## Green Synthesis of Silver Nanoparticles Using *Acacia Ehrenbergiana* Plant Cortex Extract for Efficient Removal of Rhodamine B Cationic Dye from Wastewater and the Evaluation of Antimicrobial Activity

Waleed M. Alamier<sup>[1]\*</sup>, Mohammed D. Y. Oteef <sup>[1]</sup>, Ayyob M. Bakry<sup>[1]\*</sup>, Nazim Hasan<sup>[1]</sup>, Khatib Sayeed Ismail<sup>[2]</sup>, and Fathi S. Awad<sup>[3]\*</sup>

<sup>[1]</sup> Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia.

<sup>[2]</sup> Department of Biology, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia.

<sup>[3]</sup> Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

## **Supporting Information**



Scheme S1: Recyclability procedure of the AgNPs

| Peak | R. Time | Peak  |      |                                     | Molecular |
|------|---------|-------|------|-------------------------------------|-----------|
| No.  | (min)   | area  | S.I. | Name of Phytochemical               | weight    |
|      |         | (%)   |      |                                     | (g/mol.)  |
| 1    | 3.089   | 0.59  | 93   | Glycerin                            | 92        |
| 2    | 4.382   | 0.08  | 93   | Methyl valerate                     | 116       |
| 3    | 6.380   | 0.09  | 93   | 2(5H)-Furanone                      | 84        |
| 4    | 6.569   | 0.23  | 90   | 1,2-Cyclopentanedione               | 98        |
| 5    | 11.037  | 2.52  | 98   | o-Guaiacol                          | 124       |
| 6    | 14.070  | 0.35  | 95   | n-Dodecane                          | 170       |
| 7    | 16.409  | 0.73  | 94   | Hydroquinone                        | 110       |
| 8    | 17.347  | 1.04  | 88   | 4-Hydroxy-3-methylacetophenone      | 150       |
| 9    | 18.343  | 1.19  | 95   | Syringol                            | 154       |
| 10   | 19.655  | 0.49  | 88   | Vanillin                            | 152       |
| 11   | 20.903  | 1.03  | 85   | Raspberry ketone                    | 164       |
| 12   | 22.902  | 0.27  | 84   | Guaiacylacetone                     | 180       |
| 13   | 23.695  | 0.34  | 81   | 3,5-Dimethoxyacetophenone           | 180       |
| 14   | 24.711  | 1.24  | 93   | 3,4,5-Trimethoxyphenol              | 184       |
| 15   | 25.607  | 0.98  | 85   | Homovanillic acid                   | 182       |
| 16   | 26.767  | 71.48 | 82   | 3-O-Methyl-D-glucose                | 194       |
| 17   | 27.585  | 3.39  | 91   | Coniferol                           | 180       |
| 18   | 31.284  | 1.19  | 96   | Methyl palmitate                    | 270       |
| 19   | 35.049  | 1.32  | 97   | Methyl stearate                     | 298       |
| 20   | 36.026  | 0.98  | 92   | Palmitamide                         | 255       |
| 21   | 37.302  | 1.44  | 86   | 1,8-Diazacyclotetradecane-2,7-dione | 226       |
| 22   | 39.120  | 3.92  | 93   | Oleamide                            | 281       |
| 23   | 39.526  | 0.49  | 90   | Stearamide                          | 283       |
| 24   | 41.450  | 3.04  | 92   | 2-Monopalmitin                      | 330       |
| 25   | 44.524  | 1.58  | 94   | 1-Monostearin                       | 358       |

Table S1: GC-MS data of the phytochemicals in the aqueous AEPC extract in terms of their retention times (R. Time) in minutes, % Peak area, Similarity Index (S.I) and Molecular weight in (g/mol.).



Figure S1. The UV–Vis spectra of the Ag-NPs synthesis as time progress at room temperature and the nanoparticle's color changes.

## Scherrer Equation

$$D = 0.94 \lambda / \beta \cos$$
 (S1)

Where:  $\beta$  = Line broadening in radians,  $\theta$  = Bragg angle,  $\lambda$  = X-Ray wavelength, and D = Average Crystallite size.

| $\lambda$ (nm) | 2θ (°) | θ (°) | β   | D (nm) |  |  |  |  |
|----------------|--------|-------|-----|--------|--|--|--|--|
| 0.15458        | 38.3   | 19.15 | 0.8 | 10.98  |  |  |  |  |
| 0.15458        | 44.3   | 22.15 | 0.5 | 17.92  |  |  |  |  |
| 0.15458        | 64.6   | 32.3  | 0.5 | 19.64  |  |  |  |  |
| 0.15458        | 77.4   | 38.7  | 0.5 | 21.28  |  |  |  |  |

Table S2: parameters to calculate Ag-NPs sizes from Scherrer Equation

|         |          | 1        | U        |
|---------|----------|----------|----------|
| Element | Weight % | Atomic % | Net Int. |
| C K     | 19.74    | 49.18    | 70.17    |
| O K     | 16.07    | 30.05    | 32.48    |
| S K     | 0.79     | 0.73     | 16.32    |
| Cl K    | 4.3      | 3.63     | 84.88    |
| Ag L    | 59.11    | 16.4     | 544.28   |

Table S3: EDS Elemental Composition of the Ag-NPs



Lsec: 30.0 0 Cnts 0.000 keV Det: Octane Pro Det

Figure S2. EDS spectrum of the green synthesized Ag-NPs obtained from the AEPC aqueous extract.



Figure S4. (a) SEM and (b) TEM images of green synthesized Ag-NPs for RhB dye degradation up to three cycles.

| THIS HOM THEFT C EXHAULT MET THE INCLAUDE. |                                       |           |                   |                                                            |           |  |  |  |  |
|--------------------------------------------|---------------------------------------|-----------|-------------------|------------------------------------------------------------|-----------|--|--|--|--|
| Catalyst                                   | Biological system                     | Size (nm) | Dye               | Rate constant<br>(mol.L <sup>-1</sup> .min <sup>-1</sup> ) | Reference |  |  |  |  |
| Ag-NPs                                     | Caralluma acutangula<br>plant extract | 2-6       | Methelene<br>Blue | 0.0311                                                     | 1         |  |  |  |  |
| Ag-NPs                                     | Caralluma acutangula<br>plant extract | 2-6       | Cingo Red         | 0.0431                                                     | 1         |  |  |  |  |
| Ag-NPs                                     | Acacia Ehrenbergiana<br>plant cortex  | 1 - 40    | Rohdamine<br>B    | 0.0590                                                     | This work |  |  |  |  |

Table S4. A comparison of the zero-order rate constants of RhB catalytic reduction using the Ag-NPs from AEPC extract with Ag-NPs in the literature.

| No | Common bacteria studied                                           | Plant used for<br>NP synthesis                 | Antibiotic sensitivity<br>testing Method | Zone of Inhibition (mm)                                                                          | MIC<br>(µg/mL)  | Susceptibility/<br>Resistance to the AgNPs               | Agreement | Ref |
|----|-------------------------------------------------------------------|------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------|-----------|-----|
| 1  | S. aureus<br>B. cereus<br>E. coli<br>P. aeruginosa<br>C. albicans | Cassia<br>roxburghii                           | Synergistic activity<br>with Antibiotics | AgNP alone didn't<br>show inhibitory<br>action, showed<br>synergistic action<br>with Antibiotics | -               | Susceptible with<br>Antibiotics                          | Agree     | 2   |
| 2  | E. coli                                                           | Cestrum<br>nocturnum                           | Micro dilution                           | 23                                                                                               | 8               | Susceptible                                              | Agree     | 3   |
| 3  | S. aureus<br>E. coli                                              | Azadirachta<br>indica                          | Disc diffusion                           | 9<br>9                                                                                           | -               | Susceptible<br>Susceptible                               | Agree     | 4   |
| 4  | E. coli                                                           | Capsicum<br>frutescence                        | Agar well diffusion                      | 11.5                                                                                             | 80              | Susceptible                                              | Agree     | 5   |
| 5  | S. aureus<br>E. coli<br>K. pneumoniae                             | Lippia<br>nodiflora                            | Disc diffusion                           | $20.3 \pm 0.32 \\ 22.0 \pm 1.5 \\ 20.4 \pm 0.76$                                                 | 50<br>50<br>50  | Susceptible<br>Susceptible<br>Susceptible                | Agree     | 6   |
| 6  | E. coli<br>K. pneumoniae<br>P. aeruginosa                         | Salvia<br>officinalis                          | Disc diffusion                           | $37.86\pm0.21 \\ 25.18\pm0.27 \\ 14.27\pm0.08$                                                   | 100<br>50<br>50 | Susceptible<br>Susceptible<br>Susceptible                | Agree     | 7   |
| 8  | E. coli                                                           | Microwave<br>assisted                          | OD growth curve                          | _                                                                                                | 50              | Susceptible                                              | Agree     | 8   |
| 9  | S. aureus<br>(susceptible<br>strain)<br>MRSA<br>E. coli           | Sr & Ag<br>loaded<br>nanotubular<br>structures | Zone of inhibition                       | 17<br>19<br>18                                                                                   | 40<br>40<br>40  | Susceptible<br>Susceptible<br>Susceptible                | Agree     | 9   |
| 10 | S. aureus<br>E. coli<br>P. aeruginosa<br>C. albicans              | Rhus coriaria<br>L.                            | Well diffusion                           | 10 <u>+</u> 0.30<br>-<br>14 <u>+</u> 0.5<br>12 <u>+</u> 0.2                                      | -<br>-<br>-     | Susceptible<br>Susceptible<br>Susceptible<br>Susceptible | Agree     | 10  |

Table S5: Comparison between previous antimicrobial studies using Ag-nanoparticles with our study.

| 11 | S. aureus<br>E. coli<br>P. aeruginosa                                                                                    | Semecarpus<br>anacardium,<br>Golchidion<br>lanceolarium<br>& Bridelia<br>retusa | Micro dilution             | $\begin{array}{r} 43.94 \pm 0.2 \\ 44.02 \pm 0.3 \\ 68.6 \pm 0.5 \end{array}$ Above results with<br>Golchidion plant<br>extract | 70<br>80<br>100                | Susceptible<br>Susceptible<br>Susceptible                                              | Agree | 11           |
|----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------|-------|--------------|
| 12 | E. coli                                                                                                                  | Rhazya stricta                                                                  | Disc diffusion             | Not stated                                                                                                                      | 50                             | Susceptible                                                                            | Agree | 12           |
| 13 | E. coli                                                                                                                  | Yeast extract                                                                   | Micro dilution             | Not applicable                                                                                                                  | 20                             | Susceptible                                                                            | Agree | 13           |
| 14 | S. aureus<br>E. coli<br>K. pneumoniae<br>P. aeruginosa                                                                   | Microwave<br>irradiation<br>method –<br>Serine as<br>reducing<br>agent          | Modified Disc<br>diffusion | 16<br>21<br>12<br>21                                                                                                            | 50<br>50<br>50<br>50           | Susceptible<br>Susceptible<br>Susceptible<br>Susceptible                               | Agree | 14           |
| 15 | S. aureus<br>E. coli                                                                                                     |                                                                                 | Tube double dilution       | Not applicable                                                                                                                  | 2                              | Susceptible<br>Susceptible                                                             | Agree | 15           |
| 16 | S. aureus<br>(susceptible<br>strain)<br>MRSA (10<br>strains)<br>E. coli<br>K. pneumoniae<br>P. aeruginosa<br>C. albicans | Acacia<br>ehrenbergian<br>a                                                     | Well diffusion             | 11<br>9 - 11<br>9<br>10<br>13<br>31                                                                                             | 5<br>5–25<br>10<br>5<br>5<br>5 | Susceptible<br>Susceptible<br>Susceptible<br>Susceptible<br>Susceptible<br>Susceptible | -     | This<br>work |

## References:

(1) Alamier, W. M.; Hasan, N.; Ali, S. K.; Oteef, M. D. Y. Biosynthesis of Ag Nanoparticles Using Caralluma acutangula Extract and Its Catalytic Functionality towards Degradation of Hazardous Dye Pollutants. Crystals 2022, 12 (8), 1069.

(2) Moteriya, P.; Padalia, H.; Chanda, S. Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. Journal of Genetic Engineering and Biotechnology 2017, 15 (2), 505-513. DOI: https://doi.org/10.1016/j.jgeb.2017.06.010.

(3) Keshari, A. K.; Srivastava, R.; Singh, P.; Yadav, V. B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 2020, 11 (1), 37-44. DOI: 10.1016/j.jaim.2017.11.003 From NLM.

(4) Ahmed, S.; Ullah, S.; Ahmad, M.; Swami, B.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences 2015, 9. DOI: 10.1016/j.jrras.2015.06.006.

(5) Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies 2017, 3 (3), 303-308. DOI: https://doi.org/10.1016/j.reffit.2017.01.004.

(6) Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technologies 2017, 3 (4), 506-515. DOI: https://doi.org/10.1016/j.reffit.2017.07.002.

(7) Yassin, M. T.; Mostafa, A. A.; Al-Askar, A. A.; Al-Otibi, F. O. Synergistic Antibacterial Activity of Green Synthesized Silver Nanomaterials with Colistin Antibiotic against Multidrug-Resistant Bacterial Pathogens. In Crystals, 2022; Vol. 12.

(8) Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res Int 2016, 23 (5), 4489-4497. DOI: 10.1007/s11356-015-5668-z From NLM.

(9) Cheng, H.; Xiong, W.; Fang, Z.; Guan, H.; Wu, W.; Li, Y.; Zhang, Y.; Alvarez, M. M.; Gao, B.; Huo, K.; et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 2016, 31, 388-400. DOI: 10.1016/j.actbio.2015.11.046 From NLM.

(10) Gur, T. Green synthesis, characterizations of silver nanoparticles using sumac (Rhus coriaria L.) plant extract and their antimicrobial and DNA damage protective effects. Front Chem 2022, 10, 968280. DOI: 10.3389/fchem.2022.968280 From NLM.

(11) Mohanta, Y. K.; Biswas, K.; Jena, S. K.; Hashem, A.; Abd Allah, E. F.; Mohanta, T. K. Antibiofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants. Front Microbiol 2020, 11, 1143. DOI: 10.3389/fmicb.2020.01143 From NLM.

(12) Shehzad, A.; Qureshi, M.; Jabeen, S.; Ahmad, R.; Alabdalall, A. H.; Aljafary, M. A.; Al-Suhaimi, E. Synthesis, characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. PeerJ 2018, 6, e6086. DOI: 10.7717/peerj.6086 From NLM.

(13) Shu, M.; He, F.; Li, Z.; Zhu, X.; Ma, Y.; Zhou, Z.; Yang, Z.; Gao, F.; Zeng, M. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. Nanoscale Research Letters 2020, 15 (1), 14. DOI: 10.1186/s11671-019-3244-z.

(14) Jayaprakash, N.; Judith Vijaya, J.; John Kennedy, L.; Priadharsini, K.; Palani, P. Antibacterial activity of silver nanoparticles synthesized from serine. Mater Sci Eng C Mater Biol Appl 2015, 49, 316-322. DOI: 10.1016/j.msec.2015.01.012 From NLM.

(15) Yu, L.; Zhang, Y.; Zhang, B.; Liu, J. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci Rep 2014, 4, 4551. DOI: 10.1038/srep04551 From NLM.