Supporting information

Electron Paramagnetic Resonance Spectra of Pentagonal Bipyramidal Gadolinium Complexes

Jonatan B. Petersen,¹ You-Song Ding,^{1,2} Sandeep K. Gupta,³ Aditya Borah,³ Eric J. L. McInnes,¹ Yan-Zhen Zheng,² Ramaswamy Murugavel,³ and Richard E. P. Winpenny^{1*}

¹ Department of Chemistry, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

²Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710049, China

³ Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India

Crystallography

 Table S1. Crystallographic and refinement parameters for compounds 1 - 5

	$[YCl_2(Py)_5]$	YCl ₂ (THF) ₅	[Y(O ^t Bu)Cl(THF) ₅]BPh ₄ ·
	BPh₄·THF	BPh₄· 0.5THF	2THF
	(1)	(2)	(3)
Reference	This work	This work	1,2
Sum formula	$C_{49}H_{45}BCl_2N_5Y$	C ₄₆ H ₆₄ BC ₂ O _{5.5} Y	YC ₅₆ H ₈₅ BClO ₈
Formula weight (g/mol)	874.5	875.59	1021.4
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	Pca2 ₁	P1	$P^{2}_{1/n}$
<i>T</i> (K)	150	150	100
a (Å)	19.8587(16)	12.5396(6)	13.6356(17)
b (Å)	12.5584(10)	12.7786(6)	12.4340(15)
c (Å)	18.0227(17)	29.3605(15)	32.618(4)
α (°)	90	79.595(4)	90
β (°)	90	79.953(4	90.434(2)
γ (°)	90	82.294(4)	90
V (Å ³)	4494.7(7)	4528.2(4)	5530.0(12)
Ζ	4	4	4
$\rho_{\rm calc}$ (g cm ⁻³)	1.292	1.284	1.227
$\mu ({\rm mm}^{-1})$	1.455	1.450	1.153
F ₀₀₀	1808	1848	2184
θ (°)	3.4450 -20.4830	3.150 - 27.266	2.22 - 23.43
Goodness of fit	1.055	1.014	1.049
R ₁ (%)	8.06	6.01	5.85
wR ₂ (%)	8.91	12.51	15.78

	$[Y(OArF_5)_2(Py)_5]$	[Y(^t BuPO(NH ⁱ Pr) ₂) ₂	[Gd(^t BuPO(NH ⁱ Pr) ₂) ₂
	$B(ArF_5)_4 \cdot 0.5C_6H_{14}$	$(H_2O)_5][I]_3 \cdot H_2O$	$(H_2O)_5][I]_3 \cdot H_2O$
	(4)	•2('BuPO(NH'Pr) ₂	$\cdot 2(^{t}BuPO(NH^{i}Pr)_{2})$
		(5)	(5b)
Reference	This work	3	This work
Sum formula	$YC_{64}H_{32}BF_{30}N_5O_2$	$YC_{40}H_{112}I_3N_8O_{10}P_4$	$GdC_{40}H_{112}I_3N_8O_{10}P_4$
Formula weight (g/mol)	1572.7	1458.9	1527.20
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P\overline{1}$	PĪ
<i>T</i> (K)	150	120	120
a (Å)	11.9649(8)	13.7506(13)	13.7931(11)
b (Å)	14.5150(10)	14.727(2)	14.7302(9)
<i>c</i> (Å)	19.4283(16)	20.641(2)	20.712(2)
α (°)	73.514(7)	92.293(14)	92.658(17)
β (°)	77.693(6)	108.245(10)	108.510(13)
γ (°)	79.769(6)	114.902(8)	114.902(5)
V (Å ³)	3136.3(4)	3528.3(7)	3539.3(6)
Ζ	2	2	2
$ ho_{\rm calc} ({ m g}{ m cm}^{-3})$	1.665	1.373	1.433
$\mu ({\rm mm}^{-1})$	1.069	2.275	2.381
F ₀₀₀	1562	1492	1542
θ (°)	2.712-28.961	2.205-25.250	2.659-25.250
Goodness of fit	1.064	1.060	1.080
R ₁ (%)	9.36	3.36	3.45
wR ₂ (%)	22.89	7.62	8.60

 Table S1 continued.
 Crystallographic and refinement parameters for compounds 1 - 5

Table S2	. Selected	bond	lengths	(Å)	and	angles	(°))
----------	------------	------	---------	-----	-----	--------	-----	---

	1 ^a	2 ^b	3 ^c	4 ^a	5°
		Y-X bo	onds (axial)		
Y1-Cl1	2.574(3)	2.5653(9)	2.6608(11)		
Y1-Cl2	2.576(3)	2.5675(9)			
Y2-Cl3		2.5842(9)			
Y2-Cl4		2.5649(10)			
Y1-01			2.042(3)	2.143(4)	2.206(2)
Y1-02				2.150(4)	2.201(2)
		Y – E bond	ls (equatorial)		
Y1-E1	2.514(7)	2.394(2)		2.522(5)	
Y1-E2	2.536(8)	2.387(2)	2.421(3)	2.506(5)	
Y1-E3	2.506(9)	2.382(2)	2.414(3)	2.500(5)	
Y1-E4	2.509(6)	2.382(2)	2.418(3)	2.523(5)	
Y1-E5	2.516(8)	2.396(2)	2.412(3)	2.512(6)	2.3478(14)
Y1-06			2.390(3)		2.3421(13)
Y1-07					2.3428(15)
Y1-08					2.355(2)
Y1-09					2.3465(18)
Y2-06		2.391(2)			
Y2-07		2.369(2)			
Y2-08		2.411(2)			
Y2-09		2.383(2)			
Y2-010		2.368(2)			
		X-Y-X a	ngles (axial)		
Cl1-Y1-Cl2	177.42(8)	176.43(3)			
Cl3-Y2-Cl4		179.61(3)			
01-Y1-Cl1			178.72(8)		
01-Y1-02				178.59(17)	175.02(8)
		Angles at Y invol	ving equatorial ato	ms	
Range	69.7(2) -	71.47(8) -	71.43(10) -	70.94(16) -	70.57(7) -
nearest E-Y-	74.1(3)	72.46(8)	72.82(10)	73.67(18)	73.37(9)
Е					
Range Cl-Y-E	88.0(2) -	86.36(6) -	83.91(7) -		
	93.0(2)	94.68(6)	89.16(7)		
Range O _{ax} -Y-			90.20(10) -	84.06(16) -	86.03(8) -
E _{ea}			95.59(10)	97.33(17)	94.51(8)

a. E = N

b. E = O; two molecules in the asymmetric unit

c. E = O

Figure S1. Solid state structures of the 5 complexes, excluding counterions and solvent. Colour code: Gd/Y=magenta, P=yellow, Cl=light green, F=dark green, O=red, N=Blue and C=grey. Hydrogen is not shown

EPR spectroscopy

Figure S2. Spectra (black) and simulations (red) of **2** at X (top), K (middle) and Q-band (bottom). Fitted with the spin Hamiltonian of equation 1 without the B_2^2 term (See manuscript for discussion).

Table S3. Best fit spin Hamiltonian parameters for **2** from fit of EPR spectra using spin Hamiltonian containing B_6^5 . Numbers in parenthesis are estimated standard deviations of the last digit.

	g_{\perp}	g_{\parallel}	B ₂ ⁰ 10 ⁻² cm ⁻¹	B ₄ ⁰ 10 ⁻⁵ cm ⁻¹	B ₆ ⁵ 10 ⁻⁵ cm ⁻¹
2	1.9910(2)	-	3.761(1)	-0.921.2(41)	5.0(4)

Figure S3. Spectra (black) and simulations (red) of neat $GdCl_2(THF)_5$ at X (top) and K (bottom). Simulated with S=1/2.

Table S4. Best fit spin Hamiltonian parameters for **5b** from fit of X- and Q-band EPR spectra. Numbers in parenthesisare estimated standard deviations of the last digit.

	g_{\perp}	g_{\parallel}	B_2^0	B_4^0	B_{6}^{0}	B_{6}^{5}	ΔE	$B_6^5/\Delta E$
5			10 ⁻² cm ⁻¹	10 ⁻⁵ cm ⁻¹	10 ⁻⁷ cm ⁻¹	10 ⁻⁵ cm ⁻¹	(cm⁻¹)	(10-5)
X-band	1.988(4)	1.997(7)	1.47(2)	-0.3(2)	-4(1)	7.2(7)	0.527	14
Q-band*	1.989(3)*	1.995(6)*	1.6(1)	-3(1)	-4(5)	6(2)	0.58	10
	-							

*not field corrected

Parameter conversion

In order to convert the P_k^q parameters obtained via the multi purpose EPR fitting program to the B_k^q parameters as originally defined by Stevens we used the relation.^{4,5}

$$B_{q,Wybourne}^{k} = \frac{P_{k}^{q}}{2^{k}} \sqrt{\frac{(2S+k+1)!}{(2S-k)!}}$$

Which results in parameters normalised in Wybourne's notation. These were then divided by the ratios listed in Table S4 to convert them to Stevens parameters.⁶

$$B_{k,Stevens}^{q} = \frac{B_{q,Wybourne}^{k}}{\lambda_{k,q}}$$

k	q	$\lambda_{k,q}$
2	0	2
2	2	2
		$\overline{\sqrt{6}}$
4	0	8
6	0	16
6	5	-8
		$\overline{3\sqrt{77}}$

 Table S5. Conversion factors between Stevens and Wybourne normalised parameters.

Ground state compositions

m _s ∖E(cm⁻¹)	0.000	0.000	0.227	0.227	0.671	0.671	1.308	1.308
-3.5			0.00016				99.99984	
-2.5						100		
				99.9998				
-1.5				4				0.00016
-0.5	100							
0.5		100						
			99.9998					
1.5			4				0.00016	
2.5					100			
3.5				0.00016				99.99984

Table S6. Composition of the eigenstates of $\mathbf{1}$ in the m_s state basis.

Table S7. Composition of the eigenstates of $\mathbf{2}$ in the m_s state basis.

m _s \E(cm⁻¹)	0.000	0.000	0.234	0.234	0.693	0.693	1.356	1.356
-3.5			0.0153				99.9847	
-2.5						100		
-1.5				99.9847				0.0153
-0.5	100							
0.5		100						
1.5			99.9847				0.0153	
2.5					100			
3.5				0.0153				99.9847

Table S8. Composition of the eigenstates of **2** in the m_s state basis using alternative spin-hamiltonian.

m _S \E(cm⁻¹)	0.000	0.000	0.234	0.234	0.691	0.691	1.357	1.357
							99.9944	
-3.5		0.00001		0.00554			4	
					99.9683			
-2.5	0.03139		0.00026		3	0.00001		
				99.6280				
-1.5	0.00005	0.36631		5		0.00003	0.00556	
-0.5	99.58996	0.01228	0.36614		0.03163			
		99.5899						
0.5	0.01228	6		0.36614		0.03163		
			99.6280					
1.5	0.36631	0.00005	5		0.00003			0.00556

2.5		0.03139		0.00026	0.00001	99.96833	
							99.9944
3.5	0.00001		0.00554				4

Table S9. Composition of the eigenstates of **3** in the m_s state basis.

m _s \E(cm⁻¹)	0.000	0.000	0.123	0.123	0.356	0.356	0.673	0.673
-3.5			0.0071				99.9929	
-2.5						100		
-1.5				99.9929				0.0071
-0.5	100							
0.5		100						
1.5			99.9929				0.0071	
2.5					100			
3.5				0.0071				99.9929

m _S \E(cm⁻¹)	0.0000	0.0000	0.0551	0.0551	0.2078	0.2078	0.3611	0.3611
-3.5			0.4964				99.5036	
-2.5					100			
-1.5				99.5036				0.4964
-0.5	100							
0.5		100						
1.5			99.5036				0.4964	
2.5						100		
3.5				0.4964				99.5036

Table S10. Composition of the eigenstates of **4** in the m_s state basis.

Table S2. Composition of the eigenstates of **5b** in the m_s state basis.

m _S \E(cm⁻¹)	0.000	0.000	0.106	0.106	0.323	0.323	0.568	0.568
-3.5			0.1624				99.8376	
-2.5						100		
-1.5				99.8376				0.1624
-0.5		100						
0.5	100							
1.5			99.8376				0.1624	
2.5					100			

3.5		0.1624		99.8376

References

- (1) Ding, Y.-S.; Yu, K.-X.; Reta, D.; Ortu, F.; Winpenny, R. E. P.; Zheng, Y.-Z.; Chilton, N. F. Field- and Temperature-Dependent Quantum Tunnelling of the Magnetisation in a Large Barrier Single-Molecule Magnet. *Nat. Commun.* **2018**, *9* (1), 3134. https://doi.org/10.1038/s41467-018-05587-6.
- (2) Evans, W. J.; Olofson, J. M.; Ziller, J. W. Synthesis and Structure of the Cationic Tert-Butoxide Complexes Y3(OR)7Cl(THF)3+, Y2(OR)4Cl(THF)4+, and Y(OR)Cl(THF)5+: Representatives of a New Class of Yttrium Alkoxides. *J. Am. Chem. Soc.* **1990**, *112* (6), 2308–2314. https://doi.org/10.1021/ja00162a035.
- (3) Gupta, S. K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An Air-Stable Dy(Iii) Single-Ion Magnet with High Anisotropy Barrier and Blocking Temperature. *Chem. Sci.* **2016**, *7* (8), 5181–5191. https://doi.org/10.1039/C6SC00279J.
- (4) Rudowicz, C.; Chung, C. Y. The Generalization of the Extended Stevens Operators to Higher Ranks and Spins, and a Systematic Review of the Tables of the Tensor Operators and Their Matrix Elements. *J. Phys. Condens. Matter* **2004**, *16* (32), 5825–5847. https://doi.org/10.1088/0953-8984/16/32/018.
- (5) D Smith; J H M Thornley. The Use of `operator Equivalents'. *Proc. Phys. Soc.* **1966**, *89* (4), 779. https://doi.org/10.1088/0370-1328/89/4/301.
- (6) Newman, D. J.; Betty, N. G. Empirical Crystal Fields. In *Crystal Field Handbook*; Cambridge University Press, 2000. https://doi.org/10.1017/CB09780511524295.