Supplementary figures

Fig. S1: HNF4 α overexpression alters the expression of known HNF4 α targets in osteoblasts. Heatmaprepresented log-normalized expression of genes identified in Ctr, Hnf4 α 1^{Tg}, and Hnf4 α 2^{Tg} cultured MC3T3-E1 osteoblasts. Statistical tests were performed using an ANOVA test, followed by unpaired student's t test and corrected by the False Discovery Rate.

Fig. S1

Fig. S2: Osteoblast-specific *Hnf4a* deletion leads to impaired bone growth. (A) Bone *Hnf4a* mRNA expression in femoral bone of adult (12 weeks) WT (n=3) and Hnf4 $\alpha^{\text{Oc-cKO}}$ (n=4) male mice, (B) body weight, (C-D) tibia and femur lengths, and (E-J) 3D microtomography of femur cortical bone analyzed at midshaft in young (6 weeks) and adult (12 weeks) WT and Hnf4 $\alpha^{\text{Oc-cKO}}$ male mice. Values are expressed as mean±SE. n≥5, p<0.05 vs. *age-matched WT. Statistical tests were performed using unpaired student's t tests.

Fig. S3: Osteoblast-specific *Hnf4a* deletion leads to trabecular bone loss in female mice. (A) Femur length and (B-J) 3D microtomography of femur trabecular (B-E) and cortical (F-J) bone analyzed at midshaft in young (6 weeks) and adult (12 weeks) WT and Hnf4 $\alpha^{\text{Oc-cKO}}$ female mice. Values are expressed as mean±SE. n≥4 per group. p<0.05 vs. *age-matched WT. Statistical tests were performed using unpaired student's t tests.

Fig. S4: Pre-osteoblast-specific *Hnf4a* deletion leads to trabecular and cortical bone loss in male and female mice. (A-R) 3D microtomography of femur trabecular (A-D and J-M) and cortical (E-I and N-R) bone analyzed at midshaft in adult (12 weeks) WT and Hnf4 $\alpha^{\text{Oc-cKO}}$ male (A-I) and female (J-R) mice. Values are expressed as mean±SE. n≥4 per group. p<0.05 vs. *sex and age-matched WT. Statistical tests were performed using unpaired student's t tests.

Fig. S5: Osteoblast-specific deletion of *Hnf4a* alters the expression of known HNF4a targets in bone. Heatmaprepresented of log-normalized expression of known HNF4a regulated genes identified in WT and Hnf4a^{Oc-cKO} mice. Statistical tests were performed using unpaired student's t test and corrected by the False Discovery Rate. Corrected p<.05, n=4 per group.

Fig. S6: Osteoblast-specific deletion of *Hnf4a* alters cell metabolism. Heatmap-represented concentration of differentially regulated metabolites identified by metabolomics analysis of WT and Hnf4 $\alpha^{\text{Oc-cKO}}$ cultured primary osteoblasts. Statistical tests were performed using unpaired student's t test and corrected by the False Discovery Rate. Corrected p<.05, n=6 per group.

В

60

С

Е

D

60

Fig. S7: $Hnf4\alpha 2$ expressed in early differentiated osteoblasts stimulates trabecular and cortical osteogenesis. 3D microtomography analysis of femur metaphysis secondary spongiosa and midshaft cortical bone in 12 week-old (A-J) WT and Hnf4 $\alpha^{\text{Oc-cTG}}$ mice, and (K-T) WT and Hnf4a^{Osx-cTG} male mice. (B-E, L-O) Quantitative analysis of trabecular bone parameters, and (F-J, P-T) quantitative analysis of cortical bone parameters. Values are expressed as mean \pm SE. n \geq 5 per group. p<0.05 vs. *WT. Statistical tests were performed using unpaired student's t tests.

Fig. S8: Genetic overexpression of *Hnf4a2* in osteoblasts prevents bone loss in female mice with CKD. Microtomography analysis of (A-D) femur metaphysis secondary spongiosa, (E-H) femur cortical bone at metaphysis in 20 week-old WT, Hnf4 $\alpha^{Osx-cTG}$, Col4a3^{KO} and Col4a3^{KO}/Hnf4 $\alpha^{Osx-cTG}$ female mice. Values are expressed as mean±SE. n≥6 per group. Corrected p<0.05 vs. ^aWT, ^bCol4a3^{KO}. Statistical tests were performed using an ANOVA test followed by post-hoc t tests to test statistical differences and multiple testing correction using Holm-Bonferroni method.

Supplementary tables

Characteristic		p value				
	Healthy	LR-ROD	HR-ROD			
Patients, n(%)	9(31)	9(31)	11(38)			
Age (years), median (IQR)	47(43.49)	39(35.47)	39(32.54)	ns		
Gender, female, n(%)	4(44.4)	4(44.4)	2(18.2)	ns		
Race, non-white, n (%)	2(7)	4(14)	2(7)	ns		
Weight, kg (IQR)	84(75,90)	56(50,67)	63(56,77)	0.00144257414		
Height, meters (IQR)	1.70(1.65,1.75)	1.55(1.55,1.69)	1.67(1.50,1.74)	ns		
Clinical Protocol						
Before PTX	-	0	5			
Before KTx	-	7	0			
OP Therapy	-	2	6			

Table S1. Main Demographic and Clinical Characteristics of the Patients Included in the Analysis.

PTX = parathyroidectomy; KTx = Kidney transplantation; OP = osteoporosis. Statistical tests were performed using an ANOVA test.

 Table S2.
 Bone histomorphometry Analyses.

Age	6 weeks			12 weeks				
Sex	Males		Females		Males		Females	
Genotype	WT	Hnf4α ^{Oc-cKO}	WT	Hnf4α ^{Οc-cKO}	WT	Hnf4α ^{Oc-cKO}	WT	Hnf4α ^{Oc-cKO}
Parameter								
Ο.Th (μm)	2.9±0.2	2.7±0.1	3.4±0.1	2.5±0.2*	2.6±0.1	2.2±0.1*	2.6±0.1	2.4±0.1
OS/BS (%)	22.4±2.1	7.2±1.7*	22.7±2.9	13.5±1.6*	11.4±4.1	3.9±1.1	11.8±0.8	8.2±0.9*
MAR (μm/d)	3.1±0.3	1.4±0.4*	2.6±0.1	1.5±0.2*	1.3±0.1	1.1±0.2	1.5±0.1	1.1±0.1*
BFR/BS(μm³/μm²/d)	1.5±0.1	0.9±0.2*	1.4±0.1	0.7±0.1*	0.5±0.1	0.4±0.2	0.8±0.1	0.6±0.1*
Oc.N/B.Pm(mm ⁻¹)	12.0±0.6	15.6±1.8	10.4±0.6	8.5±0.2	5.8±1.0	11.8±1.7*	6.9±0.2	6.7±0.8
OcS/BS (%)	14.7±0.9	19.9±1.2*	20.5±0.9	28.4±3.4	10.9±0.7	15.1±1.3*	12.3±1.1	14.6±2.2

O.Th = osteoid thickness; OS/BS = osteoid surfaces per bone surfaces; MAR = mineral apposition rate; BFR/BS=bone formation rate per bone surfaces; Oc.N/B.Pm.=number of osteoclasts per bone perimeter; Oc.S/BS=osteoclast surfaces per bone surfaces. Values are expressed as mean \pm SE. n \geq 4 per group. p<0.05 vs. *sex and age-matched WT. Statistical tests were performed using unpaired student's t tests.

Name	Forward 5>3	Reverse 5>3
Product size (bp)		
<i>Hnf4α1/2</i> (95)	TGATAACCACGCTACTTGCCTT	AGCCTACTTCTGAATGTTTGGTGT
Runx2 (192)	CGGACGAGGCAAGAGTTTCA	GGATGAGGAATGCGCCCTAA
Sp7 (100)	TCTCAAGCACCAATGGACTCC	CCAGGAAATGAGTGAGGGAAGG
<i>Bglap</i> (146)	CCGCCTACAAACGCATCTATG	GCTGCTGTGACATCCATACTTG
Dmp1 (86)	AGTGAGGAGGACAGCCTGAA	GAGGCTCTCGTTGGACTCAC
Tnfrsf11b (287)	TGTGCTGCGCACTCCTGGTG	GGTGCGGTTGCACTCCTGCT
Tnfsf11 (223)	CTGGGACTGGGCCAGGTGGT	GTTCCTTCTGCACGGCCCCC
<i>Rpl19</i> (239)	GCCCACAAGCTCTTTCCTTTCG	GTGTTTTTCCGGCAACGAGC

 Table S3: Primers for RT-PCR analysis of murine transcripts.

Isoforms	Label	Forward	Reverse	Size	Region
Total	Hnf4a	CTTAAGAAGTGCTTCCGGGC	CAGGCTGCTGTCCTCGTAG	99	Exon 3/4
1-3	Hnf4a1-3	GGAGTTTGAAAATGTGCAGGTGTTG	TGTGGTTCTTCCTCACGCTC	200	Exon
					1A/2
5-6	Hnf4a5-6	GGAGTTTGAAAATGTGCAGGTGTTG	AACATGGTAATCGGGACAGCC	301	Exon
					1A/1C
7-9	Hnf4a7-9	GCCTTCAGGCCCCTT	TTGAGGTTGGCACCTTCAGA	307	Exon
					1D/1E
7-12	Hnf4α10-12	CTTTGCTGCTGTGTGTGGG	TTGAGGTTGGCACCTTCAGA	282	Exon
					1E/2
1,2,4,5,7,8	Hnf4a1/2	TGATAACCACGCTACTTGCCTT	AGCCTACTTCTGAATGTTTGGTGT	95	Exon 10
,10,11					
2,5,8,11	Hnf4a2	GACAGATGTGTGAGTGGCCC	AGGTTACTCCCAGGTGCTCT	248	Insert
					9/10
3,6,9,12	Hnf4a3	TTGATCCAGATGCCAAGGGG	CAGCACTACAGATCTCCCAAG	289	Exon8/
					Insert8

Table S4: Sequences of *Hnf4* α primers used to distinguish *Hnf4* α isoforms.