Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis

Fuji Yang, Yanshuang Wu, Yifei Chen, Jianbo Xi, Ying Chu, Jianhua Jin, Yongmin Yan

Table of contents

Fig. S1	2
Fig. S2	3
Fig. S3	4
Fig. S4	6
Fig. S5	7
Fig. S6	9

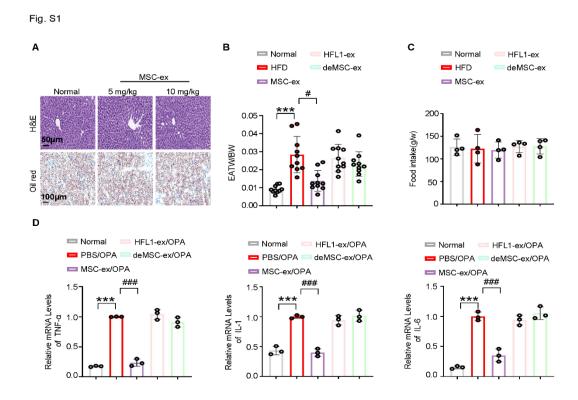


Fig. S1 MSC-ex inhibits weight gain of inguinal adipose tissue and inflammation in livers of HFD mice

(A) C57BL/6 mice were placed on high-fat diet (HFD, 40%) and administered 5 mg/kg and 10 mg/kg of MSC-ex *i.v.* From the 10th week to the 14th week of HFD feeding. Representative Images of Haematoxylin and eosin (H&E; upper; Scale bars, 50 μ m) and oil red O (bottom; Scale bars, 20 μ m) staining of liver sections. (B) Changes in the EATW/BW of mice (EATW/BW = relative weight of epididymal adipose tissue to body weight). (C) The food consumption was measured by weighing the food used. (D) Inflammatory transcription factor expression at mrna level (n=3 in each group). Data are represented as the mean \pm s.e.m. Statistical analyses was performed by a one-way ANOVA (panels B-D). *** P < 0.001 versus HFD group.

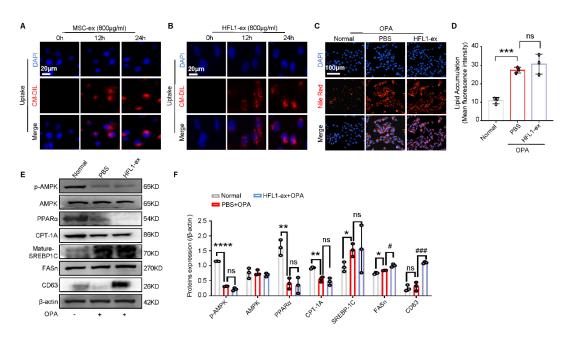


Fig. S2 HFL1-ex inactivates the AMPK signaling pathway and increases lipid accumulation (A-B) Representative fluorescent images of CM-DIL labeled MSC-ex (A) and HFL1-ex (B) in L02 cells at 0, 12, and 24 h. Scale bars, 100μm. (C-D) The intracellular lipid droplets in L02 cells subjected to oleate and palmitate (OPA) stimulation (2.0 mM, 2:1 ratio) in combination with HFL1-ex (800 μg/ml) or PBS treatment for 24 h were visualized by Nile red staining (C) and quantified by Image J for three random areas (D). Scale bars, 100 μm. (E-F) Immunoblotting of AMPK pathway proteins in L02 cells subjected to OPA stimulation (2.0 mM, 2:1 ratio) combined with HFL1-ex (800 μg/ml) or PBS treatment for 24 h (E) and quantification of the results (F). Data are represented as the mean ± s.e.m. Statistical analyses was performed by a one-way ANOVA (D and F). * P <0.05, *** P <0.01, **** P <0.001, ***** P <0.0001 versus normal group; # P <0.05, ### P <0.001 versus PBS group.

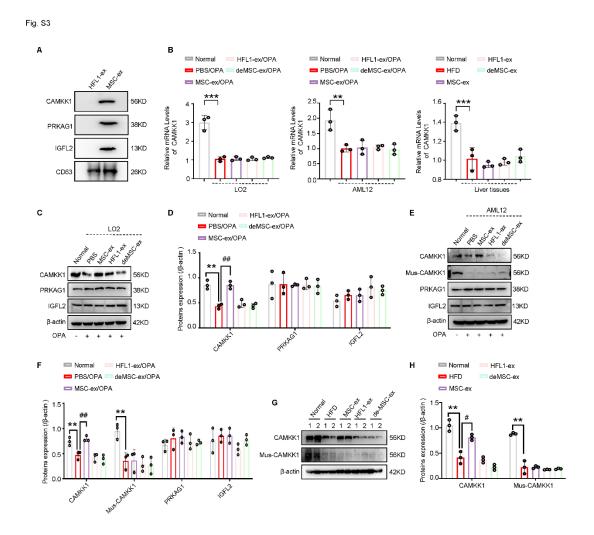


Fig. S3 Expression of CAMKK1 in HFL1-ex/MSC-ex, HFL1-ex/MSC-ex treated hepatocytes and livers

(A) CAMKK1, PRKAG1, and IGFL2 expression in MSC-ex and HFL1-ex were examined by immunoblotting. (B) QRT-PCR analyses of CAMKK1 mRNA expression (n=3 biological replicates per group). ** P < 0.01, *** P < 0.001 versus normal group. (C-D) The expression of CAMKK1, PRKAG1, and IGFL2 in L02 cells was detected by immunoblotting (C) and quantified (D). ** P < 0.01 versus normal group; ## P < 0.01 versus PBS group. (E-F) The expression of CAMKK1, PRKAG1, and IGFL2 in AML12 cells was detected by immunoblotting (E) and quantified (F). ** P < 0.01 versus normal group; ## P < 0.01 versus PBS group. (G-H) Immunoblotting analyses of CAMKK1 and

Mus-CAMKK1 proteins in mice placed on a HFD diet for 10 weeks followed by 10 mg/kg MSC-ex or 10 mg/kg HFL1-ex or MSC-ex-free conditional medium supernatant (deMSC-ex) and PBS treatment for 4 weeks ($\bf G$) and quantification of the results ($\bf H$).

** P <0.01 versus normal chow diet group; # P <0.05 versus HFD group. Data are represented as the mean \pm s.e.m. Statistical analyses was performed by a one-way ANOVA ($\bf B$, $\bf D$, $\bf F$, and $\bf H$).

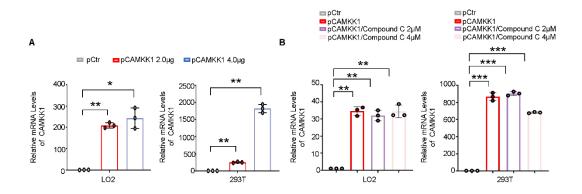


Fig. S4 CAMKK1 expression is not affected by Compound-C

(A) QRT-PCR analyses of CAMKK1 mRNA expression in L02 and 293T cells transfected with pCAMKK1 (2 μg and 4 μg) or empty plasmid (pCtr) and normalized to β-actin expression. n=3 biological replicates per group. (B) QRT-PCR analyses of CAMKK1 mRNA expression in L02 and 293T cells transfected with pCAMKK1 (4 μg) or pCtr with or without Compound-C (2 μM and 4 μM) treatment for 24 h. Expression was normalized to β-actin expression. n=3 biological replicates per group. Data are represented as the mean \pm s.e.m. Statistical analyses by unpaired two-tailed student's t-test. * P <0.05, ** P <0.01, *** P <0.001 versus pCtr group.

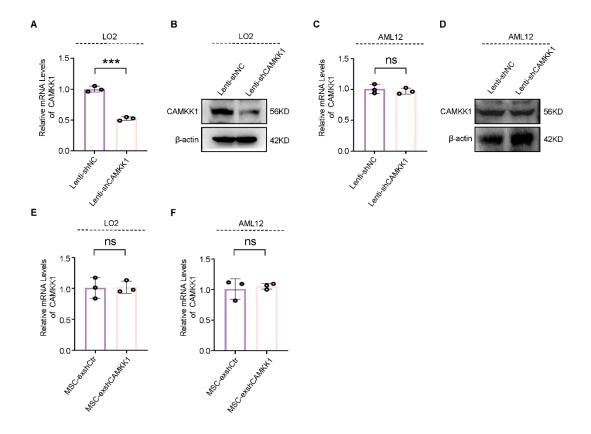


Fig. S5 Identification of CAMKK1 Knockdown in Lenti-shCAMKK1 transfected hepatocytes and MSC-ex^{shCAMKK1} treated hepatocytes (A) QRT-PCR analyses of CAMKK1 mRNA expression in L02 cells treated with recombinant lentivirus (pLKO) (pLKO.1-GFP-Puro-shCAMKK1 or pLKO.1-Puro-shRNA, 15MOI) for 72 h. n=3 in each group; *** *P* <0.001 versus Lenti-shNC group. (B) The expression of CAMKK1 in L02 cells was detected by immunoblotting. (C) QRT-PCR analyses of CAMKK1 mRNA expression in AML12 cells treated with recombinant lentivirus (pLKO) (pLKO.1-GFP-Puro-shCAMKK1 or pLKO.1-Puro-shRNA, 15MOI) for 72 h. n=3 in each group. (D) The expression of CAMKK1 in AML12 cells was detected by immunoblotting. (E) QRT-PCR analyses of CAMKK1 mRNA expression in L02 cells treated with MSC-ex^{shCtr} (800 μg/ml) or MSC-ex^{shCAMKK1} (800 μg/ml) for 24 h. n=3 in each group. (F) QRT-PCR

analyses of CAMKK1 mRNA expression in AML12 cells treated with MSC-ex shCtr (800 $\mu g/ml$) or MSC-ex shCAMKK1 (800 $\mu g/ml$) for 24 h. n=3 in each group. Data are represented as the mean \pm s.e.m. Statistical analyses by unpaired two-tailed student's t-test.

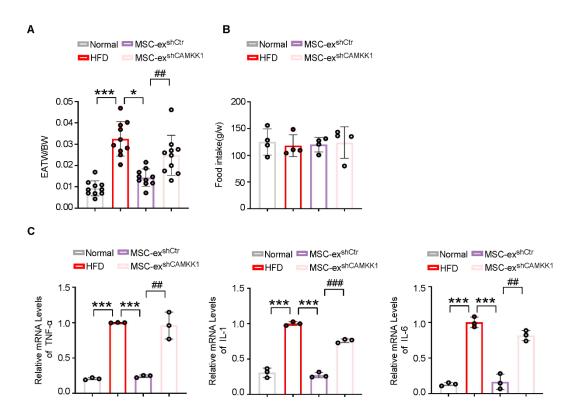


Fig. S6 MSC-ex^{shCAMKK1} reverses MSC-ex^{shCtr} decreased hepatic inflammation in the livers from HFD mice

(A) C57BL/6 mice were placed on a high-fat diet (HFD, 40%) and administered 10 mg/kg of MSC-ex^{shCtr} or MSC-ex^{shCAMKK1} *i.v.* from the 10th week to the 14th week of HFD feeding. As a control, the same volume of PBS was injected. Changes in the EATW/BW of mice (EATW/BW = relative weight of epididymal adipose tissue to body weight). (B) The food consumption was measured by weighing the food used. (C) Inflammatory transcription factor expression at mRNA level (n=3 in each group). Data are represented as the mean \pm s.e.m. Statistical analyses was performed by a one-way ANOVA (panels **A-C**). * P < 0.05, *** P < 0.001 versus HFD group; ## P < 0.01, ### P < 0.001 versus MSC-ex^{shCtr} (10 mg/kg) group.