyuria [defined as ≥5 WBC per high power field] and/or abnormal dipstick urinalysis (a positive nitrite or leukocyte esterase test); a positive urine culture, defined as any growth of a single bacterium in urine from a suprapubic bladder aspiration, ≥5×10 ⁴ CFU/mL collected from a transurethral catheterized specimen, or growth of a single microorganism ≥10 ⁵ CFU/mL collected from the midstream clean-void urine specimen.
Huang 2008	NR	US was performed once UTI	NR	NA	UTI was defined as a positive urine monoculture, greater than 10 ³ colony-forming units/mL in urine collected by suprapubic puncture or greater than 10 ⁵ colony-forming units/mL in urine collected either in

© 2023 American Medical Association. All rights reserved.

		was suspected			sterile bags or by midstream clean-voided sample.
Hung 2016	263 (85)	Within first 2 days of admission	NR	NR	Pyuria (≥5 WBC per high-power field) and/or positive nitrite or leukocyte esterase tests, and presence of positive urine culture, defined as any growth of a single bacterium in urine from a suprapubic bladder aspiration, or growth of a single microorganism from 10 ⁵ colony forming units/mL collected from the midstream clean-void urine specimen of toilet-trained young children, or 10 ⁴ CFU/mL collected from a transurethral catheterized specimen.
lpek 2012	53 (80)	Within 48rs after confirmation of UTI by urine culture findings	NR	NR	A positive urine culture with a single microorganism. Urine samples were obtained by suprapubic aspiration or transurethral catheterization in nontoilet-trained children and midstream clean-catch in toilet-trained children. Pyuria was defined as the presence of 5 leukocytes per a 40 objective high power field of urine. The diagnosis of UTI according to a positive urine culture was defined as any growth of a single bacterial pathogen from suprapubic aspiration, $\geq 10^5$ CFU/mL for midstream urine or $\geq 5 \times 10^4$ colony-forming units/mL of urine for transurethral catheterization.
Ismaili 2011	189 (91)	Within 48hrs	NR	NR	Positive urinalysis defined as a trace or greater result for leukocyte esterase and/or nitrite on dipstick or as the presence of 35 leukocytes/L of un centrifuged urine. UTI was confirmed in those children having growth of 100,000 CFU per milliliter in urine culture. In urine samples obtained by suprapubic aspiration, any growth of enteric Gram-negative pathogens was considered significant. All urine samples from children younger than 24 months were obtained by suprapubic aspiration or a single bladder catheterization. Urine samples from older children were obtained by clean catch or bladder single catheterization.
Jahnukaine n 2006	141 (91)	Within 3 days	Surgical intervention	NR	UTI was diagnosed by culturing urine specimens collected by suprapubic aspiration or two urinary bag specimens in children under 2 years of age and by midstream sample in older children. Single pathogen bacterial growth of 100,000 CFU/ml or more in two bag samples or in midstream specimen was considered significant. Any bacterial growth in urine obtained by subrapubic aspiration was considered significant.
Kawai 2019	54 (73)	≤ 1 month after_fUTI onset	NR (Outcome reported in results.)	NR	Positive pyuria on urinalysis and a single organism ≥1 x 10 ⁵ /mL was isolated on urine culture from a catheterized urinary sample.
Kobayashi 2019	214 (93)	≤1 month after	NR	NA	Single uropathogen isolated from a specimen taken by urethral catheterization; and positive urinalysis (WBC≥5 per high-power field,

		diagnosis			positive leukocyte esterase test, positive nitrite test, or microscopy identification of bacteria); Lactobacillus spp., Corynebacterium spp., a- hemolytic streptococci and coagulase-negative staphylococci were considered contaminants.
Lee 2009	NR	Within 3 days after admission	NR (Outcome reported in results)	NR	Positive results on a urine culture was defined as any growth of bacteria in urine from a suprapubic bladder aspiration or 10,000 CFU per mL in a catheterized specimen.
Lertdumron gluk 2021	214 (82)	NR	NR	NA	Pyuria (≥5 WBCs per high power field of centrifuged urine), and presence of positive urine culture (defined as ≥10 ⁵ CFU/mL of a single bacterial growth collected midstream in toilet-trained children or ≥10 ⁴ CFU/mL collected by urethral catheterization in uncontrolled toilet- trained children).
Lytzen 2011	87 (90)	During initial hospitalizatio n	NR (Outcome Reported in results)	Median 5.2 years (range 3.5 to 8.6 years)	Positive results for a urine culture were defined as any growth of bacteria in urine from a suprapubic bladder aspiration or more than 100,000 CFU per ml in 2 or eventually in 1 midstream urine sample.
Miron 2007	NR	Within 6 weeks of discharge	NR (Outcome reported in results)	NR	NR
Montini 2009ª	NR	No later than 10 days after commencem ent of antibiotic therapy	NR (Outcome reported in results)	12 months	Urinalysis of an uncentrifuged specimen (2 concordant consecutive tests) yielding a white blood cell count of 25 cells per L (1 with a dipstick) and urine culture (with urine collected by using sterile bags that were changed every 20 –30 minutes; 2 concordant consecutive tests were required) yielding growth of only 1 microorganism at 100 000 CFU per mL.
Pauchard 2017	96 (72)	Within 6 days from admission	NR (Outcome reported in results)	24 months.	Positive urine culture was defined as a growth of a single microorganism ≥10 ⁵ CFU per mL with bladder catheterization, or any growth by suprapubic puncture.
Pennesi 2012	366 (90)	1 month after the UTI	NR	NA	Positive urinalysis (presence of leukocytes≥ 50/mm3 and bacteria ≥10/mm ³ at optical microscopy), and urine culture (1 million CFU/mL) for the same bacterium in two different samples. Urine for urinalysis and urine culture was collected using clean catch or bladder catheterization.
Pennesi 2021	223 (84)	NR	NR	NA	Urine samples were collected by clean voided urine or by bladder catheterization if clean catch was not possible. In febrile children in poor general clinical condition, urine samples were collected by transurethral bladder catheterization or suprapubic aspiration.

Sasaki 2012	NR	NR	NR	NA	NR
Soccorso 2010	286 (67)	During admission	NR (Outcome reported in results)	NR	Culture-proven pure growth of an organism (>10 ⁵ colony-forming units/high-power field) from an appropriately collected urine sample. The sample was collected as a clean-catch midstream urine sample. Where this was not possible, a suprapubic aspirate was obtained.
Wallace 2020	180 (85)	During admission	Surgical interventions	6 weeks	Urine specimens by either catheterization or suprapubic aspiration. For children 2 to 24 months of age, UTI was defined as 50,000 CFU of bacteria plus urinalysis with pyuria. Pyuria was defined as either a positive leukocyte esterase result and/or 5 WBC per high-power field. For infants, 2 months of age, infants could either have 50,000 CFUs of bacteria on urine culture regardless of the urinalysis result or 10,000 CFUs of bacteria with pyuria on urinalysis.
Wongbenc harat 2016	NR	Within 2 weeks after UTI was diagnosed	NR	NA	Both pyuria (>5 white blood cells/HPF) and positive urine culture (>10 ³ CFU/mL of a single uropathogenic organism on bladder catheterization)
Wong 2010	689 (84)	As soon as possible	NR (Outcome reported in results)		Positive urinalysis (including dipstick for leucocyte esterase and nitrite and/or microscopy for leucocytes and bacteria) and significant urine culture of a properly collected urine sample.
Yilmaz 2016	268 (89)	Within 10 days of commencem ent of antibiotic therapy	NR	NA	A positive urine culture of a single microorganism, and a colony count higher than 10 ⁵ CFU/ml. Urinary samples were obtained with the midstream clean-catch method in toilet-trained children and with a catheter in non-toilet-trained patients. A cut-off level of 50,000 CFU/ml was used in the latter group.
Zamir 2004	229 (85)	During hospitalizatio n	NR	NA	Positive urine culture, growth of >100 bacteria/ml in a midstream sample or any growth in suprapubic bladder aspiration or in/out bladder catheterization.

¹⁹⁰ 191 192 193

NR, not reporter; NA, not applicable.

²¹ CFU refers to colony forming units ^aExtracted data from related clinical trial.

eTable 5. Kidney Ultrasound Reporting in Studies

Study	Definition of Abnormal Renal Ultrasound	Grading of Hydronephrosis	Radiologist review of US	Details on US review process
Arlen 2014	Any degree of calyceal or ureteral dilatation, parenchymal echogenicity or scarring, renal atrophy, alterations in corticomedullary-differentiation or urothelial thickening.	SFU	NR	NR
Breinbjerg 2021	The findings of kidney US were noted. Hydronephrosis was defined as pelvis anteroposterior diameter > 10 mm or calyxes anteroposterior diameter > 5 mm; hydroureter was defined as a distal ureter > 3 mm.	Hydronephrosis was defined as pelvis anteroposterior diameter > 10 mm or calyxes anteroposterior diameter > 5 mm; hydroureter was defined as a distal ureter > 3 mm.	NR	NR
Cheng 2011	NR	Mild hydronephrosis (pelvic dilatation 10 mm or less)	NR	NR
Han 2016	NR	NR	NR	NR
Harper 2016	Post-UTI sonographic findings showing any degree of hydronephrosis, dilatation of calyces or ureter, signs of renal dysplasia, or abnormal renal outline were considered to indicate an abnormality.	NR	NR	NR
Hoberman 2003	Anatomic abnormalities. Dilated pelvis, Pelvocaliectasis, Hydronephrosis, Dilated ureter, Double collecting system, Extrarenal pelvis, Calculus.	NR	NR	NR
Hsu 2016	All abnormal US findings were recorded, including the anteroposterior diameter of the renal pelvis ≥5mm and/or any grade of dilatation of the calyces or ureters irrespective of anteroposterior diameter; pelvic or ureteral wall thickening; absence of cortico-medullary differentiation; renal hypoplasia; duplicated renal collecting system; and abnormal kidney size.	NR	NR	NR
Huang 2008	NR	NR	NR	All ultrasound scans were reviewed by at least three to

				ensure uniform findings.
Hung 2016	All abnormal US findings were recorded, including 7-mm anteroposterior diameter of the renal pelvis, and/or any grade of dilatation of the calyces or ureters irrespective of anteroposterior diameter; pelvic or ureteral wall thickening; absence of cortico-medullary differentiation; irregular renal outline and signs of renal hypoplasia (i.e., small kidney and thinned or hyperechoic cortex); duplicated renal collecting system, abnormal kidney size, renal cysts, dysplastic kidney, stenosis of the ureteropelvic junction, or ureterovesical junction and ureterocele. Renal hypoplasia was defined as a longitudinal length of kidney less than 2 standard deviations for age, and nephromegaly as a renal length greater than 2 standard deviations for age. Examination of the bladder was also performed to detect dilatation of the distal ureters, bladder wall hypertrophy, and presence of ureterocele.	NR	NR	At least two investigators reviewed all US reports to ensure uniform findings.
lpek 2012	NR	NR	NR	NR
Ismaili 2011	The criteria for abnormal US included pelvic anteroposterior diameter 7-mm, calyceal or ureteral dilatation, pelvic or ureteral wall thickening, absence of the corticomedullary differentiation, and signs of renal dysplasia (small kidney, thinned or hyperechogenic cortex, and cortical cysts).	NR	Same trained pediatric radiologists performed US.	NR
Jahnukainen 2006	An abnormal US finding was considered significant if treatment (surgical intervention, prophylactic antibiotics, need for follow-up, or counsel-ling) was influenced based on the result of US. Abnormalities, such as ureteropelvic junction obstruction, ureterovesical junction obstruction, urethral valve, ureterocele, solitary kidney, cystic kidney diseases, renal dysplasia, or hypoplasia were considered as potential conditions that would change the treatment and that are usually not visualised by VCUG.	Posteroanterior diameter >10 mm	Experienced pediatric radiologists performed and analysed US.	The imaging study reports were reviewed by two Pediatricians. A pediatric radiologist was consulted as necessary.
Kawai 2019	Renal US findings were recorded on a standard sheet documenting renal length, ureteral dilatation, kidney/bladder tumor lesions, calculus, bladder volume, degree of bladder retention, bladder wall thickness. Abnormal findings indicating need for VCUG were: unilateral renal agenesis, double renal pelvis and ureters,	SFU	Physician in outpatient department (pediatrics or pediatric urology) or a	The pediatricians and technicians were provided with standardized

	Left/Right renal length difference >10mm, renal length <45mm, hydronephrosis> grade 2 based on SFU, ureteral dilation, bladder volume >150% expected bladder volume.		lab technician performed US.	data recording sheets to avoid discrepancies in inter- examiner diagnosis
Kobayashi 2019	Renal ultra-sonography was interpreted as follows: renal length was considered abnormal if it was≥2 SD of the mean in comparison with the age-based reference range for Japanese children. Dilation of the renal pelvis was graded according to the definition of the Society of Fetal Urology (SFU). We defined abnormal findings as SFU grade≥2, which corresponds to moderate–severe dilation of the renal pelvis and calices; anteroposterior diameter of ureter≥7 mm, which corresponds to moderate–severe dilation of ureter; and renal pelvic wall thickness≥0.8 mm.	SFU	Pediatric radiologists performed and evaluated US.	NR
Lee 2009	All abnormal ultrasound scanning findings were recorded, including dilatation of the pelvis, calyx, or ureter (any dilatation of ureter seen on ultrasound scanning), cyclic dilatation of pelvicaliceal system, wall thickening in the pelvis (a circumferential hypo-echoic rim delineated on each side by thin hyperechoic lines, the rim being thicker than 0.8 mm), ureter, or bladder (3mm in a full or 5 mm in an empty bladder), swelling or thinning of renal parenchyma, diffuse or focal increased renal echogenicity with absence of corticomedullary differentiation, renal abscess, irregular renal outline, and signs of renal hypo- dysplasia (small kidney, thinned or hyperechoic cortex, and cortical cysts) or a duplicated renal collecting system.	SFU	Performed by a pediatric nephrologist.	NR
Lertdumrongluk 2021	Hydronephrosis, double collecting system, increased parenchymal echogenicity, and ectopic kidney.	NR	Qualified radiologists performed US.	NR
Lytzen 2011	NR	NR	NR	NR
Miron 2007	Grading of ultrasonographic renal findings was divided into normal, mild, moderate and severe (hydronephrosis) pelvic dilatation and according to other specified findings.	NR	Expert in pediatric radiology read US.	Radiologists was unaware of the purpose of the study and blinded to the results of the antenatal RUS.

Montini 2009	Any alteration, however minor. The ultrasound results were considered positive even when the morphologic changes were minimal (for example, mild dilation of the renal pelvis, mild increase in renal volume, any discernable increase in the thickness of the pelvic mucosa, or debris present in the bladder)	NR	Qualified radiologists performed US	The radiologists were blinded to clinical, laboratory, and other data regarding the patients.
Pauchard 2017	Renal pelvic anteroposterior diameter≥5mm, and/or any grade of dilatation of calyces or ureters, and/or pelvic or ureteral wall thickening.	NR	Trained pediatric radiologists performed US.	
Pennesi 2012	Either abnormal renal length—maximum longitudinal diameter <5th percentile—ureteral dilatation, pelvic dilatation or abnormal cortico-medullary differentiation		Skilled radiologists performed US	NR
Pennesi 2021	Hydronephrosis, ureteric dilatation, hypoplasia, duplicated system, bladder abnormalities	SINEPE guidelines, which references the SFU.	US performed in radiology department.	NR
Sasaki 2012	NR	NR	NR	NR
Soccorso 2010	The US examination was considered normal in the case of bilateral normal kidneys, with no evidence of hydroureteronephrosis or bladder abnormality.	NR	Pediatric radiologists reported US.	Six paediatric radiologists reported individual imaging studies and were blinded to the reports of other studies for the same infant.
Wallace 2020	Threshold A findings were mild abnormalities that could be incidental findings or related to the UTI itself. Threshold B findings were moderate abnormalities that could lead to medical interventions, further testing or need for subspecialty involvement. Threshold C findings were considered to be severe abnormalities for which close subspecialty follow-up and possible future surgical interventions might be needed.	SFU	Pediatric radiologists read each US	As part of clinical care, pediatric radiology staff read each US examination.

Wongbencharat 2016	All abnormal RBUS findings were recorded including swelling or thinning of renal parenchyma, diffuse or focal increased renal echogenicity with absence of corticomedullary differentiation, signs of renal hypodysplasia, duplicated collecting system and dilatation of the calyx, pelvis, ureter or urethra.	NR	Experienced radiologists performed US.	NR
Wong 2010	For US, the bilateral renal length, pelvicaliceal or ureteric dilatation, pre-and post-void bladder volumes were assessed. The magnitude of renal pelvic dilatation was defined by the maximal anteroposterior diameter (APD) of the pelvis measured in the transverse plane (considered as abnormal if >5 mm).	Unclear	Radiologists performed and reported US.	
Yilman 2016	Hydronephrosis, renal hypoplasia/ dysplasia, renal cysts, a duplicated collecting system, and urolithiasis were defined as abnormal US findings.	NR	NR	NR
Zamir 2004	It consisted of examination of the kidneys in order to show the kidney size, renal outlet obstruction (such as pelvic- uretro junction stenosis), collecting system dilatation, parenchymal structure, and parenchymal lesions such as an abscess. Also examination of the bladder was done in order to identify dilatation of the distal ureters, hypertrophy of the bladder wall, and presence of ureteroceles.	Renal pelvis dilatation was defined as suggestive of VUR and graded as mild, moderate, or severe (hydronephrosis).	Experienced radiologists read US.	NR

197 Descriptions are include text from primary studies; SFU = Society of Fetal Urology classification system.

NR, not reported.

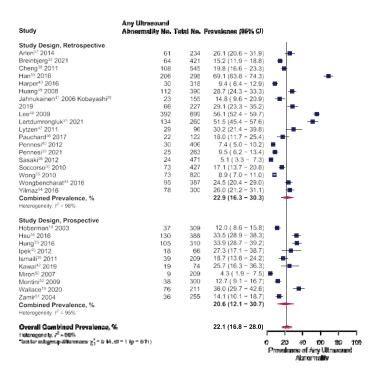
eResults. Sensitivity Analyses for Outcome of Urinary Tract Abnormalities 199

200

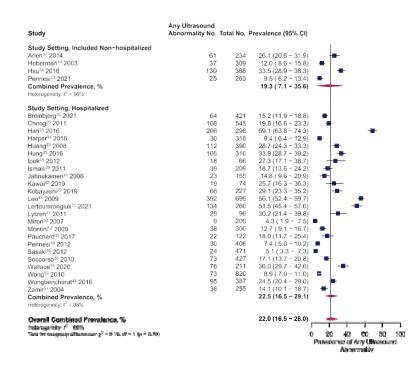
For the analysis of prevalence of any ultrasound abnormality, Lee et al.⁴⁶ and Han et al.⁵³ were identified as an outliers, however, when these studies were individually removed in the sensitivity analyses, the 201

202

203 overall prevalence was not substantially impacted (21.0%, 95% CI 16.1%-26.5% and 20.7%, 95% CI,


204 16.1-25.6, respectively).

eTable 6. Prevalence of specific abnormalities detected on kidney ultrasound after first episode febrile urinary tract infection


Abnormality	Studies Reporting, No.	No. with Abnormality	Total No.	Pooled Prevalence (95% Cl)	ľ
Hydronephrosis	21	843	6848	9.2 (5.1-14.3)	98%
Pelviectasis/Dilated Pelvis	10	259	3920	6.0 (2.3-11.2)	96%
Dilated Ureter	10	106	3401	2.9 (1.3-5.2)	89%
Other Bladder abnormalities	5	44	1962	2.0 (1.2-3.0)	48%
Double collecting system	17	88	5636	1.4 (0.7- 2.3)	81%
Ureterocele	5	15	1742	0.8 (0.4–1.3)	0%
Solitary Kidney	3	6	852	0.7 (0.2-1.4)	0%
Multicystic/Polycystic Kidney	6	7	1455	0.4 (0.1-0.8)	0%
Urinary Tract Obstruction	12	23	3761	0.4 (0.1-0.8)	59%
Dilated Posterior Urethra/Posterior Urethral Valve	3	3	1017	0.2 (0-0.9)	47%
Extrarenal Pelvis	2	1	1129	0.1 (0-0.7)	58%
Calculus	4	4	1894	0.1 (0-0.3)	7%
Abnormal Corticomedullary Differentiation	2	0	933	0.0 (0-0.2)	0%

Pooled prevalence from random effects meta-analysis

- 212 **eFigure 1.** Pooled Prevalence of Urinary Tract Abnormalities Detected on Kidney
- 213 Ultrasound After First Febrile Urinary Tract Infection in Children, Subgroup Analyses
- 214
- a. Retrospective vs. Prospective Study Design

b. Hospitalized vs. Inclusion of Non-hospitalized Study Setting

219 220

© 2023 American Medical Association. All rights reserved.

c. Recruitment End Date 2000-2010 vs. after 2010

Study Recruitment End Date, ≥2011 Arlen ³⁷ 2014 Breinbigrg ³² 2021 Han ⁵⁵ 2016 Kawal ⁴² 2019 Kobayashi ¹⁰ 2017 Pauchard ¹⁰ 2017 Pauchard ¹⁰ 2017 Vallace ¹⁰ 2020 Wongbencharat ⁴² 2016 Yilmaz ⁴⁴ 2016 Combined Prevalence, % Heterogenety: I ² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁰ 2011 Hobayashi ²⁰ 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁵ 2015 Study Recruitment End Date, 2000-2010 Cheng ³⁰ 2011 Hoberman ¹⁴ 2003 Ipak ⁴⁵ 2012 Ismaili ³⁰ 2011 Sanhukainen ¹¹ 2006 Lee ⁴⁵ 2009 Sasak ¹⁴ 2012 Soccorso ³⁰ 2010 Wong ¹⁵ 2010	61 64 206 30 19 66 134 22 25 76 95 78 108 37 112 18 39 23	234 421 298 318 74 227 260 122 263 211 387 300 545 309 390 66 209	$\begin{array}{c} 26.1(20.6-31.9)\\ 15.2(11.9-18.8)\\ 69.1(63.8-74.3)\\ 9.4(6.4-12.9)\\ 25.7(16.3-36.3)\\ 29.1(23.3-35.2)\\ 51.5(45.4-57.6)\\ 18.0(11.7-25.4)\\ 9.5(6.2-13.4)\\ 36.0(29.7-42.6)\\ 24.5(20.4-29.3)\\ 26.0(21.2-9.3)\\ 26.0(21.2-9.3)\\ 19.8(16.6-23.3)\\ 12.0(8.6-15.8)\\ 12.0(8.6-15.8)\\ 28.7(24.3-33.3)\\ 27.3(17.1-38.7)\\ 18.7(13.6-24.2) \end{array}$	
Breinbiggs ¹² 2021 Han ⁵⁵ 2016 Harper ¹² 2016 Kawai ¹² 2019 Kobayash ¹² 2019 Lerdumrongluk ³¹ 2021 Pauchard ¹⁸ 2017 Pauchard ¹⁸ 2017 Pauchard ¹⁸ 2017 Wongbencharat ⁴² 2016 Yilmaz ⁴¹ 2016 Combined Prevalence, % Heerogenety: 7 = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Hoberman ¹⁴ 2003 Huang ⁴⁰ 2008 Ipek ⁴⁵ 2012 Ismaili ¹⁸ 2011 Jahnukainen ¹¹ 2006 Lee ⁴¹⁵ 2009 Lytzen ⁴⁷ 2011 Miror ¹⁹² 2007 Mirori ¹⁹² 2009 Sasak ⁴¹⁶ 2012 Soccorso ²¹ 2010	64 206 30 19 66 134 22 25 76 95 78 108 37 112 18 39	421 298 318 74 227 260 122 263 211 387 300 545 309 390 390 66	$\begin{array}{c} 152 (119-18.8)\\ 9.1 (63.8-74.3)\\ 9.4 (6412.9)\\ 25.7 (63.3-36.3)\\ 29.1 (23.3-35.2)\\ 51.5 (45.4-57.6)\\ 18.0 (11.7-25.4)\\ 9.5 (62-13.4)\\ 36.0 (29.7-42.6)\\ 24.5 (20.4-29.0)\\ 26.0 (212-231.1)\\ \textbf{27.2 (18.7-36.7)}\\ 19.8 (16.6-23.3)\\ 12.0 (8.6-15.8)\\ 28.7 (24.3-33.3)\\ 27.3 (7.1-1-38.7)\\ \end{array}$	
Han55 2016 Harper13 2016 Kobayashi® 2019 LerddumrongUk31 2021 Pauchard ¹⁸ 2017 Pannesi ³³ 2021 Wongbencharat ⁴² 2016 Willace ¹⁹ 2020 Combined Prevalence, % Heterogenety: <i>I</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng38 2011 Hoberman ¹⁴ 2003 Huang ¹⁶ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ¹¹ 2006 Lee ¹⁹ 2009 Lytzen ⁴⁷ 2011 Mircn ¹⁰ 2007 Montini ⁵⁷ 2009 Sasaki ⁴⁶ 2012	206 30 19 66 134 22 5 76 95 78 108 37 112 188 39	298 318 74 227 260 122 263 211 387 300 545 309 390 66	69.1 (63.8 - 74.3) 9.4 (6.4 - 12.9) 25.7 (16.3 - 36.3) 29.1 (23.3 - 35.2) 51.5 (45.4 - 57.6) 18.0 (11.7 - 25.4) 9.5 (6.2 - 13.4) 6.6 (2.9.7 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.7) 27.3 (17.1 - 38.7)	
Harper ¹⁹ 2016 Kawai ⁴² 2019 Kobayash ¹⁹ 2019 Lertdumrongluk ³¹ 2021 Pauchard ¹⁰ 2021 Pauchard ¹⁰ 2017 Wangbencharat ⁴² 2016 Yilmaz ⁶¹ 2020 Combined Prevalence, % Heterogenety: <i>I</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ¹⁰ 2011 Hoberman ¹⁴ 2003 Huang ¹⁰ 2008 Ipak ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁵ 2009 Lytzen ⁴⁷ 2011 Miron ¹⁰² 2007 Montini ⁵² 2009 Sasak ⁴⁶ 2012 Saccorso ³⁰ 2010	30 19 66 134 22 25 76 95 78 108 37 112 18 39	318 74 227 260 122 263 211 387 300 545 309 390 66	$\begin{array}{c} 9,4(6,4-12,9)\\ 25,7(16,3-36,3)\\ 29,1(23,3-35,2)\\ 51,5(45,4-57,6)\\ 18,0(11,7-25,4)\\ 9,5(6,2-13,4)\\ 36,0(29,7-42,6)\\ 24,5(20,4-29,0)\\ 26,0(21,2-31,1)\\ \textbf{27,2}(18,7-36,7)\\ \textbf{27,2}(18,7-36,7)\\ \textbf{19,8}(16,6-23,3)\\ 12,0(8,6-15,8)\\ 28,7(24,3-33,3)\\ 27,3(17,1-33,7)\\ \textbf{27,3}(17,1-33,7)\\ \textbf$	
Kiwai ⁴² 2019 Kobayash ⁶⁹ 2019 Lettdumrongluk ³¹ 2021 Pauchard ⁴⁸ 2017 Pauchard ⁴⁹ 2021 Wallace ¹⁹ 2020 Wongbencharat ⁴² 2016 Combined Prevalence, % Heterogenety: <i>P</i> = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2016 Hoberman ¹⁴ 2003 Huang ⁴⁹ 2008 Huang ⁴⁹ 2018 Ismail ¹⁹ 2011 Jahnukainen ¹⁴ 2003 Lugek ¹⁵ 2012 Ismail ¹⁹ 2011 Jahnukainen ¹⁴ 2006 Lee ¹⁸ 2009 Lytzen ⁴⁷ 2011 Minon ⁴⁹ 2007 Montini ⁵⁸ 2009 Sasak ¹⁴ 2012	19 66 134 22 25 76 95 78 108 37 112 18 39	74 227 260 122 263 211 387 300 545 300 390 66	25.7 (16.3 - 36.3) 29.1 (23.3 - 35.7) 51.5 (45.4 - 57.6) 18.0 (11.7 - 25.4) 9.5 (6.2 - 13.4) 36.0 (29.7 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Kobayashi ²⁰ 2019 Lertdumrongluk ³¹ 2021 Pauchard ²⁰ 2017 Pennesi ³² 2017 Wallace ¹⁹ 2020 Wongbencharat ⁴⁴ 2016 Combined Prevalence, % Heterogenely: <i>P</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶ 2008 Ipek ¹⁵ 2012 Ismall ³⁹ 2011 Jahnukainen ¹⁴ 2006 Lee ¹⁶ 2009 Lytzen ⁴⁷ 2011 Miron ¹⁰ 2007 Montini ⁵² 2009 Sasak ⁴⁶ 2012 Sasak ⁴⁶ 2012	66 134 22 25 76 95 78 108 37 112 18 39	227 260 122 263 211 387 300 545 309 390 66	29.1 (23.3 - 35.2) 51.5 (45.4 - 57.6) 18.0 (11.7 - 25.4) 9.5 (6.2 - 13.4) 9.6 (2.27 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 13.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 133.7) 27.3 (17.1 - 38.7)	-
Lertdimrongluk ³¹ 2021 Pauchard ³⁰ 2017 Pauchard ³⁰ 2021 Wallace ¹⁰ 2020 Wongbenchard ³² 2016 Yilmaz ⁴² 2016 Combined Prevalence, % Heterogenety: <i>I</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Huang ⁴⁰ 2003 Huang ⁴⁰ 2003 Huang ⁴⁰ 2003 Huang ⁴⁰ 2014 Jahnukainen ⁴¹ 2005 Lee ⁴¹⁵ 2011 Jahnukainen ⁴¹ 2006 Lee ⁴¹⁵ 2009 Lytzen ⁴⁷ 2011 Miron ⁴⁰ 2007 Montini ⁵² 2009 Sasak ⁴⁶ 2012 Soccors ³⁰² 2010	134 22 25 76 95 78 108 37 112 18 39	260 122 263 211 387 300 545 309 390 66	$\begin{array}{c} 51.5 \left(45.4 - 57.6 \right) \\ 18.0 \left(71.7 - 25.4 \right) \\ 9.5 \left(62 - 71.4 \right) \\ 36.0 \left(29.7 - 42.6 \right) \\ 24.5 \left(20.4 - 29.0 \right) \\ 26.0 \left(21.2 - 31.1 \right) \\ 27.2 \left(18.7 - 36.7 \right) \\ 19.8 \left(16.6 - 23.3 \right) \\ 12.0 \left(8.6 - 15.8 \right) \\ 28.7 \left(24.3 - 33.3 \right) \\ 27.3 \left(71.1 - 38.7 \right) \end{array}$	
Lertdumrongluk ³¹ 2021 Pauchard ³⁰ 2017 Pauchard ³⁰ 2017 Wallace ¹⁰ 2020 Wongbenchard ³¹ 2016 Yilmaz ⁴² 2016 Combined Prevalence, % Heterogenety: <i>P</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ³³ 2011 Muang ⁴⁰ 2008 Huang ⁴⁰ 2008 Huang ⁴⁰ 2008 Ipek ⁴⁵ 2012 Ismaili ³² 2011 Jahnukainen ⁴¹ 2006 Lee ⁴¹⁵ 2009 Lytzon ⁴⁷ 2011 Miron ⁴⁰ 2007 Montini ⁵² 2009 Sasak ⁴⁶ 2012 Soccorso ³⁰ 2010	22 25 76 95 78 108 37 112 18 39	122 263 211 387 300 545 309 390 66	18.0 (11.7 - 25.4) 9.5 (6.2 - 13.4) 36.0 (29.7 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Pennes ¹⁵ 2021 Wallace ¹⁵ 2020 Wongbencharat ⁴⁴ 2016 Yilmaz ⁴⁴ 2016 Combined Prevalence, % Heterogenety: <i>I</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ¹⁵⁶ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶⁹ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ⁴¹ 2006 Lee ¹⁸⁰ 2009 Lytzen ⁴⁷ 2011 Miron ⁴⁹ 2007 Montini ⁵⁹ 2009 Sasak ¹⁴⁶ 2012 Soccorso ³⁹ 2010	25 76 95 78 108 37 112 18 39	263 211 387 300 545 309 390 66	9.5 (6.2 - 13.4) 36.0 (29.7 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	•
Pennes ¹⁵ 2021 Wallace ¹⁵ 2020 Wongbencharat ⁴⁴ 2016 Yilmaz ⁴⁴ 2016 Combined Prevalence, % Heterogenety: <i>I</i> ² = 98% Study Recruitment End Date, 2000-2010 Cheng ¹⁵⁶ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶⁹ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ⁴¹ 2006 Lee ¹⁸⁰ 2009 Lytzen ⁴⁷ 2011 Miron ⁴⁹ 2007 Montini ⁵⁹ 2009 Sasak ¹⁴⁶ 2012 Soccorso ³⁹ 2010	76 95 78 108 37 112 18 39	211 387 300 545 309 390 66	36.0 (29.7 - 42.6) 24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Wongbencharat ⁴⁴ 2016 Yilmaz ⁶⁴ 2016 Combined Prevalence, % Heterogenety: /² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶⁹ 2008 Ipak ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁵ 2009 Lytzen ⁴⁷ 2011 Mircn ¹⁰² 2009 Sasak ¹⁶⁰ 2012 Saccorso ³⁹ 2010	95 78 108 37 112 18 39	387 300 545 309 390 66	24.5 (20.4 - 29.0) 26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Wongbencharat ⁴⁴ 2016 Yilmaz ⁶⁴ 2016 Combined Prevalence, % Heterogenety: /² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶⁹ 2008 Ipak ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁵ 2009 Lytzen ⁴⁷ 2011 Mircn ¹⁰² 2009 Sasak ¹⁶⁰ 2012 Saccorso ³⁹ 2010	78 108 37 112 18 39	300 545 309 390 66	26.0 (21.2 - 31.1) 27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Yilmaz ⁶⁴ 2016 Combined Prevalence, % Heterogenety: 7" = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁸ 2011 Hoberman ¹⁶ 2003 Huang ⁴⁶ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁵ 2009 Lytzen ⁴⁷ 2011 Mircn ⁹⁰ 2007 Montini ⁵⁰ 2009 Sasak ¹⁴⁶ 2012 Soccorso ³⁰ 2010	108 37 112 18 39	545 309 390 66	27.2 (18.7 - 36.7) 19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	•
Combined Prevalence, % Heterogenety: $i^{2} = 98\%$ Study Recruitment End Date, 2000-2010 Cheng38 2011 Hoberman ¹⁴ 2003 Huang ⁴⁰ 2008 Ipek ¹⁵ 2012 Ismaili ¹⁰ 2011 Jahnukainen ¹¹ 2006 Lee ¹⁸ 2009 Lytzen ⁴⁷ 2011 Minon ⁴⁰ 2007 Montini ⁵⁰ 2009 Sasaki ⁴⁰ 2012 Soccorso ³⁰ 2010	37 112 18 39	309 390 66	19.8 (16.6 - 23.3) 12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Heterogeneity: /² = 98% Study Recruitment End Date, 2000-2010 Cheng ³⁶ 2011 Hoberman ¹⁴ 2003 Huang ¹⁶ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnutkainen ⁴¹ 2006 Lee ⁴⁸ 2009 Lytzen ⁴⁷ 2011 Miron ⁴⁹ 2007 Montini ⁵⁹ 2009 Sasaki ⁴⁶ 2012 Soccorso ³⁹ 2010	37 112 18 39	309 390 66	12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	•
Cheng ³⁸ 2011 Hoberman ¹⁴ 2003 Huang ⁴⁰ 2008 Ipek ⁴⁵ 2012 Ismaili ³⁹ 2011 Jahnukalnen ⁴¹ 2006 Lee ⁴⁵ 2009 Uytzen ⁴⁷ 2011 Montin ⁵² 2007 Montin ⁵² 2009 Sasaki ⁴⁶ 2012 Soccors ⁵³ 2010	37 112 18 39	309 390 66	12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	•
Hoberman ¹⁴ 2003 Huang ⁴⁹ 2008 Jepk ¹⁵ 2012 Ismaili ¹⁹ 2011 Jahnukainen ¹¹ 2006 Lee ¹⁸ 2009 Lytzen ⁴⁷ 2011 Minon ⁴⁹ 2007 Montini ⁵² 2009 Sasaki ⁴⁶ 2012 Soccors ³⁰ 2010	37 112 18 39	309 390 66	12.0 (8.6 - 15.8) 28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	
Huang ⁴⁶ 2008 Ipek ⁴⁵ 2012 Ismail ¹⁰⁵ 2011 Jahnukainen ⁴¹ 2006 Lee ⁴¹⁵ 2009 Uytzen ⁴⁷ 2011 Mincn ⁴⁰² 2007 Montini ¹⁵² 2009 Sasak ¹⁴⁶ 2012 Soccorso ³⁰² 2010	112 18 39	390 66	28.7 (24.3 - 33.3) 27.3 (17.1 - 38.7)	*
Ipekt ⁸² 2012 Ismaili ^{®2} 2011 Jahnukainen ¹¹ 2006 Lee ⁴⁸ 2009 Uytzen ⁴⁷ 2011 Montin ^{®2} 2007 Montin ^{®2} 2009 Sasaki ⁴⁰ 2012 Soccorso ^{®2} 2010	18 39	66	27.3 (17.1 - 38.7)	+
smaili ³⁶ 2011 Jahnukainen ¹⁵ 2006 Lee ⁴⁶ 2009 Lytzen ⁴⁷ 2011 Minon ⁴⁹ 2007 Montini ⁵² 2009 Sasaki ⁴⁶ 2012 Soccorsa ³² 2010	39			+
Jahnukainen ⁴¹ 2006 Lee ¹⁸ 2009 Lytzen ⁴⁷ 2011 Montini ⁵² 2009 Sasaki ⁴⁶ 2012 Soccorso ³² 2010		209	187/136 - 212	
Lee ⁴⁵ 2009 Lytzen ⁴⁷ 2011 Montin ⁵² 2007 Sasaki ⁴⁶ 2012 Soccors ⁵⁰ 2010	23		10.7 (15.0 - 24.2)	
Lytzen ⁴⁷ 2011 Miron ⁶⁹ 2007 Montini ⁵² 2009 Sasaki ⁴⁶ 2012 Soccorso ³⁰ 2010		155	14.8 (9.6 - 20.9)	-#-
Miron ⁶⁰ 2007 Montin ⁵² 2009 Sasaki ⁴⁶ 2012 Soccorso ⁵⁰ 2010	392	699	56.1 (52.4 - 59.7)	
Montini ⁵² 2009 Sasaki ⁴⁶ 2012 Soccorso ³⁰ 2010	29	96	30.2 (21.4 - 39.8)	
Sasaki ⁴⁶ 2012 Soccorso ³⁰ 2010	9	209	4.3 (1.9 - 7.5)	• I
Soccorso ³⁰ 2010	38	300	12.7 (9.1 - 16.7)	*
	24	471	5.1 (3.3 - 7.3)	•
Wono53 2010	73	427	17.1 (13.7 - 20.8)	=
	73	820	8.9 (7.0 - 11.0)	•
Zamir ⁵¹ 2004	36	255	14.1 (10.1 - 18.7)	+
Combined Prevalence, %			17.8 (11.2 - 25.6)	-
Heterogeneity: I ² = 98%				
Overall Combined Prevalence, %			22.0 (16.5 - 27.9)	-
Halerageneily: i ² = 06% Test for subscup differences: y ² = 9.56, cl = 1.65 = 0.11)			, 0	20 40 50

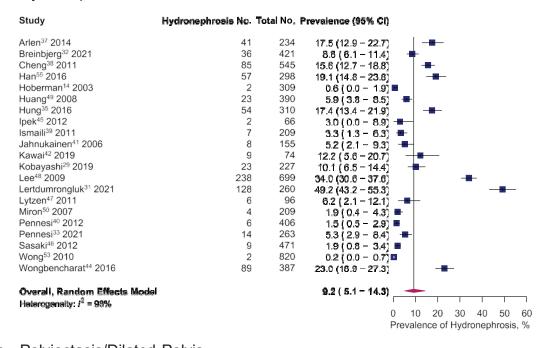
222 223

d. Pyuria included in Urinary Tract Infection Diagnosis Criteria

Study	Abnormality No.	Total No.	Prevalence (95% CI)	
UTI Definition, no pyuria or not reported				
Arlen ³⁴ 2014	61	234	26.1 (20.6 - 31.9)	-
Breinbjerg ³² 2021	64			
Cheng ³⁸ 2011	108			
Harper ⁴³ 2016	30			
Huang ⁴⁹ 2008	112			
lpek ⁴⁵ 2012	18		mon (m no ooro)	
Jahnukainen ⁴¹ 2006	23			
Lee ⁴⁸ 2009	392			
Lytzen47 2011	29			
Miron ⁵⁰ 2007	9			
Pauchard ³⁶ 2017	22		110 (110 110)	
Pauchard ³⁰ 2017 Pennesi ³³ 2021	22			
Pennesi ³³ 2021 Sasaki ⁴⁶ 2012	23		0.0 (0.11 .0.17)	
	73			
Soccorso ³⁰ 2010	73			
Yilmaz ⁵⁴ 2016	36			
Zamir ⁵¹ 2004	30	200		
Combined Prevalence, % Heterogeneity: 1 ² = 98%			18.8 (12.4 – 26.2)	
UTI Definition, included pyuria				
Han ⁵⁵ 2016	206	298	69.1 (63.8 - 74.3)	-
Hoberman ¹⁴ 2003	37			
Hoberman ¹² 2003 Hsu ³⁴ 2016	130	000		
Hung ³⁵ 2016	105			
	39			
Ismaili ³⁹ 2011	19			
Kawai ⁴² 2019	66			
Kobayashi ²⁹ 2019	134			
Lertdumrongluk ³¹ 2021	38			
Montini ⁵⁰ 2009	30			
Pennesi ⁴⁰ 2012	76			
Wallace ¹⁹ 2020				
Wong ⁵³ 2010	73			
Wongbencharat44 2016	95	387	= (==)	
Combined Prevalence, %			26.4 (18.3 - 35.4)	-
Heterogeneity: I ² = 98%				
Overall Combined Prevalence, %			22.1 (16.9 - 27.8)	
Historuganetity: 7" = 86%				
Text for subgroup differences $\chi^2 = 1.89$, ef = 1.89 = 3.18)				0 20 40 80 80 100 Prevalence of Any Ultrasound

e. Study Quality Item: Participant Recruitment Appropriate and Clear 225

Study	Any Ultrasound Abnormality No.	Total No.	Prevalence (95% CI)	
	, , , , , , , , , , , , , , , , , , , ,		(,,	
Participant recruitment appropriate and clear, yes Arlen ³⁷ 2014	61	004	26.1 (20.6 - 31.9)	
Harper ⁴³ 2016	30	234 318	9.4 (6.4 - 12.9)	
Harper ¹⁵ 2016 Hoberman ¹⁴ 2003	30	309	12.0 (8.6 - 15.8)	
Hobernan ¹⁴ 2003 Hsu ³⁴ 2016	130	388	33.5 (28.9 - 38.3)	
Huang ⁴⁹ 2008	112		28.7 (24.3 - 33.3)	
Hung ³⁵ 2008	105	310		
Ismaili ³⁹ 2011	39	209	18.7 (13.6 - 24.2)	
Jahnukainen ⁴¹ 2006	23			
Kobayashi ²⁹ 2019	66	227	29.1 (23.3 - 35.2)	
Lytzen ⁴⁷ 2011	29		30.2 (21.4 - 39.8)	
Miron ⁵³ 2007	9		4.3 (1.9 - 7.5)	
Montini ⁵² 2009	38		12.7 (9.1 - 16.7)	
Pauchard ³⁶ 2017	22	122	18.0 (11.7 - 25.4)	
Pennesi ⁴⁰ 2012	30	406	7.4 (5.0 - 10.2)	
Sasaki ⁴⁶ 2012	24	471	5.1 (3.3 - 7.3)	
Soccorso ³⁰ 2010	73	427	17.1 (13.7 - 20.8)	
Wallace ¹⁹ 2020	76	211	36.0 (29.7 - 42.6)	
Wong ⁵³ 2010	73	820	8.9 (7.0 - 11.0)	
Yilmaz ⁵⁴ 2016	78	300	26.0 (21.2 - 31.1)	-
Zamir ⁵¹ 2004	36	255	14.1 (10.1 - 18.7)	-
Combined Prevalence, %			18.1 (12.8 - 24.2)	-
Heterogeneity: $l^2 = 96\%$				
Participant recruitment appropriate and clear, no or unclear				
Breinbjerg ³² 2021			15.2 (11.9 - 18.8)	-
Cheng ³⁶ 2011			19.8 (16.6 - 23.3)	-
			69.1 (63.8 - 74.3)	
Han ⁶⁵ 2016	64	421		
pek45 2012	108	545		
Kawai ⁴² 2019	206	298	25.7 (16.3 - 36.3)	-
Lee ⁴⁰ 2009	18		56.1 (52.4 - 59.7)	
	19	74)	
Lertdumrongluk ³¹ 2021	392			
Pennesi ³³ 2021	134	200		
Wongbencharat ⁴⁴ 2016	25			
Combined Prevalence, %	95	387	22.1 (22.2 - 42.4)	
Heterogeneity: / ² = 99%			92:1 (22:6 - 42:7)	
				6 20 40 60 80
Overall Combined Prevalence, % Hoteopynoly: F ² = 100h Tear for samplup eliberatory y ² = 5 Tet of = 1 (p = 2:50)				Prevalance of Any Ultraso Abnomsity


f. Study Quality Item: Standard Criteria Described for Abnormalities on Renal Ultrasound

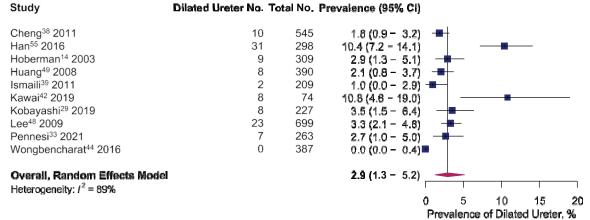
	Any Ultrasound			
Study		Total No.	Prevalence (95% Cl))
Standard criteria for abnormalities on US, Yes				
Arlen ³⁷ 2014	61			
Breinbierg ³² 2021	64			-
Harper ⁴³ 2016	30			
Hoberman ¹⁴ 2003	37			
Hsu ³⁴ 2016	130			
Hung ³⁵ 2016	105			
Ismaili ³⁹ 2011	39			
Jahnukainen ⁴¹ 2006	23			
Kawai ⁴² 2019	19			
Kobayashi ²⁹ 2019	66			
Lee ⁴⁸ 2009	392			
Lettdumrongluk ³¹ 2021	134			
Miron ⁵⁰ 2007	9			
Montini ⁵² 2009	38			
Pauchard ³⁶ 2017	22			
Pennesi ⁴⁰ 2012	30			
Pennesi ³³ 2021	25			
Soccorso ³⁰ 2010	73			
Wallace ¹⁹ 2020	76			
Wong ⁵³ 2010	73			
Wongbencharat ⁴⁴ 2016	95			
Yilmaz ⁵⁴ 2016	78			
Zamir ⁵¹ 2004	36	255		
Combined Prevalence, %			20.6 (15.0 – 27.0)	
Heterogeneity: / ² = 98%				
Standard criteria for abnormalities on US, No				
Cheng ³⁸ 2011	108			
Han ⁵⁵ 2016	206			
Huang ⁴⁹ 2008	112			
lpek ⁴⁵ 2012	18			
Lytzen47 2011	29			
Sasaki ⁴⁶ 2012	24	471		
Combined Prevalence, %			28.3 (16.1 – 42.2)	
Heterogeneity: /² = 99%				
Overall Combined Prevalence, %			22.1 (16.9 – 27.9)	
Heterogeneity: I ² = 98%				0 20 40 60 00 400
Test for subgroup differences: χ^{-1} =1.14, df=1 (p=0.29)				0 20 40 60 80 100
				Prevalence of Any Ultrasound
				Abnormality

© 2023 American Medical Association. All rights reserved.

eFigure 3. Pooled Prevalence of Specific Abnormalities Detected on Kidney Ultrasound After First Febrile Urinary Tract Infection in Children

a. Hydronephrosis

b. Pelviectasis/Dilated Pelvis


Study	Pelviecstasis/Dilated Pelvis No.	Total No.	Prevalence (95% Cl)				
Han ⁵⁵ 2016	78	298	26.2 (21.3 - 31.3)	1	_	-	
Hoberman ¹⁴ 2003	25	309	8.1 (5.3 – 11.4)				
lpek ⁴⁵ 2012	8	66	12.1 (5.2 – 21.2)	-			
Lee ⁴⁸ 2009	19	699	2.7 (1.6 - 4.1)	.			
Miron ⁵⁰ 2007	3	209	1.4 (0.2 - 3.6) 💻	-			
Pennesi ⁴⁰ 2012	20	406	4.9 (3.0 - 7.3)	-			
Sasaki ⁴⁶ 2012	8	471	1.7 (0.7 - 3.1) =	F			
Wong ⁵³ 2010	65	820	7.9 (6.2 - 9.9)	-			
Wongbencharat44 2016	0	387	0.0 (0.0 - 0.4) 🗖				
Zamir ⁵¹ 2004	33	255	12.9 (`9.1 – 17.4`)	-	—		
Overall, Random Effects Model			6.0 (2.3 - 11.2)				
Heteropeneity: /2 = 96%			· · · · · · · · · · · · · · · · · · ·				
			0	10	20	30	40
			1	Prevalenc	e of Pelv	viecstasis	5/
				Dila	ted Pelv	is, %	

242 c. Dilated Ureter

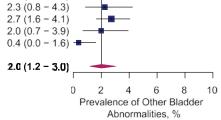
243

241

Dilated Ureter No. Total No. Prevalence (95% Cl)

Study

245

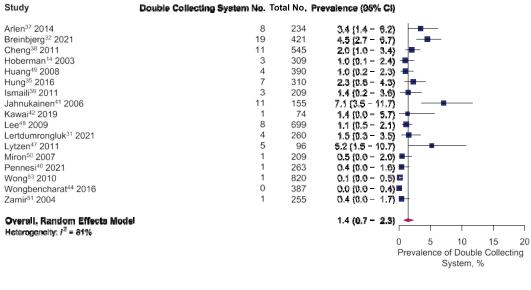

d. Other Bladder Abnormalities 246

247

Other Bladder Abnormalities No. Total No. Prevalence (95% Cl)

Huang ⁴⁹ 2008 11 390 2.8 (1.4 - 4.7) Hung ³⁵ 2016 7 310 2.3 (0.8 - 4.3) Lee ⁴⁸ 2009 19 699 2.7 (1.6 - 4.1) Montini ⁵² 2009 6 300 2.0 (0.7 - 3.9) Pennesi ³³ 2021 1 263 0.4 (0.0 - 1.6)

Overall, Random Effects Model Heterogeneity: $i^2 = 48\%$



252	
253	
254	
255	
256	
257	

- 258
- 259

260 e. Double Collecting System

261

263 f. Ureterocele

Study

264

262

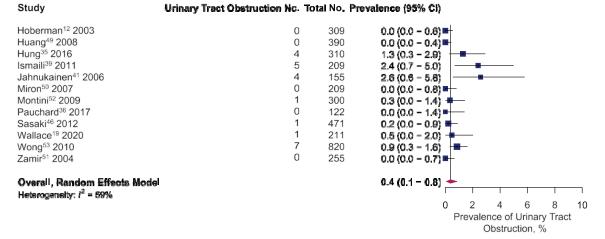
Ureterocele No. Total No. Prevalence (95% Cl)

			0 2 4 6 8 10 Prevalence of Ureterocele, %
Heterogeneity: $l^2 = 0\%$			
Overall, Random Effects Model			0.8 (0.4 - 1.3)
Pennesi ³³ 2021	1	263	0.4 (0.0 - 1.6)
Hung ³⁵ 2016	1	310	0.3 (0.0 - 1.4)
Huang ⁴⁹ 2008	5	390	1.3 (0.4 - 2.7)
Cheng ³⁸ 2011	5	545	0.9 (0.3 - 1.9)
Arlen ³⁷ 2014	3	234	1.3 (0.2 - 3.2)

g. Extrarenal Pelvis

Study Extrarenal Pelvis No. Total No. Prevalence (95% Cl) Hoberman¹⁴ 2003 Wong⁵³ 2010 0.3 (0.0 - 1.4) -0.0 (0.0 - 0.2) **Overall, Random Effects Model** 0.1 (0.0 - 0.7) Heterogeneity: $I^2 = 58\%$ Prevalence of Extrarenal Pelvis, % h. Solitary Kidney

Study	Solitary Kidney No.	Total No-	Prevalence (95% CI)
Hung ³⁵ 2016 Jahnukainen ⁴¹ 2006	3	310 155	
Wongbencharat ⁴⁴ 2016	2	387	
Overall, Random Effects Model Heterogeneity: / ² = 0%			0.7 (0.2 - 1.4)
			0 2 4 6 8 10 Prevalence of Solitary Kidney, %


i. Multicystic/Polycystic Kidney

Study

Multicystic/Polycystic Kidney No. Total No. Prevalence (95% Cl)

Han ⁵⁵ 2016 Hung ³⁵ 2016 Jahnukainen ⁴¹ 2006 Lytzen ⁴⁷ 2011 Miron ⁵⁰ 2007	1 1 2 1	298 310 155 96 209	0.3 (0.0 - 1.4) 0.3 (0.0 - 1.4) 0.6 (0.0 - 2.8) 2.1 (0.0 - 6.2) 0.5 (0.0 - 2.0)
Wongbencharat ⁴⁴ 2016	1	387	0.3 (0.0 – 1.1) 💻
Overall, Random Effects Model Heterogeneity: / ² = 0%			0.4 (0.1 - 0.8)
HO			0 2 4 6 8 10
			Prevalence of Multicystic/ Polycystic Kidney, %

286 j. Urinary Tract Obstruction

k. Dilated Posterior Urethra/Posterior Urethral Valve

Study	Dilated Posterior Urethra/ Posterior Urethral Valve No.	Total No.	. Prevalence (95% CI)	
Breinbjerg ³² 2021 Ismaili ³⁹ 2011 Wongbencharat ⁴⁴ 2016	1 2 0	209	9 1.0 (0.0 - 2.9)	
Overall, Random Effects Model Heterogeneity: <i>I</i> ² = 47%			0.2 (0.0 - 0.9) 0 2 4 6 8 Prevalence of Dilated Posterior Urethra/Posterior Urethral Valve.	
I. Calculus				
Study Hoberman ¹⁴ 2003 Ipek ⁴⁵ 2012 Lee ⁴⁸ 2009 Wong ⁵³ 2010 Overall, Random Effects Mode Heterogeneity: <i>I</i> ² = 7%	Calculus No. Total No. P 1 309 1 66 1 699 1 820	0.3 (1.5 (0.1 (0.1 ((0.0 - 1.4) (0.0 - 6.4) (0.0 - 0.6) (0.0 - 0.5) (0.0 - 0.3) (0.0 - 0.3) 0 2 4 6 8 10 Prevalence of Calculus, %	

- 298299300 m. Abnormal Corticomedullary Differentiation301
- 302

Study

Abnormal Corticomedullary Differentiation No. Total No. Prevalence (95% CI)

303 304

© 2023 American Medical Association. All rights reserved.

305 eFigure 4. Pooled Prevalence of Surgical Intervention of the Urinary Tract

Surgical In	tervention of the Urinary Tract No. Total	No.	Prevalence (95% CI)
Breinbjerg ³² 2021	20	421	4.8 (2.9 - 7.0)
Hoberman ¹⁴ 2003	0	309	0.0 (0.0 - 0.6)
Hung ³⁵ 2016	7	310	2.3 (0.8 - 4.3)
Jahnukainen ⁴¹ 2006	4	155	2.6 (0.6 - 5.8)
Kawai ⁴² 2019	1	74	1.4 (0.0 - 5.7) -
Lee ⁴⁸ 2009	3	699	0.4 (0.1 - 1.1)
Lytzen ⁴⁷ 2011	7	96	7.3 (2.8 - 13.5)
Miron ⁵⁰ 2007	0	209	0.0 (0.0 - 0.8)
Montini ⁵² 2009	1	300	0.3 (0.0 - 1.4)
Pauchard ³⁶ 2017	7	122	5.7 (2.2 - 10.7)
Soccorso ³⁰ 2010	4	427	0.9 (0.2 - 2.1) -
Wallace ¹⁹ 2020	0	211	0.0 (0.0 - 0.8)
Wong ⁵³ 2010	21	820	2.6 (1.6 - 3.8)
Overall, Random Effects Model Heteroceneity: / ² = 85%			1.4 (0.5 - 2.7)
neterogeneity. r = 05%			0 5 10 15 2
			Prevalence of Surgical Intervention Urinary Tract, %