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Abstract

This is a supplementary document for the paper ”ECRECer: Enzyme Commission
Number Prediction and Benchmarking with Hierarchy Dual-core Multitask Learning
Framework”. It provides details on preparing the data, selecting models, fine-tuning
parameters, performance evaluation, as well as supplementary figures and tables that
provide experimental details and support our conclusions. It also includes information
on how to use the web service and offline bundles for high-throughput EC number
prediction.

1 SI Related Work 1

As EC number prediction is at the core of enzyme functional annotation, a large 2

number of relevant computational techniques have been developed to assign EC 3

numbers to unknown protein sequences. In this section, we will introduce seven of the 4

most representative ones, ordered by their time of publication. The seven representative 5

tools are listed in Table 1. Next, we evaluated these tools based on the latest update 6

time, distribution type (standalone packages, online web-service, or both), usability 7

(’YES’ if it is available for use, ’NO’ if it is not available, ’Good’ if it can be used for 8

high-throughput prediction) and citations of these tools up to 26 Aug 2021. 9

1.1 CatFam 10

CatFam [10] is a profile-controlled, sequence-based database that can be used to infer 11

the catalytic functions of proteins. CatFam uses an adjustable false positive rate to 12

generate databases on-demand for different needs, such as functional annotation with 13

different precision and hypothesis generation with moderate precision but better recall. 14

CatFam uses profile-specific thresholds to ensure equal precision for each profile and 15
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Table 1. Usability of 7 EC prediction tools

Tools Last update Type Usability Citations
CatFam1 2009 standalone GOOD 71
SVMProt2 2016 online NO 88
PRIAM V23 2018 both GOOD 365
DEEPre4 2018 online YES 132
ECPred5 2018 both GOOD 40
DEEPEC6 2019 standalone GOOD 49
BENZ WS7 2021 online YES 0

1. http://www.bhsai.org/downloads/catfam.tar.gz
2. http://bidd.group/cgi-bin/svmprot/svmprot.cgi
3. http://priam.prabi.fr/REL JAN18/index jan18.html
4. http://www.cbrc.kaust.edu.sa/DEEPre/index.html
5. https://ecpred.kansil.org/
6. https://bitbucket.org/kaistsystemsbiology/deepec/src/master/
7. https://benzdb.biocomp.unibo.it/

ensure the best performance for all tasks. Comparison experiments were conducted 16

based on three test sets and 13 bacterial genomes. The results demonstrated that 17

CatFam outperforms PRIAM in terms of precision and coverage. CatFam has been 18

developed for more than 12 years. Although the precision is not as good as in the latest 19

ones, the recall remains good, and its code is still available. We, therefore, used CatFam 20

as one of our baselines in this work. 21

1.2 SVM-Prot 22

SVM-Prot V2016 [6] is a machine-learning method that was first published in 2003 and 23

then updated in 2016. SVM-Prot is supplementary for predicting diverse classes of 24

proteins compared with distantly-related or homologous-related methods. SVM-Prot 25

employs 13 manually curated physicochemical features of proteins as inputs, nine of 26

which are from Pse-in-One [7], while the remaining four are self-calculated, such as 27

molecular weight and solubility. The algorithm then uses these features to train an 28

integrated SVM, KNN, PNN, and Blast model, to predict the EC numbers for new 29

proteins. Sensitivity, precision, and specificity are evaluated on an independent 30

evaluation dataset, which demonstrated the outstanding performance of SVM-Prot. 31

However, to train an SVM classifier the time complexity is O(n2p + n3) [1], which is 32

extremely time-consuming. More importantly, the web service provided by SVM-Prot is 33

no longer available, and they did not provide their code for reimplementation and 34

evaluation. Hence, the usability of SVM-Prot is weak. 35

1.3 PRIAM-V2 36

PRIAM V2 [3] s a rules-based method for automated enzyme annotation with EC 37

numbers proposed in 2003, with an updated version V2 published in 2018. It takes 38

protein or nucleotide sequences as inputs and annotates them with EC numbers on an 39

individual sequence level or a genome level. PRIAM utilizes a set of signatures 40

composed of position-specific scoring matrices and patterns for sequence embedding, 41

which is tailored for each enzyme entry to build its model. PRIAM uses the whole 42

Swiss-Prot database to learn parameters and evaluate the method as well. The 43

advantage of PRIAM is its high recall, and the code is available. Accordingly, we used 44

PRIAM V2 as one of our baselines. 45
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1.4 DEEPre 46

DEEPre [5] is a supervised end-to-end feature selection and classification model that 47

uses a convolutional neural network (CNN) with a level-by-level strategy to predict 48

enzyme functions. Unlike the above-mentioned method that needs manually curated 49

features, DEEPre takes the raw sequence encoding as inputs, then extracts 50

convolutional and sequential features from the raw encoding based on the classification 51

result to directly boost the model performance. DEEPre is good at determining the 52

main classes of enzymes on a separate low-homology dataset, while the performance is 53

suboptimal when determining the fourth level EC numbers. DEEPre provides a 54

webserver for the public but does not provide the source code for reimplementation and 55

evaluation, and the webserver is not capable of high-throughput prediction. Thus, this 56

algorithm is usable but not user-friendly. 57

1.5 ECPred 58

ECPred [4] is a supervised hierarchical enzyme function prediction tool based on an 59

ensemble of machine learning that can predict EC numbers to the fourth level. ECPred 60

trains an independent model for each EC number level and uses three predictors, called 61

SPMap, BLAST-kNN, and Pepstats-SVM, to integrate the output. ECPred was trained 62

and validated using the enzyme entries located in the Swiss-Prot database. ECPred 63

ingeniously constructed a positive set and a negative set to finely control the prediction 64

performance. The experimental results showed its outstanding performance at level 0 65

EC number prediction. ECPred was published in late 2018. The most significant point 66

of ECPred is its user-friendly workflow that provides both a web service, standalone 67

packages, and the source code. Accordingly, we used ECPred as one of our baselines in 68

this work. 69

1.6 DEEPEC 70

DeepEC [8] is a deep learning method that enables high-quality and high-throughput 71

prediction of EC numbers. DeepEC uses three CNN as its major engine and homology 72

analysis as its supplementary engine to conduct EC number prediction. DeepEC 73

predicts if the given amino sequence is an enzyme in the first CNN layer, and then 74

specifies the third level of EC numbers in the second CNN layer, after which it assigns 75

the fourth level in the final CNN layer. The primary objective of DeepEC is high 76

precision, low computing time, and low disk space requirements. DeepEC is sensitive in 77

detecting the effects of mutated domains/binding site residues. DeepEC did not provide 78

a source code for self-training and reimplementation. It only provides well-trained 79

parameters for local installation and prediction. However, no webserver is given. 80

Considering its good performance in precision, we also used use DeepEC as one of our 81

baselines in this work. 82

1.7 BENZ WS 83

BENZ WS [2] is the latest published web service for four-level EC number annotation. 84

It was first published in May 2021. BENZ WS filters a target sequence with a combined 85

system of HMMs and PFAMs, after which it returns an associated four-level EC number 86

if successful. BENZ WS can annotate both mono- and multifunctional enzymes. 87

Compared with DEEPre and ECPred, BENZ WS is superior in terms of the true 88

positive rate. However, the performance of BENZ WS is relatively inferior in terms of 89

the false-negative rate. BENZ WS only provides a web interface to the end-user, so 90

usability is given, but no source code or standalone suite is available, and the 91
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computational time is long. We therefore did not use BENZ WS as a baseline in this 92

work. 93

2 SI Appendix Materials and Methods 94

2.1 Preprocessing 95

There are six steps (s1-s6) in data preprocessing: 96

s1: remove the records with identical IDs, but changed sequences (updated sequences); 97

s2: for duplicated records, only keep one; 98

s3: make the EC numbers uniform and remove unnecessary spaces; 99

s4: based on the EC number, assign a unique label for each sequence; 100

s5: organize a uniform dictionary for EC label mapping; 101

s6: add enzyme catalytic function quantity labels to protein sequences. 102

2.2 Dataset 103

A commonly used EC number prediction dataset is the EzyPred dataset from Shen and 104

Zhou, published in 2007 [9]. The EzyPred dataset is a two-level EC number dataset 105

that was extracted from the ENZYME database (released May 1, 2007), with a 40% 106

sequence similarity cutoff. This dataset contains 9,832 two-level specified enzymes and 107

9850 non-enzymes. The details of this dataset can be found in their published paper [9]. 108

This dataset can only be used to predict two-level EC numbers, and the volume of this 109

dataset is unsuitable for machine learning. Accordingly, the majority of the later studies 110

used a similar approach to extract and construct datasets from Swiss-Prot [8, 5]. The 111

typical steps of constructing the dataset are as follows: 112

1) Obtain the latest reviewed protein data from Swiss-Prot and label the sequences 113

as enzyme or none-enzyme utilizing the protein annotation. 114

2) Exclude the multifunctional enzymes and those enzymes with incomplete EC 115

number annotations. 116

3) Exclude enzymes by sequence length, a typical threshold is length ∈ [50,50000]. 117

4) Use homology analysis tools to remove redundant sequences. The similarity 118

threshold is manually determined, and a typical threshold is 40%. 119

5) Randomly rearrange filtered enzyme data and randomly pick non-enzyme data 120

with a similar size, then mix these data together as a standard dataset. 121

6) Split the standard dataset into a training set and a testing set using a typical 8:2 122

ratio or split the standard dataset into a training set, validation set, and testing 123

set using a typical 7:1:2 ratio. 124

However, these principles of dataset construction were explicitly designed for the EC 125

number prediction of monofunctional enzymes and are not suitable for multifunctional 126

enzymes. Moreover, the construction of training and testing datasets using randomly 127

mixed data is not in accordance with the facts and may lead to information leaks. 128

Beyond that, filtering sequences by length and homology may obscure patterns and 129

other information, which will reduce the learning performance. Therefore, the steps of 130

constructing the dataset in this work were more straightforward: 131

4/19



1*) Obtain the latest reviewed protein data from Swiss-Prot and label the sequences 132

with three label vectors: enzyme or none-enzyme, monofunctional (labeled 1 or 0) 133

or multifunctional enzyme (labeled with function counts), EC number 134

(monofunctional enzymes have a single EC number, multifunctional enzymes have 135

more than one EC number). 136

2*) Rearrange the protein sequence order by annotation updated date. 137

3*) Use the latest four-year data as the testing set, while the rest is the training and 138

validation set. 139

4*) We constructed two test sets to validate the methods’ prediction efficiency over 140

time. The first one is built using Sprot data from February 2018 to June 2020, 141

namely testset 20, and the second one is from February 2018 to February 2022, 142

namely testset 22. 143

The implementation can be seen in chapter 5 and by referring to our source codes. 144

2.2.1 Task 1 Enzyme and Non-enzyme Dataset 145

Based on the above mentioned three principles, the enzyme and non-enzyme dataset 146

(Table 2) uses the latest 3 years of Swiss-Prot data as the testing set, and the data 147

before as the training set.

Table 2. Description of the Enzyme and Non-enzyme Dataset

ITEM Training set testset 20 testset 22
Enzyme 222,567 3,304 5,111

Non-enzyme 246,567 3,797 5,503
Total 469,134 7,101 10,614

148

2.2.2 Task 2 Multifunctional Enzyme Dataset 149

For the multifunctional enzyme prediction dataset, to minimize distractions from 150

non-enzymes and balance the dataset, we excluded the non-enzyme data (Table 3). The 151

remaining enzyme data were labeled based on the number of functions (i.e., 1, 2, ....,8). 152

The details are listed below: 153

Table 3. Description of Multifunctional Enzyme Dataset

Records Records
Functions

Train Test1 Test2
Functions

Train Test1 Test2
1 210,788 3,273 4,656 5 206 6 7
2 9,943 208 337 6 80 2 10
3 993 60 84 7 27 1 1
4 525 7 13 8 5 0 3

Train: Training set
Test1: Testset 20
Test2: Testset 22

2.2.3 Task 3 Enzyme Commission Number Dataset 154

Following the three-datasets construction principle, the enzyme commission (EC) 155

number dataset filtered the non-enzyme data after preprocessing. For a comprehensive 156

and fair comparison with the state-of-the-art method DeepEC, we set the end-time of 157
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the training dataset to February 2018. This is because DeepEC only collected data 158

before February 2018 for model training. If we use more recent data it will lead to an 159

information leak problem. The dataset (Table 4) details are listed below: 160

Table 4. Description of the Enzyme Commission Number Dataset

Item Trainingset testset 20 testset 22
Monofunctional 210,788 3,052 4,656
Multifunctional 11,779 252 455

Distinct EC numbers 4,854 937 1,355
Incomplete EC numbers 209 128 137
Complete EC numbers 4,645 809 1,218

Oxidoreductases 34,169 1,065 1,615
Transferases 79,570 1,009 1,567
Hydrolases 56,749 676 989
Lyases 20,747 346 608

Isomerases 11,927 108 184
Ligases 25,254 156 244

Translocases - 57 83
Set size 222,567 7,101 5,111

3 Models 161

3.1 Optimized parameters 162�
163
164

# Bi−GRU and At ten t ion opt imized parameters 165

166

Layer ( type ) Output Shape Param # 167

======================================================== 168

input ( InputLayer ) n∗ (1 , 1280) 0 169

bi−gru ( B i d i r e c t i o n a l ) (1 , 256) 1082880 170

a t t en t i on ( Attent ion ) (256) 8225 171

dense1 (Dense ) (64) 16448 172

l n i e a r (Dense ) ( num of ( Y labe l ) ) 130 173

======================================================== 174

Total params : 1 ,107 ,683 175

Trainable params : 1 ,107 ,683 176

Non−t r a i n ab l e params : 0 177

178
� �179

3.2 Integration, fine-tuning, and production 180

As illustrated in Fig. 1, the final EC number prediction output is an integrated process. 181

As shown in SE. 1, we formulated this integrated process as an optimization problem: 182

MAX
F1
{f(obj1, obj2, obj3, sa)} (SE.1)

where ag1, ag2, and ag3 are the predicted results from DMLF finetued for task1, task2, 183

task3, respectively, while sa is the predicted results from multiple sequence alignment. 184

The integration and fine-tuning process aim to maximize the optimizing objective. In 185
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this work, the objective was the performance of EC number prediction in terms of the 186

F1 score. We used a greedy strategy to finish this optimization. 187

Agent1

Agent2 Agent3

Sequence

 A
ligm

ent

A.

B.

C.

D.

E.

Figure 1. The integration and fine-tuning process before output.

4 SI Appendix Figures 188
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Figure 3. Venn diagram of the training and testing datasets

Figure 4. Structure alignment of proteins A0A0U5GJ41 and Q4WAW9.
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Figure 5. Structure of protein A0A0U5GJ41 (predicted using alphfold2).

Figure 6. Structure of protein Q4WAW9 (predicted using alphfold2).
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Figure 7. Structure for protein Q4WAW9 (alphfold2 predicted).
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5 SI Algorithm 189

Algorithm 1 Prepare benchmarking datasets

1: download raw data from uniprot.org ▷ prepare task dataset.ipynb # Step 3
2: train data ← uniprot sprot − only2018 02.tar.gz
3: test data ← uniprot sprot − only2020 06.tar.gz
4: test data ← uniprot sprot − only2022 02.tar.gz
5: extract protein records from downloaded data ▷ prepare task dataset.ipynb # Step

4
6: extract protein id
7: extract protein name
8: extract protein ec number
9: extract protein sequence as seq

10: format ec number and seq
11: caculate protein arrtruibutes. ▷ exact ec from uniprot.py
12: preprocessing protein records ▷ prepare task dataset.ipynb # Step 6
13: drop duplicates by seq
14: remove changed seq with same id
15: format ec number in standard four level like: -.-.-.-
16: trim ec number and seq strings
17: get esm embedding ▷ prepare task dataset.ipynb # Step 6.6
18: get unirep embeeding ▷ prepare task dataset.ipynb # Step 6.7
19: Construct task1 dataset ds1 ▷ prepare task dataset.ipynb # Step 7.1
20: Construct task2 dataset ds2 ▷ prepare task dataset.ipynb # Step 7.2
21: Construct task3 dataset ds3 ▷ prepare task dataset.ipynb # Step 7.3

Algorithm 2 EC Number Prediction

1: load trainset and testset from ds3 ▷ task3.ipynb # Step 2
2: load embedding features ▷ task3.ipynb # Step 3
3: conduct sequence alignment ▷ task3.ipynb # Step 4
4: transfer EC number to model labels ▷ task3.ipynb # Step 5
5: train EC prediction model ▷ task3.ipynb # Step 6
6: do EC prediction ▷ task3.ipynb # Step 7
7: return prediction results
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Algorithm 3 Enzyme or Non-enzyme Prediction

1: load trainset and testset from ds1 ▷ task1.ipynb # Step 2
2: conduct sequence alignment ▷ task1.ipynb # Step 3
3: embedding comparison ▷ task1.ipynb # Step 4
4: one-hot embedding ▷ task1.ipynb # Step 4.1
5: unirep embedding ▷ task1.ipynb # Step 4.2
6: esm layer 33 embedding ▷ task1.ipynb # Step 4.3
7: esm layer 32 embedding ▷ task1.ipynb # Step 4.4
8: esm layer 0 embedding ▷ task1.ipynb # Step 4.5
9: DMLF for enzyme or non-enzyme prediction ▷ task1.ipynb # Step 5

10: learn model using KNN method on train data
11: predict enzyme or non-enzyme on test data using learned model
12: integrate KNN prediction with sequence alignment prediction
13: if sequence alignment found homologous sequence then
14: use alignment results as prediction
15: else
16: use KNN results as prediction

return prediction

Algorithm 4 Enzyme Catalytic Function Quantity Prediction

1: load trainset and testset from ds2 ▷ task2.ipynb # Step 2
2: load esm32 embedding features ▷ task2.ipynb # Step 3
3: conduct single or multi functions prediction benchmarking sp ▷ task2.ipynb # Step

4.1
4: conduct 2-8 functions prediction benchmarking mp ▷ task2.ipynb # Step 4.2
5: do sequences alignment
6: do function counts prediction
7: integrate and output results ▷ task2.ipynb # Step 5.3
8: if sequence alignment found homologous sequence then
9: use alignment results as prediction

10: else if sp prediction is single functional then
11: prediction is sp results
12: else
13: use mp results

return prediction results
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6 SI Appendix Tables 190

Table 5. Benchmarking Data Description

Snapshot
ITEM

February-2018 June-2020 February-2022
Records 556,825 563,972 567,483

Duplicate Removal 469,129 476,006 479,426
Non-enzyme 246,562 247,319 247,338
Enzyme 222,565 228,687 232,088

Distinct EC 4854 5306 5570
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Table 6. Protein Sequences Embedding Performance Comparation on Enzyme or
Non-Enzyme Prediction Task

Confusion Matrix
Method Baseline ACC PPV NPV RC F1

TP FP FN TN

Logistic Regression

one-hot 0.6473 0.5886 0.7120 0.6924 0.6363 2478 1732 1101 2722
Unirep 0.8368 0.8593 0.8222 0.7578 0.8053 2712 444 867 4010
ESM0 0.7561 0.7209 0.7857 0.7385 0.7296 2643 1023 936 3431
ESM32 0.9066 0.9209 0.8964 0.8648 0.8919 3095 266 484 4188
ESM33 0.9032 0.9204 0.8909 0.8567 0.8874 3066 265 513 4189

KNN

one-hot 0.6330 0.6686 0.6222 0.3495 0.4591 1251 620 2328 3834
Unirep 0.8486 0.8670 0.8363 0.7798 0.8211 2791 428 788 4026
ESM0 0.8246 0.7892 0.8556 0.8273 0.8078 2961 791 618 3663
ESM32 0.9294 0.9411 0.9208 0.8977 0.9189 3213 201 366 4253
ESM33 0.9273 0.9360 0.9208 0.8983 0.9167 3215 220 364 4234

XGboost

one-hot 0.7087 0.6851 0.7256 0.6407 0.6621 2293 1054 1286 3400
Unirep 0.8651 0.8885 0.8494 0.7972 0.8404 2853 358 726 4096
ESM0 0.8282 0.8197 0.8346 0.7877 0.8034 2819 620 760 3834
ESM32 0.9254 0.9540 0.9057 0.8748 0.9127 3131 151 448 4303
ESM33 0.9157 0.9443 0.8962 0.8617 0.9011 3084 182 495 4272

Decision tree

one-hot 0.6283 0.5889 0.6562 0.5488 0.5681 1964 1371 1615 3083
Unirep 0.7966 0.7951 0.7976 0.7320 0.7623 2620 675 959 3779
ESM0 0.7621 0.7437 0.7758 0.7111 0.7270 2545 877 1034 3577
ESM32 0.8422 0.8550 0.8334 0.7776 0.8145 2783 472 796 3982
ESM33 0.8311 0.8442 0.8223 0.7614 0.8006 2725 503 854 3951

Random forest

one-hot 0.7162 0.6768 0.7493 0.6946 0.6856 2486 1187 1093 3267
Unirep 0.8634 0.9151 0.8328 0.7645 0.8330 2736 254 843 4200
ESM0 0.8539 0.8636 0.8470 0.7980 0.8295 2856 451 723 4003
ESM32 0.9157 0.9657 0.8841 0.8407 0.8989 3009 107 570 4347
ESM33 0.9161 0.9610 0.8871 0.8460 0.8999 3028 123 551 4331

GBDT

one-hot 0.6775 0.6163 0.7461 0.7315 0.6690 2618 1630 961 2824
Unirep 0.8332 0.8738 0.8091 0.7312 0.7962 2617 378 962 4076
ESM0 0.8210 0.8100 0.8293 0.7815 0.7955 2797 656 782 3798
ESM32 0.8720 0.9050 0.8507 0.7963 0.8472 2850 299 729 4155
ESM33 0.8658 0.9017 0.8431 0.7843 0.8389 2807 306 772 4148
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Table 7. Protein Sequence Embedding Performance on Multifunctional Enzyme Predic-
tion Task

Baseline Method ACC Precision-Macro Recall-Macro F1-Macro

Logistic regression

One-hot 0.9016 0.4485 0.2133 0.2206
Unirep 0.9234 0.8462 0.1428 0.1372
ESM0 0.9237 0.9891 0.1429 0.1372
ESM32 0.9168 0.8205 0.3100 0.3719
ESM33 0.9210 0.7792 0.4365 0.4897

KNN

One-hot 0.9180 0.6498 0.3601 0.3511
Unirep 0.9044 0.5790 0.1479 0.1474
ESM0 0.9156 0.6195 0.4261 0.4672
ESM32 0.9274 0.6317 0.5459 0.5773
ESM33 0.9280 0.7974 0.5644 0.5994

XGboost

One-hot 0.9252 0.8941 0.2374 0.2841
Unirep 0.9192 0.8822 0.1480 0.1475
ESM0 0.9258 0.8512 0.3878 0.4332
ESM32 0.9389 0.9422 0.5101 0.5931
ESM33 0.9380 0.9441 0.4626 0.5405

Decision tree

one-hot 0.8593 0.3079 0.2185 0.2305
Unirep 0.8647 0.5951 0.1430 0.1440
ESM0 0.8786 0.5263 0.2531 0.2869
ESM32 0.8874 0.3937 0.5412 0.3984
ESM33 0.8814 0.3948 0.3862 0.2604

Random forest

One-hot 0.9262 0.9419 0.2397 0.2887
Unirep 0.9210 0.8462 0.1424 0.1370
ESM0 0.9280 0.9421 0.3869 0.4317
ESM32 0.9343 0.9394 0.4640 0.5398
ESM33 0.9322 0.9271 0.4283 0.4997

GBDT

One-hot 0.9125 0.1820 0.3125 0.1680
Unirep 0.9228 0.8462 0.1427 0.1371
ESM0 0.9240 0.5991 0.4407 0.3403
ESM32 0.9271 0.6479 0.3135 0.3643
ESM33 0.9231 0.6347 0.4828 0.3178

Table 8. EC Number Prediction Performance Comparation

basline mACC mPR mRecall mF1 dataset
ECPred 0.2458 0.8042 0.2630 0.2955

testset 20
DeepEC 0.3011 0.8121 0.3794 0.3011
CatFam 0.2760 0.8323 0.3507 0.2760

PRIAM-V2 0.2457 0.2080 0.7848 0.2457
Ours 0.8619 0.6900 0.8388 0.6176

ECPred 0.2350 0.8552 0.1620 0.1820

testset 22
DeepEC 0.2003 0.7910 0.2879 0.1049
CatFam 0.2763 0.8858 0.1916 0.0837

PRIAM-V2 0.2426 0.2503 0.7526 0.0452
Ours 0.8742 0.7721 0.8090 0.6445
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Table 9. Enzyme or None-enzyme Prediction Performance Comparation-testset 20

Confusion Matrix
Baseline ACC PPV NPV RC F1

TP FP FN TN UP UN
testset 20

ECPred 0.7219 0.8218 0.9190 0.8463 0.8339 3029 657 244 277 306 1027
DeepEC 0.6715 0.9468 0.6300 0.2783 0.4301 996 56 2583 4398 0 0
CatFam 0.6502 0.8050 0.6214 0.2836 0.4194 1015 246 2564 4208 0 0

PRIAMV 2 0.7410 0.6486 0.8967 0.9137 0.7586 3270 1772 309 2682 0 0
Ours 0.9312 0.9525 0.9160 0.8899 0.9201 3185 159 394 4295 0 0

testset 22
ECPred 0.8021 0.7525 0.8655 0.8775 0.8102 4485 1454 144 4028 21 482
DeepEC 0.6383 0.9441 0.5906 0.2645 0.4133 1352 80 3759 5423 0 0
CatFam 0.5944 0.9278 0.5619 0.1710 0.2888 874 68 4237 5435 0 0

PRIAM-V2 0.7473 0.6780 0.8721 0.9051 0.7753 4626 2197 85 3306 0 0
Ours 0.9324 0.9179 0.9493 0.9549 0.9361 5255 470 248 4641 0 0

Table 10. Multifunctional Enzyme Prediction Performance Comparation

basline accuracy precision-macro recall-macro f1-macro
testset 20

ECPred 0.9189 0.8654 0.2493 0.1197
DeepEC 0.2216 0.1238 0.0330 0.0522
CatFam 0.9237 0.9891 - -

PRIAM-V2 0.1311 0.2292 0.0446 0.0747
Ours 0.9171 0.5837 0.5520 0.5605

testset 22
ECPred 0.9069 0.8790 0.2217 0.1057
DeepEC 0.9063 0.8177 0.1354 0.1389
CatFam 0.9102 0.6622 0.1592 0.1749

PRIAM-V2 0.1327 0.0095 0.9309 0.0032
Ours 0.9245 0.7068 0.5956 0.5745

Table 11. First-level EC Prediction Performance Comparation

baslineName accuracy precision-macro recall-macro f1-macro
testset 20

ECPred 0.7879 0.9127 0.2824 0.3193
DeepEC 0.3197 0.8513 0.4247 0.3994
CatFam 0.3558 0.8579 0.3684 0.3287

PRIAM-V2 0.3037 0.2996 0.8969 0.3052
Ours 0.9125 0.7679 0.8571 0.6365

testset 22
ECPred 0.7803 0.9144 0.2200 0.1883
DeepEC 0.2411 0.8628 0.4524 0.4096
CatFam 0.3571 0.9172 0.2162 0.1253

PRIAM-V2 0.3039 0.2960 0.9003 0.4045
Ours 0.9130 0.7815 0.8317 0.6663
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Table 12. Second-level EC Prediction Performance Comparation

baslineName accuracy precision-macro recall-macro f1-macro
testset 20

ECPred 0.5479 0.8389 0.2725 0.3135
DeepEC 0.3153 0.8510 0.4054 0.3409
CatFam 0.3550 0.8430 0.3611 0.3091

PRIAM-V2 0.2882 0.2895 0.8623 0.2815
Ours 0.8966 0.7654 0.8425 0.6253

testset 22
ECPred 0.5572 0.9029 0.2132 0.1878
DeepEC 0.2275 0.8625 0.3154 0.3717
CatFam 0.3390 0.9133 0.2016 0.1184

PRIAM-V2 0.2882 0.2790 0.8630 0.2903
Ours 0.8865 0.7801 0.8246 0.6605

Table 13. Third-level EC Prediction Performance Comparation

baslineName accuracy precision-macro recall-macro f1-macro
testset 20

ECPred 0.2458 0.8042 0.2630 0.2955
DeepEC 0.3011 0.8121 0.3794 0.3011
CatFam 0.2760 0.8323 0.3507 0.2760

PRIAM-V2 0.2457 0.2080 0.7848 0.2457
Ours 0.8619 0.6900 0.8388 0.6176

testset 22
ECPred 0.2350 0.8552 0.1620 0.1820
DeepEC 0.2003 0.7910 0.2879 0.1049
CatFam 0.2763 0.8858 0.1916 0.0837

PRIAM-V2 0.2426 0.2503 0.7526 0.0452
Ours 0.8742 0.7721 0.8090 0.6445
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