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1 Supplementary Figures

Figure S1: The T2DKP includes genomic annotations focused on diabetes-relevant tissues (Re-
lated to STAR Methods and Table S3).
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a. The T2DKP contains genomic annotations of accessible chromatin, transcription factor binding sites,
candidate regulatory elements, and predicted chromatin state in 30 tissue categories. Raw datasets are
stored in the Diabetes Epigenome Atlas where they are processed into tissue-level annotations. b. The
distribution of genomic annotations in the T2DKP across tissues is similar to the distribution for genomic
annotations in ENCODE, although the focus of the T2DKP on T2D-relevant tissues results in some tissues
being over-represented. x-axis: fraction of datasets in ENCODE in each tissue. y-axis: fraction of datasets
in the T2DKP in each tissue. labels: Tissues with a greater than 30% difference in proportion between the
T2DKP and ENCODE.




Figure S2: The T2DKP can be used to identify disease-relevant genes (Related to Figure 6 and
STAR Methods).
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(a-d). We downloaded the list of 132 predicted effector genes from the T2DKP and used a two-sided
Wilcox test to evaluate their enrichment for rare coding variant associations from the AMP-T2D-GENES
study (STAR Methods); 128 of the effector genes were present in the analysis. Results are shown for
(a) all genes on the effector gene list (n=128) (b) effector genes in the “Causal” category (n=38), (c)
effector genes other than those in the “Causal” category (n=90), and (d) the top MAGMA genes in the
portal (n=128). (e-h) We used the Gene Finder to identify 11 genes associated at p < 2.5 x 1078 with
an “insulin resistance signature” of FladjBMI, TG, HDL, T2D, and WHRadjBMI. We then used a two-sided
Wilcox test evaluate the enrichment of these genes for tissue-specific expression across 53 GTEXx tissues,
focusing on adipose tissue (a major site of insulin resistance). Results are shown for (ef) the 11 genes
in (e) subcutaneous adipose tissue and (f) visceral adipose tissue, as well as (gh) the 11 genes with the
strongest T2D MAGMA associations in (g) subcutaneous adipose tissue and (h) visceral adipose tissue.
In all box plots, bold black lines represent medians and box boundaries represent first and third quartiles;
whiskers extend to 1.5 times the interquartile range beyond the quartiles. Circles represent either points
beyond the whiskers or show all data (if fewer than 50 data points were used for the box plot).
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Figure S3: Summary-level genetic data undergo a multi-step quality control procedure (Related to

STAR Methods).
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Each summary-level genetic dataset is first filtered to remove any variants with abnormal values for alleles,
effect size, frequency, or p-values. Each variant’s effect allele is then aligned to those of other datasets
in the T2DKP (if the variant has been observed in another dataset) or to the non-reference allele (if it has
not). QQ and Manhattan plots, as well as the top association results, are then inspected. If these plots look
reasonable, and are approved by the dataset contributor, the dataset is advanced to the Data Aggregator.



Figure S4: Individual-level genetic data are harmonized and subjected to quality control (Related
to STAR Methods).
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Individual-level genetic datasets include phenotypes and genotypes, often available across multiple SNP
arrays. These data are subjected to a multi-step quality control process that harmonizes the genotyp-
ing data and then identifies outlier variants and samples (after controlling for inferred genetic ancestry).
Sequence data undergo a similar quality control process.



Figure S5: Individual-level genetic data are analyzed for single-variant and gene-level associations
(Related to STAR Methods).
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The first step in association analysis is to compute measures of genetic ancestry and relatedness. These
are used to divide samples into subgroups, which are analyzed separately via single-variant analysis.
Genetic ancestry, along with other potential confounders, are included as variables in the single-variant
association test. Single-variant association statistics are then combined via meta-analysis. If sequence
data are available (as opposed to SNP array data), gene-level associations are also computed across
seven variant “masks”, defined based on variant bioinformatic annotations.



Figure S6: The T2DKP stores four classes of genomic annotation (Related to STAR Methods).
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The T2DKP draws genomic annotations (red) from the Common Metabolic Diseases Epigenome Atlas,
each generated by a different experimental procedure (blue). These genomic annotations are grouped
into four broad classes (black), depending on the biological effect they predict.

Figure S7: T2DKP datasets are processed through a series of bioinformatic methods (Related to

STAR Methods).
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Association statistics and genomic annotations are analyzed by a series of bioinformatic methods to pro-
duce (for each trait in the T2DKP) predicted disease genes, independent association signals, and global
enrichments of annotations for disease associations. Credible sets in some cases are contributed from
external sources. Effector gene predictions are also contributed from external sources.
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