Supporting information for:

Inhibition of Streptococcus pneumoniae growth by masarimycin.

Brad A Haubrich^{a,e#}, Saman Nayyab^{a,f#}, Mika Gallati^a Jazmeen Hernandez^a, Caroline Williams^a, Andrew Whitman^a, Tahl Zimmerman^d, Qiong Li^g, Yuxing Chen^g, Cong-Zhao Zhou^g, Amit Basu^{b*}, Christopher W Reid^{a,*}

 [a] Center for Health and Behavioral Sciences, Dept. of Science and Technology, Bryant University, Smithfield, RI

*Corresponding authors E-mail: creid@bryant.edu, abasu@brown.edu

- [b] Dept of Chemistry, Brown University, Providence, RI
- [c] Flow Cytometry and Sorting Facility, Brown University, Providence, RI
- [d] Dept. of Family and Consumer Sciences, North Carolina A&T State University Greensboro, NC
- [e Touro University Nevada, College of Osteopathic Medicine, Dept of Basic Sciences Henderson, NV, 89014
- [f] University of Massachusetts Amherst, Dept. of Molecular and Cellular Biology Amherst, MA
- [g] School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P.R. China
- [#] both authors contributed equally to this work

Table of Contents

Figure S1. Structures of the diamide library screened against <i>Streptococcus</i> pneumoniae.	.2
Figure S2. Bacteriostatic assay for masarimycin against S. pneumoniae R6	2
Figure S3. Minimum inhibitory concentration assays for <i>S. pneumoniae</i> strains 6305, R6, and TIGR4 (A), and screen against <i>C. difficile, S. aureus</i> , and E. <i>coli</i> at 150 μ M masarimycin to assess compound spectrum.	. 3
Figure S4. Phenotypic analysis of wild-type <i>S. pneumoniae</i> R6 in the presence of sub-MIC (0.7x) of antibiotics with well-defined modes of action or with masarimycin. Cells were treated for 90 min with antibiotic or vehicle control, fixed in 20 mM HEPES pH 7.0, 1% formaldehyde, and stained with methylene blue. Images were acquired at 1000x magnification.	. 4
Figure S5 . Changes in wall teichoic acid (WTA) and cell surface protein profiles in S. pneumoniae under sub-MIC (0.75x) treatment with masarimycin. (A) Wall teichoic acid profile, (B) profile of cell-wall associated proteins after high pH (pH 12.0), arrows with corresponding numbers indicate bands that were selected for protein identification by mass spectrometry (Table 1). Inset: changes to phosphocholine levels in WTA	5
	.0

Figure S7. Evaluation of masarimycin (mas) to interact with DNA.(A) Inhibition of potential masarimycin inhibition of Dnase activity, EDTA is used as a positive control for Dnase inhibition. (B) Evaluation of masarimycin's ability to intercalate DNA, positive control actinomycin D (ACD)

Figure S1. Structures of the diamide library screened against Streptococcus pneumoniae.

Figure S3. Minimum inhibitory concentration assays for *S. pneumoniae* strains 6305, R6, and TIGR4 (A), and screen against *C. difficile, S. aureus*, and E. *coli* at 150 μ M masarimycin to assess compound spectrum.

Figure S4. Phenotypic analysis of wild-type *S. pneumoniae* R6 in the presence of sub-MIC (0.7x) of antibiotics with well-defined modes of action or with masarimycin. Cells were treated for 90 min with antibiotic or vehicle control, fixed in 20 mM HEPES pH 7.0, 1% formaldehyde, and stained with methylene blue. Images were acquired at 1000x magnification.

Figure S5. Changes in wall teichoic acid (WTA) and cell surface protein profiles in S. pneumoniae under sub-MIC (0.75x) treatment with masarimycin. (A) Wall teichoic acid profile, (B) profile of cell-wall associated proteins after high pH (pH 12.0), arrows with corresponding numbers indicate bands that were selected for protein identification by mass spectrometry (Table 1). Inset: changes to phosphocholine levels in WTA. Lane 1, MW marker; Lane 2, Control; Lane 3, masarimycin treatment.

Figure S6. Ratios of NADP+/NADPH in S. pneumoniae in the presence of masarimycin

Figure S7. Evaluation of masarimycin (mas) to interact with DNA.(A) Inhibition of potential masarimycin inhibition of Dnase activity, EDTA is used as a positive control for Dnase inhibition. (B) Evaluation of masarimycin's ability to intercalate DNA, positive control actinomycin D (ACD)