\bigstar Supplemental Document

ECRECer: Enzyme Commission Number Prediction and Benchmarking with Hierarchy Dual-core Multitask Learning Framework

Zhenkun Shi^{1, 2}, Rui Deng ³, Qianqian Yuan^{1, 2}, Zhitao Mao^{1, 2}, Ruoyu Wang^{1, 2}, Haoran Li^{1, 2}, Xiaoping Liao^{1, 2}, (\boxtimes), Hongwu Ma^{1, 2}, (\boxtimes)

¹Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 300308, Tianjin, China.

²National Technology Innovation Center of Synthetic Biology, 300308, Tianjin, China
²College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.

⊠{liao_xp, ma_hw}@tib.cas.cn

Abstract

This is a supplementary document for the paper "ECRECer: Enzyme Commission Number Prediction and Benchmarking with Hierarchy Dual-core Multitask Learning Framework". It provides details on preparing the data, selecting models, fine-tuning parameters, performance evaluation, as well as supplementary figures and tables that provide experimental details and support our conclusions. It also includes information on how to use the web service and offline bundles for high-throughput EC number prediction.

1 SI Related Work

As EC number prediction is at the core of enzyme functional annotation, a large number of relevant computational techniques have been developed to assign EC numbers to unknown protein sequences. In this section, we will introduce seven of the most representative ones, ordered by their time of publication. The seven representative tools are listed in Table 1. Next, we evaluated these tools based on the latest update time, distribution type (standalone packages, online web-service, or both), usability ('YES' if it is available for use, 'NO' if it is not available, 'Good' if it can be used for high-throughput prediction) and citations of these tools up to 26 Aug 2021.

1.1 CatFam

CatFam [10] is a profile-controlled, sequence-based database that can be used to infer the catalytic functions of proteins. CatFam uses an adjustable false positive rate to generate databases on-demand for different needs, such as functional annotation with different precision and hypothesis generation with moderate precision but better recall. CatFam uses profile-specific thresholds to ensure equal precision for each profile and 1

3

5

g

10

11

12

13

14

Tools	Last update	Type	Usability	Citations
CatFam ¹	2009	standalone	GOOD	71
$SVMProt^2$	2016	online	NO	88
$PRIAM_V2^3$	2018	both	GOOD	365
$DEEPre^4$	2018	online	YES	132
$ECPred^5$	2018	both	GOOD	40
DEEPEC ⁶	2019	standalone	GOOD	49
BENZ WS^7	2021	online	YES	0

 Table 1. Usability of 7 EC prediction tools

1. http://www.bhsai.org/downloads/catfam.tar.gz

2. http://bidd.group/cgi-bin/svmprot/svmprot.cgi

3. http://priam.prabi.fr/REL_JAN18/index_jan18.html

4. http://www.cbrc.kaust.edu.sa/DEEPre/index.html

5. https://ecpred.kansil.org/

6. https://bitbucket.org/kaistsystemsbiology/deepec/src/master/

7. https://benzdb.biocomp.unibo.it/

ensure the best performance for all tasks. Comparison experiments were conducted based on three test sets and 13 bacterial genomes. The results demonstrated that CatFam outperforms PRIAM in terms of precision and coverage. CatFam has been developed for more than 12 years. Although the precision is not as good as in the latest ones, the recall remains good, and its code is still available. We, therefore, used CatFam as one of our baselines in this work.

1.2 SVM-Prot

SVM-Prot V2016 [6] is a machine-learning method that was first published in 2003 and then updated in 2016. SVM-Prot is supplementary for predicting diverse classes of proteins compared with distantly-related or homologous-related methods. SVM-Prot employs 13 manually curated physicochemical features of proteins as inputs, nine of which are from Pse-in-One [7], while the remaining four are self-calculated, such as molecular weight and solubility. The algorithm then uses these features to train an integrated SVM, KNN, PNN, and Blast model, to predict the EC numbers for new proteins. Sensitivity, precision, and specificity are evaluated on an independent evaluation dataset, which demonstrated the outstanding performance of SVM-Prot. However, to train an SVM classifier the time complexity is $O(n^2p + n^3)$ [1], which is extremely time-consuming. More importantly, the web service provided by SVM-Prot is no longer available, and they did not provide their code for reimplementation and evaluation. Hence, the usability of SVM-Prot is weak.

1.3 PRIAM-V2

PRIAM V2 [3] s a rules-based method for automated enzyme annotation with EC numbers proposed in 2003, with an updated version V2 published in 2018. It takes protein or nucleotide sequences as inputs and annotates them with EC numbers on an individual sequence level or a genome level. PRIAM utilizes a set of signatures composed of position-specific scoring matrices and patterns for sequence embedding, which is tailored for each enzyme entry to build its model. PRIAM uses the whole Swiss-Prot database to learn parameters and evaluate the method as well. The advantage of PRIAM is its high recall, and the code is available. Accordingly, we used PRIAM V2 as one of our baselines.

42

43

44

45

16

17

18

19

20

21

1.4 DEEPre

DEEPre [5] is a supervised end-to-end feature selection and classification model that uses a convolutional neural network (CNN) with a level-by-level strategy to predict enzyme functions. Unlike the above-mentioned method that needs manually curated features, DEEPre takes the raw sequence encoding as inputs, then extracts convolutional and sequential features from the raw encoding based on the classification result to directly boost the model performance. DEEPre is good at determining the main classes of enzymes on a separate low-homology dataset, while the performance is suboptimal when determining the fourth level EC numbers. DEEPre provides a webserver for the public but does not provide the source code for reimplementation and evaluation, and the webserver is not capable of high-throughput prediction. Thus, this algorithm is usable but not user-friendly.

1.5 ECPred

ECPred [4] is a supervised hierarchical enzyme function prediction tool based on an ensemble of machine learning that can predict EC numbers to the fourth level. ECPred trains an independent model for each EC number level and uses three predictors, called SPMap, BLAST-kNN, and Pepstats-SVM, to integrate the output. ECPred was trained and validated using the enzyme entries located in the Swiss-Prot database. ECPred ingeniously constructed a positive set and a negative set to finely control the prediction performance. The experimental results showed its outstanding performance at level 0 EC number prediction. ECPred was published in late 2018. The most significant point of ECPred is its user-friendly workflow that provides both a web service, standalone packages, and the source code. Accordingly, we used ECPred as one of our baselines in this work.

1.6 DEEPEC

DeepEC [8] is a deep learning method that enables high-quality and high-throughput prediction of EC numbers. DeepEC uses three CNN as its major engine and homology analysis as its supplementary engine to conduct EC number prediction. DeepEC predicts if the given amino sequence is an enzyme in the first CNN layer, and then specifies the third level of EC numbers in the second CNN layer, after which it assigns the fourth level in the final CNN layer. The primary objective of DeepEC is high precision, low computing time, and low disk space requirements. DeepEC is sensitive in detecting the effects of mutated domains/binding site residues. DeepEC did not provide a source code for self-training and reimplementation. It only provides well-trained parameters for local installation and prediction. However, no webserver is given. Considering its good performance in precision, we also used use DeepEC as one of our baselines in this work.

1.7 BENZ WS

BENZ WS [2] is the latest published web service for four-level EC number annotation. It was first published in May 2021. BENZ WS filters a target sequence with a combined system of HMMs and PFAMs, after which it returns an associated four-level EC number if successful. BENZ WS can annotate both mono- and multifunctional enzymes. Compared with DEEPre and ECPred, BENZ WS is superior in terms of the true positive rate. However, the performance of BENZ WS is relatively inferior in terms of the false-negative rate. BENZ WS only provides a web interface to the end-user, so usability is given, but no source code or standalone suite is available, and the

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

computational time is long. We therefore did not use BENZ WS as a baseline in this 92 93

113

114

115

116

117

118

119

120

121

122

123

124

2 SI Appendix Materials and Methods	94
2.1 Preprocessing	95
There are six steps (s1-s6) in data preprocessing:	96
s1: remove the records with identical IDs, but changed sequences (updated sequences	uences); 97
s2: for duplicated records, only keep one;	98
s3: make the EC numbers uniform and remove unnecessary spaces;	99
s4: based on the EC number, assign a unique label for each sequence;	100
s5: organize a uniform dictionary for EC label mapping;	101
s6: add enzyme catalytic function quantity labels to protein sequences.	102
2.2 Dataset	103
A commonly used EC number prediction dataset is the EzyPred dataset from Sh	nen and 104
Zhou, published in 2007 [9]. The EzyPred dataset is a two-level EC number dat	taset 105
that was extracted from the ENZYME database (released May 1, 2007), with a	, 40% 106
sequence similarity cutoff. This dataset contains 9,832 two-level specified enzyn	nes and 107
9850 non-enzymes. The details of this dataset can be found in their published pa	aper [9]. 108

work.

98This dataset can only be used to predict two-level EC numbers, and the volume of this 109 dataset is unsuitable for machine learning. Accordingly, the majority of the later studies 110 used a similar approach to extract and construct datasets from Swiss-Prot [8, 5]. The 111 typical steps of constructing the dataset are as follows: 112

- 1) Obtain the latest reviewed protein data from Swiss-Prot and label the sequences as enzyme or none-enzyme utilizing the protein annotation.
- 2) Exclude the multifunctional enzymes and those enzymes with incomplete EC number annotations.
- 3) Exclude enzymes by sequence length, a typical threshold is $length \in [50, 50000]$.
- 4) Use homology analysis tools to remove redundant sequences. The similarity threshold is manually determined, and a typical threshold is 40%.
- 5) Randomly rearrange filtered enzyme data and randomly pick non-enzyme data with a similar size, then mix these data together as a standard dataset.
- 6) Split the standard dataset into a training set and a testing set using a typical 8:2 ratio or split the standard dataset into a training set, validation set, and testing set using a typical 7:1:2 ratio.

However, these principles of dataset construction were explicitly designed for the EC 125 number prediction of monofunctional enzymes and are not suitable for multifunctional 126 enzymes. Moreover, the construction of training and testing datasets using randomly 127 mixed data is not in accordance with the facts and may lead to information leaks. 128 Beyond that, filtering sequences by length and homology may obscure patterns and 129 other information, which will reduce the learning performance. Therefore, the steps of 130 constructing the dataset in this work were more straightforward: 131

- 1*) Obtain the latest reviewed protein data from Swiss-Prot and label the sequences with three label vectors: enzyme or none-enzyme, monofunctional (labeled 1 or 0) or multifunctional enzyme (labeled with function counts), EC number (monofunctional enzymes have a single EC number, multifunctional enzymes have more than one EC number).
- 2^*) Rearrange the protein sequence order by annotation updated date.
- 3^{*}) Use the latest four-year data as the testing set, while the rest is the training and validation set.
- 4*) We constructed two test sets to validate the methods' prediction efficiency over time. The first one is built using Sprot data from February 2018 to June 2020, namely testset_20, and the second one is from February 2018 to February 2022, namely testset_22.

The implementation can be seen in chapter 5 and by referring to our source codes. 144

2.2.1 Task 1 Enzyme and Non-enzyme Dataset

Based on the above mentioned three principles, the enzyme and non-enzyme dataset (Table 2) uses the latest 3 years of Swiss-Prot data as the testing set, and the data before as the training set.

-	v	v	
ITEM	Training set	testset_20	testset_22
Enzyme	222,567	3,304	$5,\!111$
Non-enzyme	246,567	3,797	5,503
Total	469,134	7,101	10,614

 Table 2. Description of the Enzyme and Non-enzyme Dataset

2.2.2 Task 2 Multifunctional Enzyme Dataset

For the multifunctional enzyme prediction dataset, to minimize distractions from non-enzymes and balance the dataset, we excluded the non-enzyme data (Table 3). The remaining enzyme data were labeled based on the number of functions (i.e., 1, 2,,8). The details are listed below:

Functi	Functions		Records		Functions		Records	
	Functions	Train	Test1	Test2	Functions	Train	Test1	Test2
	1	210,788	3,273	4,656	5	206	6	7
	2	9,943	208	337	6	80	2	10
	3	993	60	84	7	27	1	1
	4	525	7	13	8	5	0	3

Table 3. Description of Multifunctional Enzyme Dataset

Train: Training set

Test1: Testset_20

Test2: Testset_22

2.2.3 Task 3 Enzyme Commission Number Dataset

Following the three-datasets construction principle, the enzyme commission (EC) 155 number dataset filtered the non-enzyme data after preprocessing. For a comprehensive 156 and fair comparison with the state-of-the-art method DeepEC, we set the end-time of 157

148

137

140

141

142

143

145

the training dataset to February 2018. This is because DeepEC only collected data before February 2018 for model training. If we use more recent data it will lead to an information leak problem. The dataset (Table 4) details are listed below:

Item	Trainingset	testset_20	testset_22
Monofunctional	210,788	3,052	4,656
Multifunctional	11,779	252	455
Distinct EC numbers	4,854	937	1,355
Incomplete EC numbers	209	128	137
Complete EC numbers	4,645	809	1,218
Oxidoreductases	34,169	1,065	1,615
Transferases	79,570	1,009	1,567
Hydrolases	56,749	676	989
Lyases	20,747	346	608
Isomerases	11,927	108	184
Ligases	25,254	156	244
Translocases	-	57	83
Set size	222,567	7,101	5,111

Table 4. Description of the Enzyme Commission Number Dataset

3 Models

3.1 Optimized parameters

# Bi-GRU and Attention	optimized parameters	
Layer (type)	Output Shape	Param $\#$
<pre>input (InputLayer) bi-gru (Bidirectional) attention (Attention) dense1 (Dense) lniear (Dense)</pre>	n*(1, 1280) (1, 256) (256) (64) (num_of(Y_label))	$0\\1082880\\8225\\16448\\130$
Total params: 1,107,683 Trainable params: 1,107, Non-trainable params: 0	.683	

3.2 Integration, fine-tuning, and production

As illustrated in Fig. 1, the final EC number prediction output is an integrated process. ¹⁸¹ As shown in SE. 1, we formulated this integrated process as an optimization problem: ¹⁸²

$$M_{F1}^{AX}\{f(obj_1, obj_2, obj_3, sa)\}$$
(SE.1)

where ag_1 , ag_2 , and ag_3 are the predicted results from DMLF finetued for task1, task2, task3, respectively, while sa is the predicted results from multiple sequence alignment. The integration and fine-tuning process aim to maximize the optimizing objective. In

this work, the objective was the performance of EC number prediction in terms of the F1 score. We used a greedy strategy to finish this optimization.

Figure 1. The integration and fine-tuning process before output.

4 SI Appendix Figures

Figure 2. The number of records integrated into TrEMBL vs. Swiss-Prot since 1986.

ECs in testset_22 Figure 3. Venn diagram of the training and testing datasets

Figure 7. Structure for protein Q4WAW9 (alphfold2 predicted).

Figure 8. The software architecture of the web platform.

SI Algorithm $\mathbf{5}$

Als	gorithm 1 Prepare benchmarking datase	ets
1:	download raw data from uniprot.org	▷ prepare_task_dataset.ipvnb # Step 3
2:	$train_data \leftarrow uniprot_sprot - only20$	$0.18_{-}02.tar.qz$
3:	$test_data \leftarrow uniprot_sprot - only202$	0_06.tar.gz
4:	$test_data \leftarrow uniprot_sprot - only202$	$2_02.tar.gz$
5:	extract protein records from downloaded	data ⊳ prepare_task_dataset.ipynb # Step
	4	
6:	extract protein id	
7:	extract protein <i>name</i>	
8:	extract protein <i>ec_number</i>	
9:	extract protein sequence as seq	
10:	format ec_number and seq	
11:	caculate protein arrtruibutes.	\triangleright exact_ec_from_uniprot.py
12:	preprocessing protein records	\triangleright prepare_task_dataset.ipynb # Step 6
13:	drop duplicates by seq	
14:	remove changed seq with same id	
15:	format ec_number in standard four 1	level like:
16:	trim ec_number and seq strings	
17:	get esm embedding	\triangleright prepare_task_dataset.ipynb # Step 6.6
18:	get unirep embeeding	\triangleright prepare_task_dataset.ipynb # Step 6.7
19:	Construct task1 dataset $ds1$	\triangleright prepare_task_dataset.ipynb # Step 7.1
20:	Construct task2 dataset $ds2$	\triangleright prepare_task_dataset.ipynb # Step 7.2
21:	Construct task3 dataset $ds3$	\triangleright prepare_task_dataset.ipynb # Step 7.3

Algorithm 2 EC Number Prediction	
1: load <i>trainset</i> and <i>testset</i> from $ds3$	ightarrow task3.ipynb # Step 2
2: load embedding features	ightarrow task3.ipynb # Step 3
3: conduct sequence alignment	\triangleright task3.ipynb # Step 4
4: transfer EC number to model labels	\triangleright task3.ipynb # Step 5
5: train EC prediction model	\triangleright task3.ipynb # Step 6
6: do EC prediction	\triangleright task3.ipynb # Step 7
7: return prediction results	

Alg	Algorithm 3 Enzyme or Non-enzyme Prediction								
1:	load $trainset$ and $testset$ from $ds1$	ightarrow task1.ipynb # Step 2							
2:	conduct sequence alignment	\triangleright task1.ipynb # Step 3							
3:	embedding comparison	ightarrow task1.ipynb # Step 4							
4:	one-hot embedding	\triangleright task 1.ipynb # Step 4.1							
5:	unirep embedding	\triangleright task1.ipynb # Step 4.2							
6:	esm layer 33 embedding	\triangleright task1.ipynb # Step 4.3							
7:	esm layer 32 embedding	ightarrow task1.ipynb # Step 4.4							
8:	esm layer 0 embedding	\triangleright task1.ipynb # Step 4.5							
9:	DMLF for enzyme or non-enzyme prediction	\triangleright task1.ipynb # Step 5							
10:	learn model using KNN method on train_data								
11:	predict enzyme or non-enzyme on <i>test_data</i> us	ing learned model							
12:	integrate KNN prediction with sequence align	ment prediction							
13:	${\bf if} \ {\rm sequence} \ {\rm alignment} \ {\rm found} \ {\rm homologous} \ {\rm sequence}$	then							
14:	use alignment results as prediction								
15:	else								
16:	use KNN results as prediction return prediction								

Alg	gorithm 4 Enzyme Catalytic Function Quantity Predicti	on
1:	load trainset and testset from ds_2	ightarrow task2.ipynb # Step 2
2:	load esm32 embedding features	ightarrow task2.ipynb # Step 3
3:	conduct single or multi functions prediction benchmarking	g $sp ▷$ task2.ipynb # Step
	4.1	
4:	conduct 2-8 functions prediction benchmarking mp	\triangleright task2.ipynb # Step 4.2
5:	do sequences alignment	
6:	do function counts prediction	
7:	integrate and output results	\triangleright task2.ipynb # Step 5.3
8:	${\bf if}$ sequence alignment found homologous sequence ${\bf then}$	
9:	use alignment results as prediction	
10:	else if sp prediction is single functional then	
11:	prediction is sp results	
12:	else	
13:	use mp results return prediction results	

6 SI Appendix Tables

ITEM	Snapshot					
	February-2018	June-2020	February-2022			
Records	556,825	$563,\!972$	$567,\!483$			
Duplicate Removal	469,129	476,006	479,426			
Non-enzyme	246,562	247,319	247,338			
Enzyme	222,565	$228,\!687$	232,088			
Distinct EC	4854	5306	5570			

 Table 5. Benchmarking Data Description

Mathad	Bacolino	ACC	DDV	NDV	PC	F 1	Confusion Matrix		ix	
Method	Dasenne	лос	11 V	INI V	no	L T	TP	FP	$_{\rm FN}$	TN
	one-hot	0.6473	0.5886	0.7120	0.6924	0.6363	2478	1732	1101	2722
	Unirep	0.8368	0.8593	0.8222	0.7578	0.8053	2712	444	867	4010
Logistic Regression	ESM0	0.7561	0.7209	0.7857	0.7385	0.7296	2643	1023	936	3431
	ESM32	0.9066	0.9209	0.8964	0.8648	0.8919	3095	266	484	4188
	ESM33	0.9032	0.9204	0.8909	0.8567	0.8874	3066	265	513	4189
	one-hot	0.6330	0.6686	0.6222	0.3495	0.4591	1251	620	2328	3834
	Unirep	0.8486	0.8670	0.8363	0.7798	0.8211	2791	428	788	4026
KNN	ESM0	0.8246	0.7892	0.8556	0.8273	0.8078	2961	791	618	3663
	ESM32	0.9294	0.9411	0.9208	0.8977	0.9189	3213	201	366	4253
	ESM33	0.9273	0.9360	0.9208	0.8983	0.9167	3215	220	364	4234
	one-hot	0.7087	0.6851	0.7256	0.6407	0.6621	2293	1054	1286	3400
	Unirep	0.8651	0.8885	0.8494	0.7972	0.8404	2853	358	726	4096
XGboost	ESM0	0.8282	0.8197	0.8346	0.7877	0.8034	2819	620	760	3834
	ESM32	0.9254	0.9540	0.9057	0.8748	0.9127	3131	151	448	4303
	ESM33	0.9157	0.9443	0.8962	0.8617	0.9011	3084	182	495	4272
	one-hot	0.6283	0.5889	0.6562	0.5488	0.5681	1964	1371	1615	3083
	Unirep	0.7966	0.7951	0.7976	0.7320	0.7623	2620	675	959	3779
Decision tree	ESM0	0.7621	0.7437	0.7758	0.7111	0.7270	2545	877	1034	3577
	ESM32	0.8422	0.8550	0.8334	0.7776	0.8145	2783	472	796	3982
	ESM33	0.8311	0.8442	0.8223	0.7614	0.8006	2725	503	854	3951
	one-hot	0.7162	0.6768	0.7493	0.6946	0.6856	2486	1187	1093	3267
	Unirep	0.8634	0.9151	0.8328	0.7645	0.8330	2736	254	843	4200
Random forest	ESM0	0.8539	0.8636	0.8470	0.7980	0.8295	2856	451	723	4003
	ESM32	0.9157	0.9657	0.8841	0.8407	0.8989	3009	107	570	4347
	ESM33	0.9161	0.9610	0.8871	0.8460	0.8999	3028	123	551	4331
	one-hot	0.6775	0.6163	0.7461	0.7315	0.6690	2618	1630	961	2824
	Unirep	0.8332	0.8738	0.8091	0.7312	0.7962	2617	378	962	4076
GBDT	ESM0	0.8210	0.8100	0.8293	0.7815	0.7955	2797	656	782	3798
	ESM32	0.8720	0.9050	0.8507	0.7963	0.8472	2850	299	729	4155
	ESM33	0.8658	0.9017	0.8431	0.7843	0.8389	2807	306	772	4148

Table 6. Protein Sequences Embedding Performance Comparation on Enzyme orNon-Enzyme Prediction Task

Baseline	Method	ACC	Precision-Macro	Recall-Macro	F1-Macro
	One-hot	0.9016	0.4485	0.2133	0.2206
	Unirep	0.9234	0.8462	0.1428	0.1372
Logistic regression	ESM0	0.9237	0.9891	0.1429	0.1372
	ESM32	0.9168	0.8205	0.3100	0.3719
	ESM33	0.9210	0.7792	0.4365	0.4897
	One-hot	0.9180	0.6498	0.3601	0.3511
	Unirep	0.9044	0.5790	0.1479	0.1474
KNN	ESM0	0.9156	0.6195	0.4261	0.4672
	ESM32	0.9274	0.6317	0.5459	0.5773
	ESM33	0.9280	0.7974	0.5644	0.5994
	One-hot	0.9252	0.8941	0.2374	0.2841
	Unirep	0.9192	0.8822	0.1480	0.1475
XGboost	ESM0	0.9258	0.8512	0.3878	0.4332
	ESM32	0.9389	0.9422	0.5101	0.5931
	ESM33	0.9380	0.9441	0.4626	0.5405
	one-hot	0.8593	0.3079	0.2185	0.2305
	Unirep	0.8647	0.5951	0.1430	0.1440
Decision tree	ESM0	0.8786	0.5263	0.2531	0.2869
	ESM32	0.8874	0.3937	0.5412	0.3984
	ESM33	0.8814	0.3948	0.3862	0.2604
	One-hot	0.9262	0.9419	0.2397	0.2887
	Unirep	0.9210	0.8462	0.1424	0.1370
Random forest	ESM0	0.9280	0.9421	0.3869	0.4317
	ESM32	0.9343	0.9394	0.4640	0.5398
	ESM33	0.9322	0.9271	0.4283	0.4997
	One-hot	0.9125	0.1820	0.3125	0.1680
	Unirep	0.9228	0.8462	0.1427	0.1371
GBDT	ESM0	0.9240	0.5991	0.4407	0.3403
	ESM32	0.9271	0.6479	0.3135	0.3643
	ESM33	0.9231	0.6347	0.4828	0.3178

 Table 7. Protein Sequence Embedding Performance on Multifunctional Enzyme Prediction Task

 Table 8. EC Number Prediction Performance Comparation

Le Number i redetion i criormanee comparation							
basline	mACC	m PR	mRecall	mF1	dataset		
ECPred	0.2458	0.8042	0.2630	0.2955			
DeepEC	0.3011	0.8121	0.3794	0.3011			
CatFam	0.2760	0.8323	0.3507	0.2760	testset_20		
PRIAM-V2	0.2457	0.2080	0.7848	0.2457			
Ours	0.8619	0.6900	0.8388	0.6176			
ECPred	0.2350	0.8552	0.1620	0.1820			
DeepEC	0.2003	0.7910	0.2879	0.1049			
CatFam	0.2763	0.8858	0.1916	0.0837	$testset_22$		
PRIAM-V2	0.2426	0.2503	0.7526	0.0452			
Ours	0.8742	0.7721	0.8090	0.6445			

		v				-					
Bacolino	ACC DDV NDV	NDV	PC	۲ F1	Confusion Matrix						
Dasenne	AUU	11 V	INI V		I I	TP	FP	FN	TN	UP	UN
				testset_	20						
ECPred	0.7219	0.8218	0.9190	0.8463	0.8339	3029	657	244	277	306	1027
DeepEC	0.6715	0.9468	0.6300	0.2783	0.4301	996	56	2583	4398	0	0
CatFam	0.6502	0.8050	0.6214	0.2836	0.4194	1015	246	2564	4208	0	0
PRIAMV2	0.7410	0.6486	0.8967	0.9137	0.7586	3270	1772	309	2682	0	0
Ours	0.9312	0.9525	0.9160	0.8899	0.9201	3185	159	394	4295	0	0
				testset_	22						
ECPred	0.8021	0.7525	0.8655	0.8775	0.8102	4485	1454	144	4028	21	482
DeepEC	0.6383	0.9441	0.5906	0.2645	0.4133	1352	80	3759	5423	0	0
CatFam	0.5944	0.9278	0.5619	0.1710	0.2888	874	68	4237	5435	0	0
PRIAM-V2	0.7473	0.6780	0.8721	0.9051	0.7753	4626	2197	85	3306	0	0
Ours	0.9324	0.9179	0.9493	0.9549	0.9361	5255	470	248	4641	0	0

 Table 9. Enzyme or None-enzyme Prediction Performance Comparation-testset_20

 Table 10.
 Multifunctional Enzyme Prediction Performance Comparation

basline	accuracy	precision-macro	precision-macro recall-macro				
testset_20							
ECPred	0.9189	0.8654	0.2493	0.1197			
DeepEC	0.2216	0.1238	0.0330	0.0522			
CatFam	0.9237	0.9891	-	-			
PRIAM-V2	0.1311	0.2292	0.0446	0.0747			
Ours	0.9171	0.5837	0.5520	0.5605			
testset_22							
ECPred	0.9069	0.8790	0.2217	0.1057			
DeepEC	0.9063	0.8177	0.1354	0.1389			
CatFam	0.9102	0.6622	0.1592	0.1749			
PRIAM-V2	0.1327	0.0095	0.9309	0.0032			
Ours	0.9245	0.7068	0.5956	0.5745			

 Table 11. First-level EC Prediction Performance Comparation

		1						
baslineName	accuracy	precision-macro	recall-macro	f1-macro				
testset_20								
ECPred	0.7879	0.9127	0.2824	0.3193				
DeepEC	0.3197	0.8513	0.4247	0.3994				
CatFam	0.3558	0.8579	0.3684	0.3287				
PRIAM-V2	0.3037	0.2996	0.8969	0.3052				
Ours	0.9125	0.7679	0.8571	0.6365				
testset_22								
ECPred	0.7803	0.9144	0.2200	0.1883				
DeepEC	0.2411	0.8628	0.4524	0.4096				
CatFam	0.3571	0.9172	0.2162	0.1253				
PRIAM-V2	0.3039	0.2960	0.9003	0.4045				
Ours	0.9130	0.7815	0.8317	0.6663				

baslineName	accuracy	precision-macro	recall-macro	f1-macro				
testset_20								
ECPred	0.5479	0.8389	0.2725	0.3135				
DeepEC	0.3153	0.8510	0.4054	0.3409				
CatFam	0.3550	0.8430	0.3611	0.3091				
PRIAM-V2	0.2882	0.2895	0.8623	0.2815				
Ours	0.8966	0.7654	0.8425	0.6253				
	testset_22							
ECPred	0.5572	0.9029	0.2132	0.1878				
DeepEC	0.2275	0.8625	0.3154	0.3717				
CatFam	0.3390	0.9133	0.2016	0.1184				
PRIAM-V2	0.2882	0.2790	0.8630	0.2903				
Ours	0.8865	0.7801	0.8246	0.6605				

 Table 12. Second-level EC Prediction Performance Comparation

 Table 13. Third-level EC Prediction Performance Comparation

baslineName	accuracy	precision-macro	recall-macro	f1-macro			
testset_20							
ECPred	0.2458	0.8042	0.2630	0.2955			
DeepEC	0.3011	0.8121	0.3794	0.3011			
CatFam	0.2760	0.8323	0.3507	0.2760			
PRIAM-V2	0.2457	0.2080	0.7848	0.2457			
Ours	0.8619	0.6900	0.8388	0.6176			
testset_22							
ECPred	0.2350	0.8552	0.1620	0.1820			
DeepEC	0.2003	0.7910	0.2879	0.1049			
CatFam	0.2763	0.8858	0.1916	0.0837			
PRIAM-V2	0.2426	0.2503	0.7526	0.0452			
Ours	0.8742	0.7721	0.8090	0.6445			

References

- A. Abdiansah and R. Wardoyo. Time complexity analysis of support vector machines (svm) in libsvm. *International journal computer and application*, 128(3):28–34, 2015.
- 2. D. Baldazzi, C. Savojardo, P. L. Martelli, and R. Casadio. Benz ws: the bologna enzyme web server for four-level ec number annotation. *Nucleic Acids Research*, 49:w60–w66, 2021.
- C. Claudel-Renard, C. Chevalet, T. Faraut, and D. Kahn. Enzyme-specific profiles for genome annotation: Priam. *Nucleic acids research*, 31(22):6633–6639, 2003.
- A. Dalkiran, A. S. Rifaioglu, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan. Ecpred: a tool for the prediction of the enzymatic functions of protein sequences based on the ec nomenclature. *BMC bioinformatics*, 19(1):1–13, 2018.
- Y. Li, S. Wang, R. Umarov, B. Xie, M. Fan, L. Li, and X. Gao. Deepre: sequence-based enzyme ec number prediction by deep learning. *Bioinformatics*, 34(5):760-769, 2018.
- Y. H. Li, J. Y. Xu, L. Tao, X. F. Li, S. Li, X. Zeng, S. Y. Chen, P. Zhang, C. Qin, C. Zhang, et al. Svm-prot 2016: a web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. *PloS one*, 11(8):e0155290, 2016.
- B. Liu, F. Liu, X. Wang, J. Chen, L. Fang, and K.-C. Chou. Pse-in-one: a web server for generating various modes of pseudo components of dna, rna, and protein sequences. *Nucleic acids research*, 43(W1):W65–W71, 2015.
- J. Y. Ryu, H. U. Kim, and S. Y. Lee. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. *Proceedings of the National Academy of Sciences*, 116(28):13996–14001, 2019.
- H.-B. Shen and K.-C. Chou. Ezypred: a top-down approach for predicting enzyme functional classes and subclasses. *Biochemical and biophysical research* communications, 364(1):53–59, 2007.
- 10. C. Yu, N. Zavaljevski, V. Desai, and J. Reifman. Genome-wide enzyme annotation with precision control: Catalytic families (catfam) databases. *Proteins: Structure, Function, and Bioinformatics*, 74(2):449–460, 2009.