

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The TyG index on admission was associated with a better long-term mortality of critically ill patients

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-065256
Article Type:	Original research
Date Submitted by the Author:	31-May-2022
Complete List of Authors:	Dai, Lingli; Jiangsu Province Geriatric Hospital Yu, Yun; Jiangsu Province Geriatric Hospital Wang, Kunling; Jiangsu Province Geriatric Hospital Hu, Cuining; Jiangsu Province Geriatric Hospital Wu, Dan; Jiangsu Province Geriatric Hospital Shan, Shan; Jiangsu Province Geriatric Hospital,
Keywords:	DIABETES & ENDOCRINOLOGY, General endocrinology < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4	1	The TyG index on admission was associated with a better long-term mortality of
5		· · · ·
6	2	aniti an Use illen ation to
7	2	critically in patients
8		
9	3	
10		
11	4	Lingli Dai ¹ , Yun Yu ¹ , Kunlin Wang ¹ , Cuining Hu ¹ , Dan Wu ¹ , Shan Shan ¹ *
12	5	
13	6	1 Department of Endocrinology and Matabolism Jiangsu Province Official Hospital
14	0	1. Department of Endoerniology and Wetabonsin, Stangsu Flowince Official Hospital,
15	7	Geriatric Hospital of Nanjing Medical University,210000 Nanjing, China.
10	8	
17	9	*Corresponding to
10	10	Shan Shan Department of Endocrinology and Metabolism Jiangsu Province Official
20	10	Shan Shan, Department of Endoermology and Metaoonsin, Shangsu Hovinee Official
21	11	Hospital, Geriatric Hospital of Nanjing Medical University,210000 Nanjing, China. E-
22	12	mail: shanshan@lista.cc
23	10	
24	13	
25		
26	14	
27		
28	15	
29	13	
30		
31	16	
32		
37	17	
35	1 /	
36		
37	18	
38		
39	19	
40		
41	•	
42	20	
43		
44	21	
45 46		
40 47	22	
т/ 48	<u> </u>	
49		
50	23	
51		
52	24	
53	_ ·	
54	0.5	
55	25	
56		
57	26	
58		
59	77	
υU	21	
		1

3 4 5	28	Abstract
6 7	29	Aim: To evaluate the association of triglycerides glucose (TyG) index on admission with outcomes
8 9 10	30	of critically ill patients.
11 12 13	31	Methods: We conducted a retrospective study that included all intensive care unit (ICU) admissions
14 15	32	extracted from the Medical Information Mart for Intensive Care III database (MIMIC III). The TyG
16 17 18	33	index was calculated as ln [triglycerides (mg/dL) *glucose (mg/dL)/2]. The primary endpoint was
19 20 21	34	360-day mortality. Multivariable Cox regression analysis was used to explore the prognostic effect
21 22 23	35	of TyG index.
24 25 26	36	Results: A total of 3902 patients with an average age of 63.1 ± 15.9 years old were enrolled,
27 28	37	including 1623 (41.6%) females. The 360-day mortality were lower in a higher TyG group.
29 30 31	38	Compared with the lowest TyG group, the hazards ratio of 360-day mortality was 0.79 (95%
32 33	39	confidence interval [0.66, 0.95]; p=0.011) in the fully adjusted Cox model and 0.71 ([0.59, 0.85];
34 35 36	40	p<0.001) in the stepwise Cox model. In the subgroup analysis, an interaction effect was detected
37 38 39	41	between TyG index and gender.
40 41	42	Conclusions: The TyG index was negatively associated with the risk of 360-day mortality in
42 43 44	43	critically ill patients.
45 46	44	Keywords: TyG index; mortality; ICU; critically illness; cohort study
47 48 49	45	
50 51 52	46	
53 54	47	
55 56 57	48	
58 59	49	
60		2

50 Introduction

The triglyceride glucose (TyG) index is calculated using fasting triglyceride and fasting glucose measurements. It has been suggested as a surrogate marker of insulin resistance (IR)^{1, 2}. Critical illness is characterized by a hypermetabolic state associated with increased mortality due to enhanced IR^{3, 4}.

Several studies have examined the associations between IR and mortality in critically ill patients. Nathan found that IR was a predictor for mortality in traumatic brain injury⁵ and increased the mortality of surgical care population⁶. Recently, a study concluded that the TyG index was a potential predictor for hospital and ICU mortality in critically ill stroke patients⁷. To the best of our knowledge, there is no research to evaluate the association of TyG index on intensive care unit (ICU) admission with long-term outcome of critically ill patients.

61 Thus, we performed a retrospective cohort study to clarify whether there is an association between

- 62 admission TyG index and long-term outcomes in critically ill patients.

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
17	
∠U ⊃1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
30 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
72 // 2	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
57	
54	
22	
56	
57	
58	
59	
60	

72	Materials	and	methods
----	-----------	-----	---------

73 **Participants**

74 This was a retrospective cohort study using data from the MIMIC database, which is a large publicly 75 available database consisting of patients in the ICU of Beth Israel Deaconess Medical Center 76 between 2001 and 2012. The database was approved from the institutional review boards of both 77 Beth Israel Deaconess Medical Center and Massachusetts Institute of Technology Affiliates. 78 Adult patients of first hospital and ICU admission with complete triglycerides and glucose records 79 were included, but patients staying at ICU for < 24 hours were excluded. The selection process was 80 shown in Figure 1. Our study was approved by the Review Boards of Jiangsu Province Official 81 Hospital (201921A011). 82 Variables 83 We used PostgreSQL 13 to extract data from the database. The baseline characteristics within the 84 first 24 hours after ICU admission included the following: age, gender, ethnicity, weight, severity 85 measured by Sequential Organ Failure Assessment (SOFA) score, Simplified Acute Physiology 86 Score II (SAPS II) score, laboratory examination including white blood cell (WBC), platelet, 87 potassium, sodium, triglycerides, and glucose, treatment including albumin infusion, mechanical 88 ventilation, administration of vasopressors, and dialysis, comorbidities including coronary artery 89 disease (CAD), hypertension (HBP), diabetes (DM) and chronic obstructive pulmonary disease 90 (COPD), as well as the length of stay (LOS) in hospital and in ICU.

91 Outcomes

92 The primary exposure was the triglycerides and glucose (TyG) index, defined as In 93 (triglycerides*glucose/2). The outcomes of the present study were in-hospital mortality, 30-day

94 mortality and 360-day mortality.

95 Statistical analysis

Continuous variables are expressed as the mean \pm standard deviation or median (interquartile range), as appropriate, and categorical variables are shown as number (proportions). One way analysis of variance and the χ^2 tests were used to compare the difference among groups. The Kaplan-Meier analysis was used to explore the association between TyG quartile and 30-day mortality and 360-day mortality. Multivariate modeling of the association between TyG index (as continuous and categorical variables) and 360-day mortality was performed with Cox regression. Baseline variables that were considered clinically relevant or associated with the TyG index (P<0.05) were entered into a multivariate Cox regression model, while all baseline variables were entered into a stepwise model. Subgroup analyses according to gender, age and mechanical ventilation were performed. All statistical analysis was performed by R software version 3.6. **Patient and Public Involvement** No patient involved.

BMJ Open

Results

117	The present study included 3902 patients admitted into ICU. The baseline characteristics of the
118	study population according to TyG quartile were shown in the Table 1. Participants with a higher
119	TyG index tended to have a higher weight, WBC, platelet and more percentage of DM and
120	mechanical ventilation, as well as longer LOS in hospital and LOS in hospital (Figure 2A&B). In
121	addition (Figure 3A), there was less 360-day mortality (P=0.002) in a higher TyG group while no
122	difference was observed in in-hospital mortality (P=0.866), and 30-day mortality (P=0.244).

124 Table 1. Baseline characteristics across the quartile of TyG index.

Variables	Q1 (n=963)	Q2 (n=987)	Q3 (n=969)	Q4 (n=983)	Р
Age, years	66.84 (15.61)	64.63 (15.04)	62.82 (15.96)	58.22 (15.77)	< 0.001
Female, %	400 (41.5)	441 (44.7)	395 (40.8)	387 (39.4)	0.105
Ethnicity, %					0.073
White	738 (76.6)	737 (74.7)	700 (72.2)	722 (73.4)	
Asian	30 (3.1)	18 (1.8)	19 (2.0)	17 (1.7)	
Black	6 (0.6)	5 (0.5)	3 (0.3)	2 (0.2)	
Hispanic	25 (2.6)	31 (3.1)	28 (2.9)	37 (3.8)	
Other	164 (17.0)	196 (19.9)	219 (22.6)	205 (20.9)	
Weight, kg	76.8 (21.6)	80.9 (23.1)	84.2 (24.5)	90.9 (29.3)	< 0.001
CAD, %	321 (33.3)	334 (33.8)	324 (33.4)	299 (30.4)	0.345
HBP, %	402 (41.7)	455 (46.1)	429 (44.3)	431 (43.8)	0.285
DM, %	206 (21.4)	242 (24.5)	297 (30.7) 🧹	418 (42.5)	< 0.001
COPD, %	16 (1.7)	15 (1.5)	16 (1.7)	15 (1.5)	0.99
SOFA score	3 [2, 6]	3 [1, 6]	4 [2, 6]	4 [2, 7]	< 0.001
SAPS II score	35 [27, 45]	34[25,45.5]	34 [26, 44]	34 [25, 46]	0.7
WBC, 10 ⁹ /L	10.94 (6.14)	11.76 (5.59)	11.86 (6.54)	12.72 (9.96)	< 0.001
Platelet, 109/L	219.4 (117.0)	238.0 (128.8)	240.9 (134.5)	245.3 (157.8)	< 0.001
Potassium, mmol/L	4.02 (0.70)	4.03 (0.53)	4.04 (0.56)	4.04 (0.54)	0.937
Sodium, mmol/L	138.8 (4.90)	139.18 (4.52)	139.41 (4.70)	139.16 (5.05)	0.075
Triglycerides, mg/dL	68.0 (22.2)	107.6 (28.7)	152.5 (49.6)	337.1 (330.9)	< 0.001
Glucose, mg/dL	106.8 (26.2)	122.8 (30.5)	138.2 (43.7)	176.8 (87.3)	< 0.001
Albumin, g	38.2 (26.5)	39.5 (24.3)	43.9 (32.9)	42.1 (23.5)	0.750
Mechanical	381 (39.6)	439 (44.5)	500 (51.6)	582 (59.2)	< 0.001
Ventilation, %					
Vasopressors, %	28 (2.9)	28 (2.8)	32 (3.3)	28 (2.8)	0.92

	Dialysis, %	87 (9.0)	85 (8.6)	74 (7.6)	111 (11.3)	0.037
	LOS in Hospital, day	8.2 [4.8, 18.1]	9.0 [4.7, 17.0]	10.6 [5.0, 20.1]	12.0 [5.6, 22.8]	< 0.001
	LOS in ICU, day	3.4 [2.0, 8.9]	4.2 [2.0, 10.0]	4.8 [2.1, 12.0]	6.1 [2.4, 13.4]	< 0.001
	In-hospital	152 (15.8)	143 (14.5)	147 (15.2)	145 (14.8)	0.866
	mortality, %					
	30-day mortality, %	149 (15.5)	167 (16.9)	140 (14.4)	136 (13.8)	0.244
	360-day mortality, %	301 (31.3)	280 (28.4)	286 (29.5)	234 (23.8)	0.002
125	Q1: TyG<8.51, Q2: 8.51	≤TyG<8.95, Q3: 8.	95≤TyG<9.44, Q4:	TyG≥9.44. CAD,	coronary artery dis	eases; HBP
26	hypertension; DM, diabe	etes mellites; COPE	D, chronic obstructi	ve pulmonary dise	ases; SOFA, Sequ	ential Organ
27	Failure Assessment; SAP	S II, Simplified Act	ute Physiology Scor	e II; WBC, white b	lood cell; LOS, len	gth of stay.
28						
29	The Kaplan-Meier and	alysis was perform	med to explore th	ne prognostic effe	ect of TyG index	on 30-day
130	or 360-day mortality	(Figure 3B&C).	As shown, a hig	her TyG index w	as associated wi	th a higher
131	risk of 360-day morta	lity (P for log-rat	nk=0.006).			
132	As shown in Table 2 ,	we constructed	three models for	analyzing the pro-	ognostic role of	TyG index
33	in 360-day mortality	. When compar	ed with the low	vest quartile, the	e highest quarti	le of TyC
.34	decreased the risk of	mortality (HR	0.79, 95% CI [(0.66, 0.95]; P=0.	011) in the mu	ltivariable
135	adjusted model. The	stepwise model a	also showed the	same trend (HR	0.71, 95%CI [0	.59, 0.85]
136	P<0.001). Per 1-unit	increasement of	TyG was associ	ated with 0.85-fe	old lower risk o	f mortality
137	(HR 0.85, 95% CI [0.	79, 0.92]; P<0.00)1).			
138						

Table 2. Multivariable Cox regression analyzing TyG index and 360-day mortality.

	Cases	Ν	Unadjusted	1	Adjusted [#]		Stepwise'	k
			HR	Р	HR	Р	HR	Р
Q1	301	963	Ref	-				
Q2	280	987	0.91 [0.77, 1.07]	0.259	0.97 [0.82, 1.14]	0.717	0.95 [0.81, 1.12]	0.548
Q3	286	969	0.93 [0.79, 1.10]	0.412	1.04 [0.88, 1.23]	0.633	0.98 [0.83, 1.16]	0.857
Q4	234	983	0.74 [0.63, 0.88]	0.001	0.79 [0.66, 0.95]	0.011	0.71 [0.59, 0.85]	< 0.001
Continuous	1101	3902	0.89 [0.82, 0.96]	0.003	0.93 [0.86, 1.00]	0.063	0.85 [0.79, 0.92]	< 0.001

Adjusted for age, gender, ethnicity, weight, CAD, COPD, HBP, DM, SOFA score, SAPSII score, WBC, platelet,

creatine, ventilation, vasopressors, and dialysis.

*All variables except for outcomes were entered.

Subgroup analysis (Table 3) showed that an interaction was observed between TyG index and
gender (P=0.03). In male patients, TyG was negative associated with 360-day mortality (HR 0.86,
95% CI [0.78,0.95]; P=0.004) while the association was reversed in female subgroup (HR 1.03, 95%
CI [0.91,1.16]; P=0.681).

149 Table 3. Subgroup analysis of TyG index and 360-day mortality.

	HR	P for trend	P for interaction
Gender			0.03
female	1.03 [0.91, 1.16]	0.681	
male	0.86 [0.78, 0.95]	0.004	
Age			0.13
≤65	0.83 [0.73, 0.94]	0.003	
>65	0.96 [0.87, 1.07]	6.472	
Ventilation			0.357
No	1.01 [0.87, 1.17]	0.868	
Yes	0.91 [0.83, 1.00]	0.057	
		` Ø.	
Disquestion			

151 Discussion

152 This is the first study to evaluate the association of the TyG index with long-term mortality in 153 critically ill patients. We found that TyG index was negatively associated with 360-day mortality, 154 not in-hospital or 30-day mortality of critically ill patients.

The TyG index has been well-recognized as a simple and reliable surrogated of IR ⁸. It does not require levels of insulin and may be applicable to all of the patients and healthy population. Several studies reported that TyG index predicted outcomes in patients with acute coronary syndrome ⁹ and ischemic stroke ¹⁰. Only one study found that TyG index was linearly associated with short-term mortality in ICU stroke after adjusting for confounding factors ⁷. However, we did not find a positive

correlation between TyG index and in-hospital and 30-day mortality. Contrary, we demonstrated that TyG could be a protective predictor in long-term mortality in critically ill patients. The difference could be that we included more diseases in ICU and followed a longer time. The mechanism underlying the relationship between the TyG index and critically illness is not fully elucidated. Insulin resistance is an adaptive mechanism that prioritizes utilization of energy for immune response in the presence of infection or injury¹¹. However, the underlying molecular mechanisms involved in this association should be further investigated in the future study. Our study still has some limitations. First, this was a retrospective analysis derived from an observational study, which could not definitively establish causality. Second, we did not measure HOMA-IR because the examination of insulin levels is not included. Third, we only included the baseline levels of plasma glucose and triglyceride, which could be affected by the use of antidiabetic and lipid-lowering drugs. Therefore, it is unknown whether the change in the TyG index could have predicted the mortality. Conclusions We found that TyG index was negatively associated with 360-day mortality, which could be a protective predictor in the long-term outcome in critically ill patients. **Declarations** Ethics approval and consent to participate The protocol was approved by the Institutional Review Board of both Beth Israel Deaconess Medical Center and Massachusetts Institute of Technology Affiliates and no new data was added. All methods were carried out in accordance with Helsinki regulations. The need for informed

1		
2		
3	107	consent was waived off by the Institutional Paview Poard of both Path Israel Decompose Medical
4 5	162	consent was warved on by the institutional Review Board of both Beth Israel Deaconess Medical
6	100	
7	183	Center and Massachusetts Institute of Technology Affiliates. Our study was approved by the Review
8		
9 10	184	Boards of Jiangsu Province Official Hospital (201921A011).
10		
12	185	Consent for publication
13		
14	186	Yes
15	100	
16 17	107	Availability of data and motorials
17	10/	Availability of data and materials
19		
20	188	The datasets used during the current study available from the corresponding author on reasonable
21		
22	189	request.
23		
24 25	190	Competing interests
26		
27	191	The authors have nothing to disclose regarding conflict of interest with respect to this manuscript
28	171	The dualors have nothing to disclose regarding connector interest with respect to this manuscript.
29	102	
30	192	runding
32		
33	193	None.
34		
35	194	Authors' contributions
30		
38	195	D LL and Y Y made the statistical analysis; W KL and H CN wrote the original manuscript; S S
39		
40	196	and W D designed the study. All authors approved it.
41	- / •	
42 43	107	Astrowledgements
44	197	Acknowledgements
45	100	
46	198	None.
47		
48	199	
49 50		
51	200	References
52	• • •	
53	201	1. Guerrero-Romero F, Villalobos-Molina R, Jimenez-Flores JR, et al. Fasting Triglycerides and
54 55	202	Glucose Index as a Diagnostic Test for Insulin Resistance in Young Adults. Arch Med Res.
55 56	203	2016;47(5):382-387. doi: 10.1016/j.arcmed.2016.08.012
57	204	2. Vasques AC, Novaes FS, de Oliveira Mda S, et al. TyG index performs better than HOMA in a
58	205	Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93(3):e98-
59	206	e100. doi: 10.1016/j.diabres.2011.05.030
60		
		10

1		
2	• • =	
4	207	3. Zauner A, Nimmerrichter P, Anderwald C, et al. Severity of insulin resistance in critically ill
5	208	medical patients. <i>Metabolism</i> . 2007;56(1):1-5. doi: 10.1016/j.metabol.2006.08.014
6	209	4. Saberi F, Heyland D, Lam M, et al. Prevalence, incidence, and clinical resolution of insulin
7	210	resistance in critically ill patients: an observational study. JPEN J Parenter Enteral Nutr.
o 9	211	2008;32(3):227-35. doi: 10.1177/0148607108316195
10	212	5. Mowery NT, Gunter OL, Guillamondegui O, et al. Stress insulin resistance is a marker for mortality
11	213	in traumatic brain injury. J Trauma. 2009;66(1):145-51; discussion 151-3. doi:
12	214	10.1097/TA.0b013e3181938c5e
13 14	215	6. Mowery NT, May AK, Collier BC, et al. Glucose metabolism, not obesity, predicts mortality in
15	216	critically ill surgical patients. Am Surg. 2010:76(12):1377-83.
16	217	7 Zhang B Liu L Ruan H et al Triglyceride-Glucose Index Linked to Hospital Mortality in
17	218	Critically III Stroke: An Observational Multicentre Study on eICU Database <i>Front Med (Lausanne)</i>
18	210	2020.7:501026 doi: 10.2280/fmod 2020.501026
20	219	2020,7.591050. doi: 10.5589/inited.2020.591050
21	220	8. Du I, Yuan G, Zhang M, et al. Chinical userulness of lipid ratios, visceral adiposity indicators, and
22	221	the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol.
23	222	2014;13:146. doi: 10.1186/s12933-014-0146-3
24 25	223	9. Ma X, Dong L, Shao Q, et al. Triglyceride glucose index for predicting cardiovascular outcomes
26	224	after percutaneous coronary intervention in patients with type 2 diabetes mellitus and acute coronary
27	225	syndrome. Cardiovasc Diabetol. 2020;19(1):31. doi: 10.1186/s12933-020-01006-7
28	226	10. Shi W, Xing L, Jing L, et al. Value of triglyceride-glucose index for the estimation of ischemic
29	227	stroke risk: Insights from a general population. Nutr Metab Cardiovasc Dis. 2020;30(2):245-253. doi:
30	228	10.1016/j.numecd.2019.09.015
32	229	11. Dhar A, Castillo L. Insulin resistance in critical illness. Curr Opin Pediatr. 2011;23(3):269-74. doi:
33	230	10.1097/MOP.0b013e3283464b3e
34	231	
35 36	232	
37		
38	233	
39		
40 41	234	
42		
43	235	
44		
45 46	236	
47		
48	237	
49		
50 51	238	
52		
53	239	
54	<u> </u>	
55 56	240	
57	∠40	
58	2.43	
59	241	
60		
		11

242 Figure legends

- **Figure 1.** The flow diagram of study population.
- Figure 2. The LOS of ICU (A) and LOS (B) of hospital across TyG quartiles. LOS, los of stay.
- Figure 3. The in-hospital mortality between TyG groups (A). The Kaplan-Meier analysis of 30-day
- 246 mortality (B), and 360-day mortality (C).

tor occite terms only

277x244mm (192 x 192 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 3. The in-hospital mortality between TyG groups (A). The Kaplan-Meier analysis of 30-day mortality (B), P <0.05: Q2 vs. Q1, Q2 vs. Q3, Q2 vs. Q4; and 360-day mortality (C), P<0.05: Q1 vs. Q2, Q1 vs. Q3, Q1 vs. Q4, Q2 vs. Q4, Q3 vs. Q4.

160x115mm (300 x 300 DPI)

STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			•
Background/rationale	2	Explain the scientific background and rationale for the investigation being	3
C		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			1
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
6		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	4
1		methods of selection of participants. Describe methods of follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and	
		number of exposed and unexposed	
		Case-control study—For matched studies, give matching criteria and the	
		number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	4
		and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4
measurement		of assessment (measurement). Describe comparability of assessment	
		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	4
Study size	10	Explain how the study size was arrived at	4
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	4
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	5
		(d) Cohort study—If applicable, explain how loss to follow-up was	5
		addressed	
		Case-control study—If applicable, explain how matching of cases and	
		controls was addressed	
		Cross-sectional study—If applicable, describe analytical methods taking	
		account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	5

Continued on next page

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
3/
25
22
36
37
38
39
40
41
42
42 42
4) 44
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59
55

1

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	6
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	6
		(c) Consider use of a flow diagram	6
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	6
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	6
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	6
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	6
		Case-control study-Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	6
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	6
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	6
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	6
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	7
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	7
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	7
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	7
Other information	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	8
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Association between TyG index and long-term mortality of critically ill patients: a retrospective study based on the MIMIC database

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-065256.R1
Article Type:	Original research
Date Submitted by the Author:	09-Sep-2022
Complete List of Authors:	Dai, Lingli; Jiangsu Province Geriatric Hospital Yu, Yun; Jiangsu Province Geriatric Hospital Wang, Kunling; Jiangsu Province Geriatric Hospital Hu, Cuining; Jiangsu Province Geriatric Hospital Wu, Dan; Jiangsu Province Geriatric Hospital Shan, Shan; Jiangsu Province Geriatric Hospital,
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Emergency medicine, Epidemiology
Keywords:	DIABETES & ENDOCRINOLOGY, General endocrinology < DIABETES & ENDOCRINOLOGY, EPIDEMIOLOGY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3		
4	1	Association between TvG index and long-term mortality of critically ill natients:
5	1	Association between 198 maex and long term mortanty of entieding in patients.
6		
7	2	a retrospective study based on the MIMIC database
8		
9	2	
10	5	
11	4	Lingli Dai ¹ Yun Yu ¹ Kunlin Wang ¹ Cuining Hu ¹ Dan Wu ¹ Shan Shan ¹ *
12		Dingh Dur, Tun Tu, Humini (Tung, Cuming Hu, Dun (Tu, Shun Shun
13	3	
14	6	1.Department of Endocrinology and Metabolism, Jiangsu Province Official Hospital,
15	7	Geriatric Hospital of Nanjing Medical University,210000 Nanjing, China.
16	8	
17	0	*Corresponding to
18	9	Corresponding to
19	10	Shan Shan, Department of Endocrinology and Metabolism, Jiangsu Province Official
20	11	Hospital, Geriatric Hospital of Nanjing Medical University,210000 Nanjing, China. E-
21	12	mail: shanshan@lista.cc
22	12	
23	13	
24		
25		
20	14	
27		
20	15	
30		
31	1.6	
32	16	
33		
34	17	
35		
36	10	
37	18	
38		
39	19	
40		
41	20	
42	20	
43		
44 45	21	
45		
40	22	
47 70		
40 40		
50	23	
51		
52	24	
53	24	
54		
55	25	
56		
57	26	
58	20	
59	-	
60	27	
		1

3 4 5	28	Abstract
6 7 8	29	Objective To evaluate the association of triglycerides glucose (TyG) index on admission with
9 10	30	outcomes of critically ill patients.
11 12 13	31	Design A retrospective study.
14 15	32	Setting A population-based cohort study of Medical Information Mart for Intensive Care III
16 17 18	33	database (MIMIC III).
19 20 21	34	Participants: All intensive care unit (ICU) admissions were extracted from MIMIC III.
22 23	35	Main outcome measures The TyG index was calculated as ln [triglycerides (mg/dL) *glucose
24 25 26	36	(mg/dL)/2]. The primary endpoint was 360-day mortality.
27 28	37	Results A total of 3902 patients with an average age of 63.1±15.9 years old were enrolled, including
29 30 31	38	1623 (41.6%) females. The 360-day mortality was lower in a higher TyG group. Compared with the
32 33	39	lowest TyG group, the hazards ratio of 360-day mortality was 0.79 (95% confidence interval [0.66,
34 35 36	40	0.95]; p=0.011) in the fully adjusted Cox model and 0.71 ([0.59, 0.85]; p<0.001) in the stepwise
37 38 30	41	Cox model. In the subgroup analysis, an interaction effect was detected between TyG index and
40 41	42	gender.
42 43 44	43	Conclusions A lower TyG index was associated with the risk of 360-day mortality in critically ill
45 46	44	patients, which could be a predictor of long-term survival of critically ill patients.
47 48 49	45	Keywords: TyG index; mortality; ICU; critically illness; cohort study
50 51	46	
52 53 54	47	Strengths and limitations of this study
55 56 57	48	To the best of our knowledge, this is the first study assessing the association between TyG index
58 59 60	49	and long-term mortality of critically ill patients.

3 4 5	50	This was a retrospective analysis, which could not definitively establish causality.
6 7	51	We only included the baseline levels of plasma glucose and triglyceride, which could be affected
8 9 10	52	by the use of antidiabetic and lipid-lowering drugs.
11 12 13	53	
14 15	54	
16 17 18	55	
19 20 21	56	
22 23	57	
24 25 26	58	
27 28 20	59	
30 31	60	
32 33 34	61	
35 36	62	
37 38 39	63	
40 41 42	64	
43 44	65	
45 46 47	66	
48 49 50	67	
51 52	68	
53 54 55	69	
56 57 58	70	
59 60	71	
		3

 2	
2 3	
4	
5	
6	
7	
8	
9 10	
11	
12	
13	
14	
15	
10	
18	
19	
20	
21	
22 23	
24	
25	
26	
27 20	
28 29	
30	
31	
32	
33	
34 35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46 47	
48	
49	
50	
51	
52 52	
53 54	
55	
56	
57	
58 50	
60	
55	

72 Introduction

73 The triglyceride glucose (TyG) index is calculated using fasting triglyceride and fasting glucose 74 measurements. It has been suggested as a surrogate marker of insulin resistance (IR)^{1, 2} and has been 75 found associated to bladder cancer that is widespread among men³. Critical illness is characterized 76 by a hypermetabolic state associated with increased mortality due to enhanced IR^{4, 5}. 77 Several studies have examined the associations between IR and mortality in critically ill patients. 78 Nathan found that IR was a predictor for mortality in traumatic brain injury⁶ and increased the 79 mortality of surgical care population⁷. Recently, a study concluded that the TyG index was a 80 potential predictor for hospital and ICU mortality in critically ill stroke patients⁸. To the best of our 81 knowledge, there is no research to evaluate the association of TyG index on intensive care unit 82 (ICU) admission with long-term outcomes of critically ill patients. 83 Thus, we performed a retrospective cohort study to clarify whether there is an association between

- 84 TyG index and long-term outcomes in critically ill patients.
- 86

85

88

89

90

87

- 91 92
- 93

94 Materials and methods

Participants

This was a retrospective cohort study using data from the MIMIC database, which is a large publicly available database consisting of patients in the ICU of Beth Israel Deaconess Medical Center between 2001 and 2012. The database was approved from the institutional review boards of both Beth Israel Deaconess Medical Center and Massachusetts Institute of Technology Affiliates. Adult patients of first hospital and ICU admission with complete triglycerides and glucose records were included, but patients staying at ICU for < 24 hours were excluded. The selection process was shown in Figure 1. Our study was approved by the Review Boards of Jiangsu Province Official Hospital (201921A011). Variables We used PostgreSQL 13 to extract data from the database. The baseline characteristics within the first 24 hours after ICU admission included the following: age, gender, ethnicity, weight, severity measured by Sequential Organ Failure Assessment (SOFA) score, Simplified Acute Physiology Score II (SAPS II) score, laboratory examination including white blood cell (WBC), platelet, potassium, sodium, triglycerides, and glucose, treatment including albumin infusion, mechanical ventilation, administration of vasopressors, and dialysis, comorbidities including coronary artery disease (CAD), hypertension (HBP), diabetes (DM), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD) as well as the length of stay (LOS) in hospital and in ICU.

114 Outcomes

115 The primary exposure was the triglycerides and glucose (TyG) index, defined as In

BMJ Open

3	
Δ	
ر ح	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

(triglycerides*glucose/2). The outcomes of the present study were in-hospital mortality, 30-day
mortality and 360-day mortality.

118 Statistical analysis

119 Continuous variables are expressed as the mean \pm standard deviation or median (interquartile range), 120 as appropriate, and categorical variables are shown as number (proportions). One way analysis of 121 variance and the χ^2 tests were used to compare the difference among groups. The Kaplan-Meier 122 analysis was used to explore the association between TyG quartile and 30-day mortality and 360-123 day mortality. Multivariate modeling of the association between TyG index (as continuous and 124 categorical variables) and 360-day mortality was performed with Cox regression. Baseline variables 125 that were considered clinically relevant or associated with the TyG index (P<0.05) were entered into a multivariate Cox regression model, while all baseline variables were entered into a stepwise 126 127 model. Subgroup analyses according to gender, age and mechanical ventilation were performed. All 128 statistical analysis was performed by R software version 3.6. Patient and public involvement 129 130 Patients and the public were not directly involved in the design or implementation of this study, since we used previously collected data. 131 132 133 134 135

137

136

1	
2	
2	
1	
-+ 5	
с С	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
27	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 E 1	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

138	Results
138	Results

139	The present study included 3902 patients admitted into ICU. The baseline characteristics of the
140	study population according to TyG quartile were shown in the Table 1. Participants with a higher
141	TyG index tended to have a higher weight, WBC, platelet and more percentage of DM and
142	mechanical ventilation, as well as longer LOS in ICU and LOS in hospital (Figure 2A&B). In
143	addition (Figure 3A), there was less 360-day mortality (P=0.002) in a higher TyG group while no
144	difference was observed in in-hospital mortality (P=0.866), and 30-day mortality (P=0.244).
145	The Kaplan-Meier analysis was performed to explore the prognostic effect of TyG index on 30-day
146	or 360-day mortality (Figure 3B&C). As shown, a higher TyG index was associated with a lower
147	risk of 360-day mortality (P for log-rank=0.006).
148	As shown in Table 2 , we constructed three models for analyzing the prognostic role of TyG index
149	in 360-day mortality. When compared with the lowest quartile, the highest quartile of TyG
150	decreased the risk of mortality (HR 0.79, 95% CI [0.66, 0.95]; P=0.011) in the multivariable-
151	adjusted model. The stepwise model also showed the same trend (HR 0.71, 95%CI [0.59, 0.85];
152	P<0.001). Per one-unit increasement of TyG was associated with 0.85-fold lower risk of mortality
153	(HR 0.85, 95% CI [0.79, 0.92]; P<0.001).
154	Subgroup analysis (Table 3) showed that an interaction was observed between TyG index and
155	gender (P=0.03). In male patients, TyG was negative associated with 360-day mortality (HR 0.86,
156	95% CI [0.78,0.95]; P=0.004) while the association was reversed in female subgroup (HR 1.03, 95%
157	CI [0.91,1.16]; P=0.681).

161 This is the first study to evaluate the association of the TyG index with long-term mortality in 162 critically ill patients. We found that TyG index was negatively associated with 360-day mortality, 163 not in-hospital or 30-day mortality of critically ill patients.

The TyG index has been well-recognized as a simple and reliable surrogate of IR ⁹. It does not require levels of insulin and may be applicable to all of the patients and healthy population. Several studies reported that TyG index predicted outcomes in patients with acute coronary syndrome ¹⁰ and ischemic stroke ¹¹. Only one study found that TyG index was linearly associated with short-term mortality in ICU stroke after adjusting for confounding factors⁸. However, we did not find a positive correlation between TyG index and in-hospital and 30-day mortality. Contrary, we demonstrated that TyG could be a protective predictor in long-term mortality in critically ill patients. The difference could be that we included more diseases in ICU and followed a longer time. Besides, a higher TyG index may be related to a good nutrition status and be compensatory for the development of various diseases.

The mechanism underlying the relationship between the TyG index and critically illness is not fully elucidated. Insulin resistance is an adaptive mechanism that prioritizes utilization of energy for immune response in the presence of infection or injury¹². However, the underlying molecular mechanisms involved in this association should be further investigated in the future study.

Our study still has some limitations. First, this was a retrospective analysis derived from an observational study, which could not definitively establish causality. Secondly, we only included the baseline levels of plasma glucose and triglyceride, which could be affected by the use of antidiabetic and lipid-lowering drugs. Therefore, it is unknown whether the change of the TyG index

could predict the mortality.

Conclusions

We found that TyG index predicted a better long-term prognosis of critically ill patients, regardless of other risk factors. However, no association was observed in respect to in-hospital or 30-day mortality. **Declarations** Ethics approval and consent to participate The protocol was approved by the Institutional Review Board of both Beth Israel Deaconess Medical Center and Massachusetts Institute of Technology Affiliates and no new data was added. All methods were carried out in accordance with Helsinki regulations. The need for informed consent was waived off by the Institutional Review Board of both Beth Israel Deaconess Medical Center and Massachusetts Institute of Technology Affiliates. Our study was approved by the Review Boards of Jiangsu Province Official Hospital (201921A011). **Consent for publication** Yes. Availability of data and materials The datasets used during the current study available from the corresponding author on reasonable request. **Competing interests** The authors have nothing to disclose regarding conflict of interest with respect to this manuscript. Funding

None.

None.

References

1.

2.

3.

4.

5.

6.

in

7.

8.

9.

Authors' contributions

Acknowledgements

and W D designed the study. All authors approved it.

2016;47(5):382-387. doi: 10.1016/j.arcmed.2016.08.012

2008;32(3):227-35. doi: 10.1177/0148607108316195

injury.

critically ill surgical patients. Am Surg. 2010;76(12):1377-83.

J

brain

2020;7:591036. doi: 10.3389/fmed.2020.591036

2014;13:146. doi: 10.1186/s12933-014-0146-3

10.1097/TA.0b013e3181938c5e

e100. doi: 10.1016/j.diabres.2011.05.030

10.3390/jcm10020346

traumatic

D LL and Y Y made the statistical analysis; W KL and H CN wrote the original manuscript; S S

Guerrero-Romero F, Villalobos-Molina R, Jimenez-Flores JR, et al. Fasting Triglycerides and

Vasques AC, Novaes FS, de Oliveira Mda S, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93(3):e98-

Tarantino G, Crocetto F, Di Vito C, et al. Association of NAFLD and Insulin Resistance with Non Metastatic Bladder Cancer Patients: A Cross-Sectional Retrospective Study. J Clin Med. 2021;10(2)doi:

Zauner A, Nimmerrichter P, Anderwald C, et al. Severity of insulin resistance in critically ill

Saberi F, Heyland D, Lam M, et al. Prevalence, incidence, and clinical resolution of insulin

Mowery NT, Gunter OL, Guillamondegui O, et al. Stress insulin resistance is a marker for mortality

Mowery NT, May AK, Collier BC, et al. Glucose metabolism, not obesity, predicts mortality in

Zhang B, Liu L, Ruan H, et al. Triglyceride-Glucose Index Linked to Hospital Mortality in

Du T, Yuan G, Zhang M, et al. Clinical usefulness of lipid ratios, visceral adiposity indicators, and

Critically Ill Stroke: An Observational Multicentre Study on eICU Database. Front Med (Lausanne).

the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol.

10. Ma X, Dong L, Shao Q, et al. Triglyceride glucose index for predicting cardiovascular outcomes after percutaneous coronary intervention in patients with type 2 diabetes mellitus and acute coronary

syndrome. Cardiovasc Diabetol. 2020;19(1):31. doi: 10.1186/s12933-020-01006-7

2009;66(1):145-51;

discussion

151-3.

doi:

resistance in critically ill patients: an observational study. JPEN J Parenter Enteral Nutr.

medical patients. Metabolism. 2007;56(1):1-5. doi: 10.1016/j.metabol.2006.08.014

Trauma.

Glucose Index as a Diagnostic Test for Insulin Resistance in Young Adults. Arch Med Res.

2	
3	204
4 5	204
6	205
7 8	203
9	206
10	
12	207
13	
14 15	208
16	
17 19	209
10	• 1 0
20	210
21 22	211
23	211
24 25	212
25	213
27	214
28 29	215
30	216
31 22	217
33	210
34	21)
35 36	221
37	222
38 20	223
40	224
41	225
42 43	226
44	227
45 46	228
40 47	229
48	230
49 50	231
51	232
52 53	233
54	235
55	236
56 57	237
58	238
59 60	239

2		
3	240	11. Shi W, Xing L, Jing L, et al. Value of triglyceride-glucose index for the estimation of ischemic
4 F	241	stroke risk: Insights from a general population. Nutr Metab Cardiovasc Dis. 2020;30(2):245-253. doi:
5	242	10 1016/i numecd 2019 09 015
7	243	12 Dhar A Castillo I Insulin resistance in critical illness <i>Curr Onin Pediatr</i> 2011:23(3):269-74 doi:
8	243	12. Dha A, Castillo E. Insulli resistance in critical liness. $Curr Opin Tealant. 2011;25(5):209-74. doi: 10.1007/MOD.0b012;22222464b2;$
9	244	10.109//MOP.000136328340403e
10	245	
11	246	
13	247	
14	248	
15	249	
16 17	250	
17	251	
19	252	
20	253	
21	254	
22	255	
25 24	255	
25	250	
26	257	
27	258	
28	259	
29 30	260	
31	261	
32	262	
33	263	
34	264	
36	265	
37	266	
38	267	
39	268	
40 41	200	
42	209	
43	270	
44	271	
45	272	
46 47	273	
48	274	
49	275	
50	276	
51	277	
5∠ 53	278	
54	279	
55	280	
56	280	
57 59	201	
58 59	202	
60	283	

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
32
37
25
22
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
5J 5/
54
52
50 77
5/
58

Variables	Q1 (n=963)	Q2 (n=987)	Q3 (n=969)	Q4 (n=983)	Р
Age, years	66.84 (15.61)	64.63 (15.04)	62.82 (15.96)	58.22 (15.77)	< 0.00
Female, %	400 (41.5)	441 (44.7)	395 (40.8)	387 (39.4)	0.105
Ethnicity, %					0.073
White	738 (76.6)	737 (74.7)	700 (72.2)	722 (73.4)	
Asian	30 (3.1)	18 (1.8)	19 (2.0)	17 (1.7)	
Black	6 (0.6)	5 (0.5)	3 (0.3)	2 (0.2)	
Hispanic	25 (2.6)	31 (3.1)	28 (2.9)	37 (3.8)	
Other	164 (17.0)	196 (19.9)	219 (22.6)	205 (20.9)	
Weight, kg	76.8 (21.6)	80.9 (23.1)	84.2 (24.5)	90.9 (29.3)	< 0.00
CAD, %	321 (33.3)	334 (33.8)	324 (33.4)	299 (30.4)	0.345
HBP, %	402 (41.7)	455 (46.1)	429 (44.3)	431 (43.8)	0.285
DM, %	206 (21.4)	242 (24.5)	297 (30.7)	418 (42.5)	< 0.00
COPD, %	16 (1.7)	15 (1.5)	16 (1.7)	15 (1.5)	0.99
CKD, %	36 (3.7)	35 (3.5)	40 (4.1)	45 (4.6)	0.689
SOFA score	3 [2, 6]	3 [1, 6]	4 [2, 6]	4 [2, 7]	< 0.00
SAPS II score	35 [27, 45]	34[25,45.5]	34 [26, 44]	34 [25, 46]	0.7
WBC, 10 ⁹ /L	10.94 (6.14)	11.76 (5.59)	11.86 (6.54)	12.72 (9.96)	< 0.00
Platelet, 10 ⁹ /L	219.4 (117.0)	238.0 (128.8)	240.9 (134.5)	245.3 (157.8)	< 0.00
Potassium, mmol/L	4.02 (0.70)	4.03 (0.53)	4.04 (0.56)	4.04 (0.54)	0.937
Sodium, mmol/L	138.8 (4.90)	139.18 (4.52)	139.41 (4.70)	139.16 (5.05)	0.075
Triglycerides, mg/dL	68.0 (22.2)	107.6 (28.7)	152.5 (49.6)	337.1 (330.9)	< 0.00
Glucose, mg/dL	106.8 (26.2)	122.8 (30.5)	138.2 (43.7)	176.8 (87.3)	< 0.00
Albumin, g	38.2 (26.5)	39.5 (24.3)	43.9 (32.9)	42.1 (23.5)	0.750
Mechanical	381 (39.6)	439 (44.5)	500 (51.6)	582 (59.2)	< 0.00
Ventilation, %					
Vasopressors, %	28 (2.9)	28 (2.8)	32 (3.3)	28 (2.8)	0.92
Dialysis, %	87 (9.0)	85 (8.6)	74 (7.6)	111 (11.3)	0.037
LOS in Hospital, day	8.2 [4.8, 18.1]	9.0 [4.7, 17.0]	10.6 [5.0, 20.1]	12.0 [5.6, 22.8]	< 0.00
LOS in ICU, day	3.4 [2.0, 8.9]	4.2 [2.0, 10.0]	4.8 [2.1, 12.0]	6.1 [2.4, 13.4]	< 0.00
In-hospital	152 (15.8)	143 (14.5)	147 (15.2)	145 (14.8)	0.866
mortality, %					
30-day mortality, %	149 (15.5)	167 (16.9)	140 (14.4)	136 (13.8)	0.244
360-day mortality, %	301 (31.3)	280 (28.4)	286 (29.5)	234 (23.8)	0.002

hypertension; DM, diabetes mellites; COPD, chronic obstructive pulmonary diseases; CKD, chronic kidney disease;
SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; WBC, white blood
cell; LOS, length of stay.

289

290

59

60

		Cases	Ν	Unadjusted	1	Adjusted#		Stepwise	ĸ
				HR	Р	HR	Р	HR	Р
	Q1	301	963	Ref	-				
	Q2	280	987	0.91 [0.77, 1.07]	0.259	0.97 [0.82, 1.14]	0.717	0.95 [0.81, 1.12]	0.548
	Q3	286	969	0.93 [0.79, 1.10]	0.412	1.04 [0.88, 1.23]	0.633	0.98 [0.83, 1.16]	0.857
	Q4	234	983	0.74 [0.63, 0.88]	0.001	0.79 [0.66, 0.95]	0.011	0.71 [0.59, 0.85]	< 0.00
	Continuous	1101	3902	0.89 [0.82, 0.96]	0.003	0.93 [0.86, 1.00]	0.063	0.85 [0.79, 0.92]	< 0.00
292	# Adjust	ed for age	, gende	, ethnicity, weight,	CAD, C	OPD, HBP, DM, SC	OFA scor	re, SAPSII score, W	BC, pla
293	creatine,	ventilatio	n, vasoj	pressors, and dialysi	s.				
294	*All vari	ables exc	ept for c	outcomes were enter	ed.				
205									
293									
296									
_/0									
297									
298									
299									
300									
301									
302									
202									
303									
303									
303 304									
303304305									
303304305									
303304305306									
303304305306									
 303 304 305 306 307 									
 303 304 305 306 307 									
 303 304 305 306 307 308 									
 303 304 305 306 307 308 									
 303 304 305 306 307 308 309 									
 303 304 305 306 307 308 309 									

		HR	P for trend	P for interaction
	Gender			0.03
	female	1.03 [0.91, 1.16]	0.681	
	male	0.86 [0.78, 0.95]	0.004	
	Age			0.13
	≤65	0.83 [0.73, 0.94]	0.003	
	>65	0.96 [0.87, 1.07]	0.472	
	Ventilation			0.357
	No	1.01 [0.87, 1.17]	0.868	
	Yes	0.91 [0.83, 1.00]	0.057	
312		0		
512				
313				
010				
314				
315				
316				
317				
318				
319				
320				
321				
322				
323				
324				
325				
326				
520				

328 Figure legends

- **Figure 1.** The flow diagram of study population.
- **Figure 2.** The LOS of ICU (A) and LOS (B) of hospital across TyG quartiles. LOS, los of stay.
- 331 Figure 3. The in-hospital mortality between TyG groups (A). The Kaplan-Meier analysis of 30-day
- 332 mortality (B), P < 0.05: Q2 vs. Q1, Q2 vs. Q3, Q2 vs. Q4; and 360-day mortality (C), P < 0.05: Q1
- 333 vs. Q2, Q1 vs. Q3, Q1 vs. Q4, Q2 vs. Q4, Q3 vs. Q4.

Figure 3. The in-hospital mortality between TyG groups (A). The Kaplan-Meier analysis of 30-day mortality (B), P <0.05: Q2 vs. Q1, Q2 vs. Q3, Q2 vs. Q4; and 360-day mortality (C), P<0.05: Q1 vs. Q2, Q1 vs. Q3, Q1 vs. Q4, Q2 vs. Q4, Q3 vs. Q4.

160x115mm (300 x 300 DPI)

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	1
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3
Objectives	3	State specific objectives, including any prespecified hypotheses	3
Methods			•
Study design	4	Present key elements of study design early in the paper	4
Setting	5	Describe the setting, locations, and relevant dates, including periods of	4
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and	4
i unterpuitto	Ū	methods of selection of participants. Describe methods of follow-up	.
		<i>Case-control study</i> —Give the eligibility criteria and the sources and	
		methods of case ascertainment and control selection. Give the rationale	
		for the choice of cases and controls	
		Cross-sectional study – Give the eligibility criteria, and the sources and	
		methods of selection of participants	
		(b) Cohout study. For matched studies, give matching oritorie and	
		(b) Conort study—For matched studies, give matching criteria and	
		Case south later to be for method studies, give metoking criterie and the	
		cuse-control study—rol matched studies, give matching criteria and the	
x7 · 11			4
Variables	/	clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	4
Data sources/	8*	For each variable of interest, give sources of data and details of methods	4
measurement	0	of assessment (measurement). Describe comparability of assessment	
measurement		methods if there is more than one group	
Bias	0	Describe any efforts to address notential sources of bias	1
Study size	<u> </u>	Even lain how the study size was arrived at	4
Ouertitative veriables	10	Explain how the study size was allived at	4
Quantitative variables	11	explain now quantitative variables were handled in the analyses. If	4
	12	() Describe all statistical matheds including the second day southed for	5
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	5
		(h) Describe any methods used to exemine subgroups and interactions	5
		(b) Describe any methods used to examine subgroups and interactions	5
		(c) Explain how missing data were addressed	3
		(<i>d</i>) Cohort study—If applicable, explain how loss to follow-up was addressed	5
		<i>Case-control study</i> —If applicable, explain how matching of cases and	
		controls was addressed	
		<i>Cross-sectional study</i> —If applicable describe analytical methods taking	
		account of sampling strategy	
		(a) Describe any sensitivity analyses	5
		(<u>e)</u> Describe any sensitivity analyses	15

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers notentially	
1 articipants	15	eligible examined for eligibility confirmed eligible included in the study	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	1
		(c) Consider use of a flow diagram	+
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if	
		applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.