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Figure S1. Analysis of neuronal mCA and mCG profiles associated with regional mCA and gene
expression at genomic regions. Related to Figure 1.

(A) Probability density functions illustrating the relative fluctuations compared to the genomic
mean for levels of mCA (green) or mCG (black) in all TADs genome-wide.

(B) Left, boxplots of adult mCA levels in gene bodies plotted for genes sorted into deciles of
adult TAD mCA for each gene (TAD mCA is determined by the average level of mCA in
the TAD in which the gene resides, see methods). Center, boxplot of adult mCA levels in
the bodies of genes for genes sorted into deciles of gene expression at 2 weeks of age.
Right, boxplot of adult TAD mCA levels for each gene sorted by deciles of gene
expression at 2 weeks of age. Comparison of left and center plots indicates that regional
TAD mCA set-point and 2-week gene expression in the early postnatal period are each
associated with ~2-fold variance in gene body mCA levels genome-wide. Right plot
shows little to no association between 2-week expression and regional TAD mCA set-
points.

(C) Left, boxplots of adult mCC levels in gene bodies plotted for genes sorted into deciles of
adult TAD mCC for each gene. Center, boxplot of adult mCC levels in the bodies of
genes for genes sorted into deciles of gene expression at 2 weeks of age. Right, boxplot
of adult TAD mCC levels for each gene sorted by deciles of gene expression at 2 weeks
of age for each gene.

(D) Left, boxplots of adult mCT levels in gene bodies plotted for genes sorted into deciles of
adult TAD mCT for each gene. Center, boxplot of adult mCT levels in the bodies of
genes for genes sorted into deciles of gene expression at 2 weeks of age. Right, boxplot
of adult TAD mCT levels for each gene sorted by deciles of gene expression at 2 weeks
of age. Consistent with low absolute levels of mCC and mCT in neurons, the trends for
these methylation sites corroborate mCA, but at a much lower signal magnitude and
dynamic range.

(E) Boxplots of mCG levels in gene bodies across deciles of gene expression (left) and TAD
mCG (right). mCG levels show much more limited fluctuations associated with these two
signals compared to mCA (e.g. compare to Figure 1B).

(F) Linear model predicted gene body mCA versus actual gene body mCA levels, with the
associated equation and coefficients for each independent variable shown. Similar
coefficient magnitudes supports a roughly equal contribution of these signals to gene
mCA levels.

(G) Boxplots of mCA levels at intragenic enhancers across deciles of gene expression (left)
and TAD mCA (right).

(H) Linear model predicted enhancer mCA versus actual enhancer mCA levels, with the
associated equation and coefficients for each independent variable shown.

Data are wild-type 2-week RNA-seq.S' 8-week DNA methylationS? and H3K27ac ChlP-seq.S3



Supplementary Figure 2
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Figure S2. Analysis of H3K36me2 profiles and deposition of neuronal DNA methylation. Related
to Figure 2.

(A) Cross-correlation analysis of H3K36me2 in and around all TADs in wildtype cortex. The
H3K36me2 ChlIP signal was assessed for 10 genomic windows within each TAD as well
as for 10 equally sized windows on either side of each TAD. The correlation between the
ChIP signal in these windows was assessed for all TADs genome-wide and plotted
based on position relative to the TAD (see methods). H3K36me2 signal shows a higher
correlation within TADs, compared to across TAD boundaries.

(B) Boxplots of adult mCA levels in TADs, gene bodies, and enhancers sorted into deciles of
H3K36me2 ChIP signal at 2 weeks of age.

(C) Boxplots of adult mCC levels in TADs, gene bodies, and enhancers sorted into deciles of
H3K36me2 ChIP signal at 2 weeks of age.

(D) Boxplots of adult mCT levels in TADs, gene bodies, and enhancers sorted into deciles of
H3K36me2 ChIP signal at 2 weeks of age.

(E) Comparison of H3K36me2 and DNMT3A ChlP signal at TADs, genes, and enhancers in
wildtype cortex.

(F) Comparison of H3K36me2 ChlP/Input and mCG/CG at TADs, genes, and enhancers in
wildtype cortex.

(G) Aggregate mCG levels at genes and enhancers across quintiles of TAD mCA levels.

(H) Aggregate mCG levels at genes and intragenic enhancers across quintiles of gene
expression.

() Top, broad genome browser view of ChlP-seq signal from wildtype cerebral cortex for
two H3K36me2 antibodies, illustrating concordance in megabase-scale fluctuations in
H3K36me2 across two independent experiments with ab2 showing reduced dynamic
range. Bottom, zoomed in genome browser view of two genes from figure 2 with different
levels of expression (highlighted in blue) and similar differential H3K36me2 ChIP signal
at each gene across two antibodies.

(J) Comparison of H3K36me2 ChlP signal across two antibodies at TADs, enhancers, and
genes. Lower count coverage in analysis of ab2 leads to lower correlations at small
scale regulatory regions such as enhancers.

(K) Comparison of H3K36me2 ab2 ChIP signal and mCA/CA at TADs, enhancers, and
genes, showing robust genome-wide correlations for these signals that support Figure
2C.

(L) Comparison of H3K36me2 ab2 and DNMT3A ChIP signal at TADs, genes, and
enhancers in wildtype cortex.

(M) Comparison of H3K36me2 ab2 ChlP signal and mCG/CG at TADs, genes, and
enhancers in wildtype cortex.

Data obtained from wildtype cerebral cortex at 2- and 8-weeks. 2-week, n = 2-3 bioreplicates for
H3K36me2 (per antibody) and DNMT3A ChlP-seq. 2-week RNA-seq data obtained from Lister
et al., 2013.5" 8-week DNA methylation data obtained from Stroud et al., 2017.52
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Figure S3. Analysis of mCA prediction by chromatin signals. Related to Figure 3.

(A) Genome browser view illustrating local enrichment of H3K4 methylation at active
regulatory elements (AREs) surrounding the Nudfv3 gene and relative depletion of mCA
and mCG at these sites.

(B) Smoothscatter plots showing relative correlation of adult mCA levels with early postnatal
H3K4 methylation marks at all active regulatory elements (AREs) across the genome
(see methods).

(C) Smoothscatter plots showing relative correlation of mCA with H3K4 methylation marks at
non-TSS active regulatory elements (AREs) across the genome (see methods).

(D) Smoothscatter plots showing relative correlation of mCG with H3K4 methylation marks
at all active regulatory elements across the genome (see methods).

(E) Smoothscatter plots showing relative correlation of mCG with H3K4 methylation marks
at non-TSS active regulatory elements across the genome (see methods).

(F) Left, random forest classifier predicted mCA versus actual mCA levels at promoters (+/-
500bp from TSS center, see methods). Right, feature importance level of each
chromatin signature to the predictive accuracy of mCA levels at promoters by the
random forest classifier. Bottom, feature elimination analysis of chromatin signatures in
the random forest classifier.

(G) Left, random forest classifier predicted mCA versus actual mCA levels at enhancers (+/-
500bp from enhancer center, see methods). Right, feature importance level of each
chromatin signature to the predictive accuracy of mCA levels at enhancers by the
random forest classifier. Bottom, feature elimination analysis of chromatin signatures in
the random forest classifier.

Data are from wildtype cerebral cortex at 2- and 8-weeks. 2-week, n = 2-3 bioreplicates for
H3K36me2, H3K4me1, H3K4me2, and DNMT3A ChIP-seq from this study. 2-week RNA-seq
data obtained from Lister et al., 2013.5" 2-week ChlP-seq for all other chromatin marks and 8-
week DNA methylation data obtained from Stroud et al., 2017.52
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Figure S4. H3K36me2, DNMT3A, and mCA are correlated and concordantly disrupted upon

NSD1 loss in primary cortical neurons (PCNs). Related to Figure 4.

(A) gRT-PCR of Nsd1 over Actb normalized to Ctrl shRNA sample for PCNs transduced with
one of two independent Nsd7 shRNAs each (n = 2 per condition).

(B) Genome browser view of DIV 12 ChIP-seq and DIV 18 DNA methylation from shCtrl PCNs.
There is strong concordance of fluctuations in H3K36me2, DNMT3A, and mCA across the
neuronal genome.

(C) Comparison of H3K36me2 ChlP/Input and mCA/CA at TADs, enhancers, and genes.

(D) Aggregate mCA, DNMT3A/Input, H3K36me2/Input levels at genes and intragenic enhancers
across quintiles of PCN gene expression.

(E) Comparison of changes in H3K36me2 and changes in DNMT3A (left) or changes in mCA
(right) for each 10kb region (top) and TAD (bottom) across two independent shNSD1
samples.

(F) Comparison of changes in H3K36me2 and changes in mCC (left) or changes in mCT (right)
for each 10kb region (top) and TAD (bottom) upon knockdown of NSD1.

Data are from primary cultured neurons infected with shCtrl or shNSD1 after DIV 1 and

collected at DIV 12 and DIV 18 for ChIP-seq and WGBS, respectively. Per time point: n = 2-4

bioreplicates for H3K36me2, DNMT3A ChlP-seq, and DNA methylation. TADs were derived

from Hi-C analysis of cortical neurons.S



Supplementary Figure 5
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Figure S5. Conditional deletion of Nsd1 in the brain leads to changes H3K36me2, DNMT3A

binding and DNA methylation. Related to Figure 5.

(A) Top, schematic outlining generation of the NSD1 cKO mutant allele. Bottom, genotyping
PCR of the wildtype, fIx/flx, and mutant alleles from tail or whole cortex at 2- and 8-weeks.

(B) Top, schematic outlining mMRNA splicing over excised exon 3 to generate shortened mRNA
with premature stop codon and truncated NSD1 protein in the NSD1 cKO. Bottom, genome
browser view of Nsd1 gene with sanger sequencing of RT-PCR products from NSD1 cKO
and wildtype whole cortex mRNA illustrating successful excision of targeted exon.

(C) PCR of NSD1 cKO and wildtype whole cortex cDNA illustrating successful excision of
targeted exon from the major NSD1 isoform. The major product generated corresponds to
the exon 2-4 spliced mRNA containing a premature stop codon.

(D) gRT-PCR of Nsd1 exons (3/4 junction, 5, or 11/12 junction) over Actb normalized to wildtype
from NSD1 cKO and wildtype whole cortex mRNA (Per condition, n = 6).

(E) Fold-changes in NSD1 mRNA transcript levels per exon in NSD1 cKO versus wildtype as
measured by RNA-seq of whole cortex total RNA. Exon number as indicated by UCSC
Genes mm9 gene model. Note no value shown for exon 1, as this noncoding exon shows no
expression in wild-type or mutant samples.

(F) Quantification of NSD1 fluorescent signal from NeuN+ NSD1 cKO and wildtype cortical
nuclei at 2-weeks (Per condition, n = 2).

(G) Representative images of immunohistochemistry in NSD1 cKO and wildtype coronal brain
sections at 2-weeks. Scale bar = 50um. NSD1 antibody shows substantial non-specific non-
nuclear background but displays loss of nuclear signal, supporting disruption of NSD1 in
these mice.

(H) Left, representative immunoblot from NSD1 cKO and wildtype cortical whole cell lysate at 2-
weeks (lane 1 ladder not shown). Right, quantification of relative immunoblot signal of
H3K36me2 over total Histone H3 normalized to wildtype (Per condition, n = 3).

() Mean percent global change in H3K36me2, DNMT3A, and mCA observed in the NSD1 cKO
using ChIP-Rx normalization.S® Each point denotes a batch of bioreplicates were processed,
with two colors (dark orange = ab1, yellow = ab2) indicating different antibodies used for the
H3K36me2 group.

(J) Smoothscatter showing changes in H3K36me2 across two H3K36me2 ChIP antibodies (left)
as well as changes in H3K36me2 ab2 and DNMT3A (center) or mCA (right) for each TAD.
TADs with significantly reduced H3K36me2 by edgeR (FDR<0.1) analysis of H3K36me2
ab1 ChIP are highlighted in blue.

(K) Smoothscatter showing changes in H3K36me2 and mCC (left) or mCT (right) for each TAD.
TADs with significantly reduced H3K36me2 by edgeR (FDR<0.1) are highlighted in blue.

(L) DNA methylation levels at TADs with significantly changed H3K36me2 (edgeR, FDR <0.1)
and kilobase-scale genomic elements that reside within these TADs in NSD1 cKO and
wildtype cerebral cortex.

Data are from NSD1 cKO and control mouse whole cortex at two or eight weeks. Per time point:

2-weeks, n = 5 bioreplicates for H3K36me2 ab1 (n = 2 for H3K36me2 ab2), H3K36me3,

DNMT3A ChIP-Rx. 8-weeks, n = 3 bioreplicates for DNA methylation, n = 6 bioreplicates for

total RNA-seq. TADs were derived from Hi-C analysis of cerebral cortex.S*5¢ *p < 0.05, **p <

0.01, #p < 10°%, tp < 10'°, §p < 105



Supplementary Figure 6
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Figure S6. Analysis of altered gene expression and associated epigenetic changes upon

conditional deletion of Nsd7 in the brain. Related to Figure 6.

(A) Fold-changes of H3K36me2, H3K36me3, DNMT3A, and DNA methylation at the top 500
upregulated and top 500 downregulated genes identified (DESeq2, ranked by FDR) by
RNA-seq in the NSD1 cKO. (Wilcoxon test).

(B) Fold-changes of H3K36me2, H3K36me3, DNMT3A, and DNA methylation at TADs that
overlap significantly dysregulated genes in the NSD1 cKO.

(C) Odds ratio of the overlap of NSD1 cKO significantly dysregulated genes with TADs showing
significantly changed H3K36me2. (Fisher’s exact test, observed versus background
estimated by resampling).

(D) Odds ratio of the overlap of NSD1 cKO significantly dysregulated genes with DNMT3AKO*
and DNMT3A Baf53-cKO significantly dysregulated genes.S*S7 (Fisher's exact test,
observed versus background estimated by resampling).

(E) RRHO®&® of all gene expression changes in the NSD1 cKO versus the DNMT3A Baf53-
cKO in which DNMT3A is deleted from all postmitotic neurons and mCA is blocked from
accumulating genome-wide.S?

(F) Top five Gene Ontology terms from “Biological Process”, “Molecular Function”, and “Cellular
Components” from RRHO-determined “dd” (downregulated-downregulated) genes from
NSD1 cKO and DNMT3AK®* using clusterProfiler.5105"

Data are from NSD1 cKO and control mouse whole cortex at two or eight weeks. Per time point:

2-weeks, n = 5 bioreplicates for H3K36me2, H3K36me3, DNMT3A ChIP-Rx. 8-weeks, n =3

bioreplicates for DNA methylation, n = 6 bioreplicates for total RNA-seq. TADs were derived

from Hi-C analysis of cerebral cortex.53S¢ *p < 0.05, **p < 0.01, #p < 105, tp < 107°, §p < 105,
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