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Basic optical configuration behind the LightCT microscope
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Figure 1: Rough optical design behind the LightCT microscope. The system is composed of
a spatially and temporally incoherent light source (typically LED) that illuminates a Linnik
interferometer via a turning mirror (M) and a lens (L). The interferometer is composed of a
beamsplitter (BS) that splits the illumination light between a sample and a reference arm. The
sample arm contains a 10X, 0.3 NA microscope objective, the intact surgical specimen gently
pressed against a 1mm thick coverslip, as well as a 3D translation stage. The reference arm
contains the same objective and the same glass coverslip but images a simple mirror instead
of the sample. The reference mirror is mounted on a piezoelectric transducer to rapidly
modulate the optical path difference and achieve 4 phases imaging to recover the amplitude
of the interference term. The entire reference arm is mounted onto a motorized translation to
adjust the coherence volume (i.e; the imaged plane in the sample). Light beams backscattered
from both arms are recombined by the BS, and the image of the sample is made onto a CMOS
camera thanks to a tube lens. The system design is superimposed on a picture of the actual
system.
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Description of features used by histopathologists to perform the diagnosis, with standard
histology, static and dynamic FF-OCT.

In order to perform the manual classification of static and dynamic FF-OCT images, and in
general, the pathologists were looking for a few morphological features, including:

• For healthy samples, pathologists were looking for normal lobules (with normal size
cells and normal cell organization), normal ducts (cells only on the walls but not in
the opening), collagen fiber organization, the presence and density of blood vessels,
adipocytes, immune cells, and muscle.

• For abnormal samples, a search for abnormal lobules (with abnormal size cells and/or
abnormal cell organization), invaded ducts (with cells present in the opening), cell
invasion in collagen is made. Other features such as collagen disorganization, excess
of collagen, the presence of unidentified cell clusters, or clusters.

The easiest features to assess for the pathologists in the FFOCT and D-FF-OCT images
were the lobules and ducts aspect (See figure 3), the presence of cell clusters, the collagen
organization. The most difficult features were the identification of immune cells, because
they can be difficult to differentiate from other cells (although they should have a much larger
and faster -resulting in a white aspect in the color D-FF-OCT image), the necrosis because
it can take various apparences, and because by definition necrotic structures don’t appear in
dynamic FF-OCT, and the cell invasion in collagen because of the low contrast of these cells.

Detailed description of false positive and false negative cases.

Regarding the manual classification using small ROIs imaged with dynamic FFOCT, there
were 4 and 3 false-negative cases, respectively, for the 2 pathologists, including 3 in common.
Among the false-negative cases, 1 was not included in the dataset tested by the deep learning
algorithm (because data annotation was too complex), 1 was also misclassified by the deep
learning algorithm, 2 were successfully classified by the algorithm.

Description of false negatives.

We found that the main reason for false-negative cases was missed isolated cancer cells (fig-
ure 2), which were weakly contrasted (especially in those cases) with surrounding connec-
tive tissue and were often localized in a small portion of the ROIs. We postulate that our
automated algorithms are more efficient to detect such cells because they use the three inde-
pendent RGB channels. As an example, although this is difficult to see isolated cancer cells
using the color D-FF-OCT image (figure 2 A), it is possible to enhance the contrast of these
cells using image processing tools (figure 2 C), e.g. by subtracting the green channel to the
blue channel. Because the two algorithms use embedded image processing tools, we imagine
that they are quite efficient in detecting single cells even above a large background of fibers.
Besides, the feature engineering algorithm computes the number of cells outside clusters that
is dedicated to finding such isolated cancer cells.
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Figure 2: Illustration of a shared false negative case, misclassified by P1, P2 and CNN
algorithm. (A-B) Invasive isolated cancer cells (red arrows) in invasive lobular carcinoma are
less contrasted with collagen fibers on Dynamic FF-OCT image (A) than on histology image
(B) and were probably missed by the pathologist. (C) Dynamic FF-OCT image where the
blue channel was subtracted to the green channel, suggesting that isolated cancer cells can
be more easily detectable with the adequate image processing tools. Scale bars represent 250
µm.

Description of false positives.

There were 1 and 3 false-positive cases respectively, for the 2 pathologists, including 1 in
common. Among the false-positive cases, 2 were also misclassified by the deep learning
algorithm and 1 was successfully classified. As shown in figure 3, the main reasons for
false-positive cases were surprisingly highly-contrasted normal cells mistaken as cancer cells
or abnormal benign lobules or ducts mistaken as cancerous. Although we do not have a
strong explanation for the highly contrasted cells (figure 3A), the entire dynamic images
seem brighter and “yellower” (indicating faster dynamics) compared to other samples. It
may relate to an additional fast mechanical noise during the data acquisition, and we could
imagine discarding some images if their average color histogram is too different as a typical
histogram. Regarding the abnormal benign lobules or ducts, some context is missing to
provide an accurate manual diagnosis to verify that the surrounding tissue is normal. The
automated algorithms probably lack some data and annotation, including several cases of
abnormal but benign regions. In this study, only two healthy cases had such abnormal regions.
As an example, one important feature of the feature engineering approach is the eccentricity
of the regions of high cell density as the ones shown in figure 3C. Because the ducts are
abnormal and elongated, the eccentricity is largely below 1. Because this was the only case
with abnormal ducts, whereas other non tumoral healthy ducts are circular, it results in a
high probability of being a tumoral ROI. Nonetheless, because most of the other ducts were
normal, the proportion of normal ROI was above 0.5 leading to a good classification at the
sample scale. With more similar abnormal but healthy ducts in the training set, the predictive
ability of the eccentricity of regions of high cell density alone would be mitigated, which
should improve the diagnosis ability.

3



Figure 3: Illustration of a shared false positive case.(A-B) misclassified by P2 and deep
learning algorithm, (C-D) misclassified by P1, P2 and deep learning algorithm. (A-B) False
positivity of normal connective tissue attributed to DCI-detected cells of high intensity, prob-
ably mistaken as invasive cancer cells instead of fibroblasts. (C-D) Dilated duct mistaken as
invaded duct. Scale bars represent 250 µm.

Detailled description of Ilastik and Matlab cell and fiber segmentation.

The first step of the engineered features analysis on breast samples was to perform cell and
fiber segmentation in the images, using iLastik. iLastik is a relatively intuitive machine-
learning tool based on random forest classifiers. The labels are manually drawn on the train-
ing images in a user interface. Each pixel neighborhood is characterized by a set of generic
nonlinear spatial transformations calculated by the software and applied to each channel (R,
G, or B) of the D-FF-OCT image. The same transformations were applied to the greyscale
FF-OCT images. The following image transformations empirically gave the best contrast in
our case:

1. Gaussian smoothing with a increasing standard deviation of 0.3, 0.7, 1.0, 1.6, 3.5, 5.0.

2. Laplacian calculation after Gaussian smoothing with a standard deviation of either
0.7, 1.0, 1.6, 3.5, or 5.0. This computes the edge of the objects.

3. Difference of Gaussians with a standard deviation of either 0.7, 1.0, 1.6, 3.5, or 5.0.
It also computes the edge of the objects, by subtracting two images after Gaussian
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smoothing with almost similar standard deviations and is supposed to approximate a
derivative.

4. Hessian of Gaussian Eigenvalues with a standard deviation of either 0.7, 1.0, 1.6, 3.5,
5.0. It computes the local texture of the image by calculating the determinant of the
Hessian matrix.

In total, for all the D-FF-OCT images in the dataset, 21 transformed images are calcu-
lated per color, hence 63 grayscale images, plus 21 images for FF-OCT images. For both
FF-OCT and D-FF-OCT datasets, the training step was performed on 8 images (5 from can-
cerous samples and3 from healthy samples). For D-FF-OCT, we defined three classes: Cells,
Between Cells, Not Cells (Fibers, Noise, Fat, etc...), out of which only the Cell class was
used. A few pixels corresponding to each class are drawn manually, as shown in figure 4A.
The best practice is to draw a small number of pixels to minimize constraints, and to draw
pixels at the interface between classes (meaningful pixels). The classifier (figure 4B) should
be created as soon as a few pixels of each class are annotated (typically a few cells, and a
few spaces between cells in the first image), and then finely tuned by manually changing the
class of misclassified pixels in all 8 images. The whole training procedure can last for around
30 minutes, and is not highly accurate since a few cells and cell contours are missed. High
accuracy is not necessary though given than the expected outcome is not a real metric of cell
sizes or shapes, but how these parameters compare from one sample to another.
Segmentation of FF-OCT was performed similarly, although we used 4 classes: Fibers,
Around Fibers, Cells (and Noise), Fat (and holes/ slicing artifacts). The Around Fibers class
is used to be able to segment individual fibers, and not only the regions of high fiber density.
The Cells class contains most of what is not fibers, including extracellular matrix and cells.
We later split this data into bright pixels (50% brightest pixels), most likely forming the ex-
tracellular matrix, darker pixels (between 25% and 50% brightest pixels)being part of cells,
and we excluded the darkest pixels (¡25%). The Fat class segments dark pixels in circular
regions, as observed in fat regions of the breast (Figure 4A1 and 4A2 of the main manuscript
in blue). Unfortunately, it also finds a few holes in the sample, caused by slicing, folding
artifacts, or bubbles.
In total after these learning steps, each FF-OCT and D-FF-OCT image can be segmented in
about 10 seconds.
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Figure 4: Machine learning based segmentation with iLastik on D-FF-OCT images. Panel
A shows the user interface of iLastik, and illustrates the learning procedure. Pixels corre-
sponding to each class of interest are manually drawn (opaque pixels). To start with initial
prediction, a small number of pixels in the first image were drawn, and then the prediction is
refined step by step by correcting misclassified pixels. Panel B shows the segmentation result
after the learning process. For D-FF-OCT images, only the cell segmentation is used (class
1 - in yellow here), but the others two classes were used to segment the cells with higher
precision.

After an initial segmentation step by iLastik, the binary maps are imported in Matlab,
and each connected set of pixels is individually detected by the function regionprops. Using
D-FF-OCT segmented images, objects corresponding to single cells are extracted and, given
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their area is significant, their morphological and scattering parameters are extracted (See
figure 5 A). Using FF-OCT segmented images, objects corresponding to fibers are extracted
( see figure 5 B), as well as the regions corresponding to the sample stroma.

A) Cell segmentation on D-FF-OCT images

B) Fiber and stroma segmentation on FF-OCT images

A1 A2 A3

B1 B2 B3

Figure 5: Cell and fiber segmentation output. Panel A shows the cell segmentation using
iLastik and Matlab. From original D-FF-OCT image (A1), after iLastik segmentation, the
first class (cells) is selected, and separated in independent regions with Matlab (A2). Here,
the increasing color from blue to red gives the number of the identified region (from 1 to 3951
here).Each region of interest (ROI) can be analyzed independently, and only the regions of
area above 20 pixels are kept and considered as cells. The obtained mask image is multiplied
by the D-FF-OCT image to obtain panel A3. Panel B shows the fiber and cell segmentation
results on FF-OCT image. The original image (B1) is processed by iLastik and classified
between fibers, pixels between fibers, and cells. The first and third classes are extracted and
filtered using Matlab to obtain fibers (B2) and stroma (B3). Scale bars are 150 µm

Definition of the 44 features used in the feature engineering approach.

The table below describes the 44 features used for the SVM analysis in the feature engineer-
ing approach. For some features (e.g. diameter of segmented cells) where several observa-
tions are available in each ROI (e.g. one diameter per cell- leading sometimes to hundreds of
values associated to each ROI), we only kept the average value and the standard deviation,
hence defining 2 features. For example, the first line of the table means that the first feature is
the average cell diameter in each ROI, and the second feature is the standard deviation of the
cell diameter distribution obtained in each ROI. The most contributing features (see feature
reduction) are underlined in green. For example, the first line should be understood so that the
second feature (standard deviation of cell diameter) only has a high contribution to the SVM
segmentation. It can be interpreted as the average segmented cell diameter is not statistically
different in healthy versus tumoral ROIs. In contrast, it is likely that some tumoral ROIs have

7



a larger distribution of cell diameter distribution (e.g. with healthy cells of regular diameter
and some tumoral cells of increased diameter).

Table 1: Calculated features from image analysis of static and dynamic FF-OCT images. For some
features (e.g. cell diameter), a distribution is first calculated, but the extracted features are
the mean and standard deviation (STD) of the distribution. Features with green underline
correspond to the features kept by the algorithm after feature reduction.

1 & 2 Cell features
from D-FF-OCT

Diameter of segmented cells
(Mean and STD)

Measure Cell size

3 & 4 Cell features
from D-FF-OCT

Eccentricity of segmented cells
(Mean and STD)

Measure Cell shape

5 Cell feature
from D-FF-
OCT

Total cell density Density =
Nseg.cells

Npixels

6 & 7 Cell features
from D-FF-OCT

Average intensity within each
segmented cell (Mean and STD)

Scattering is expected to in-
crease in cancerous cells

8 Cell feature
from D-FF-
OCT

Mean intensity of the red chan-
nel of all pixels classified of the
cell class

Fast dynamics : Cancerous cells
are expected to have increased
metabolic activity, hence faster
and stronger fluctuations.

9 Cell feature
from D-FF-
OCT

Mean intensity of the green
channel of all pixels classified of
the cell class

Intermediate dynamics

10 Cell feature
from D-FF-
OCT

Mean intensity of the blue chan-
nel of all pixels classified of the
cell class

Slow dynamics

11 & 12 Mesoscale fea-
tures from D-
FF-OCT

Local cell density in regions
of high cell density (Mean and
STD)

High cell density : At least 5%
of the surrounding pixels belong
to the cell class.

13& 14 Mesoscale fea-
tures from D-
FF-OCT

Area of regions of high cell den-
sity (Mean and STD)

In healthy samples, the lobules
are high cell density regions
but they are well organized and
small.

15& 16 Mesoscale fea-
tures from D-
FF-OCT

Eccentricity of regions of high
cell density (Mean and STD)

Number Type of feature Description of the feature Additional comment

Continued on next page
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Table 1: Calculated features from image analysis of static and dynamic FF-OCT images. For some
features (e.g. cell diameter), a distribution is first calculated, but the extracted features are
the mean and standard deviation (STD) of the distribution. Features with green underline
correspond to the features kept by the algorithm after feature reduction. (Continued)

17 Cell feature
from D-FF-
OCT

Number of cells measured out-
side regions of high cell density

Migrating cells should not be
found in healthy samples.

18-21 Cell features
from D-FF-OCT

Spatial STD of intensity and
STD normalized by intensity)
within each segmented cell (2
means and 2 STDs)

Measure a the intensity hetero-
geneity (STD(I) and STD(I)/I)
inside each cell.

22 & 23 Fiber features
from FF-OCT

Diameter of segmented fibers
(Mean and STD)

Measure collagen fiber size

24 & 25 Fiber features
from FF-OCT

Eccentricity of segmented fibers
(Mean and STD)

Measure collagen fiber shape

26 & 27 Fiber features
from FF-OCT

Angular distribution of seg-
mented fibers (Mean and STD)

Measure collagen fiber organi-
zation, possibly altered in can-
cerous samples.

28 Fiber features
from FF-OCT

Density of segmented fibers Possibly increasing in cancerous
samples

29 & 30 Fiber features
from FF-OCT

Mean intensity of each seg-
mented fiber (Mean and STD)

Scattering of the extracellular
matrix is possibly increasing in
cancerous samples.

31 & 32 Cell features
from FF-OCT

Mean and STD of intensity of
all pixels that belongs to the cell
class.

Scattering of cancerous cells are
possibly increasing.

33 Cell features
from FF-OCT

Mean intensity of the 25%
brightest pixels that belongs to
the cell class.

34 Mesoscale fea-
tures from FF-
OCT

Number of pixels belonging to
the regions of high fiber density

35 & 36 Mesoscale fea-
tures from FF-
OCT

Average fiber density within
each region of high fiber density
(Mean and STD)

37 & 38 Mesoscale fea-
tures from FF-
OCT

Area of each region of high fiber
density (Mean and STD)

Number Type of feature Description of the feature Additional comment

Continued on next page
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Table 1: Calculated features from image analysis of static and dynamic FF-OCT images. For some
features (e.g. cell diameter), a distribution is first calculated, but the extracted features are
the mean and standard deviation (STD) of the distribution. Features with green underline
correspond to the features kept by the algorithm after feature reduction. (Continued)

39 & 40 Mesoscale fea-
tures from FF-
OCT

Eccentricity of each region of
high fiber density (Mean and
STD)

41 Mesoscale fea-
tures from FF-
OCT

Number of regions of high fiber
density

42 Fat features
from FF-OCT

Average intensity of all pixels
belonging to the Fat class

43 Fat features
from FF-OCT

hl Number of pixels belonging
to the Fat class

44 Cell features
from FF-OCT

Mean intensity of the 25%-50%
least bright pixels that belongs to
the cell class.

Number Type of feature Description of the feature Additional comment

Influence of the penalization coefficient used in the FE and CNN approaches

For both the feature engineering and CNN approaches, we used different weight, or penaliza-
tion coefficients, in the training step, so that to compensate for class imbalance, and to give
more weight to the healthy ROIs.

In general, if the data imbalance is not compensated for, the algorithms tend to favor the
class with the more examples, since it only maximizes the total accuracy. In this case, it
would result in algorithms overpredicting tumoral ROIs, hence a minimal change in accuracy
but a loss of specificity.

In order to illustrate this effect with the feature engineering approach, we trained and
tested several linear SVM with a varying penalization coefficient from -5 to 5. A penal-
ization coefficient of -5 means that false negative are penalized with a weight of 5, while a
penalization coefficient of 5 means that false positives are penalized. As a reminder, in the
main study, the penalization coefficient is chosen to be 3 corresponding roughly to the ratio
between the number of tumoral versus healthy ROIs.

Figure 6 shows the accuracy, sensitivity, and specificity obtained for these different pe-
nalization coefficients. As expected, the accuracy is roughly constant. However, the speci-
ficity increases sharply with the penalization coefficient, which means that the model tends
to overpredict tumoral ROIs when false negatives are penalized or when the data is imbal-
anced (Penalization coefficient of 1). In contrast, the sensitivity starts decreasing when the
penalization coefficient is too large, i.e. when the false positives are penalized too strongly.
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Figure 6: Prediction scores of linear SVM models trained with varying penalization
coefficient. Accuracy (blue), sensitivity (yellow), specificity (orange), and AUC (purple)
are plotted versus the penalization coefficient used when training the SVM model. Negative
coefficient means that false negative are penalized, while positive coefficients correspond to
penalizing false positives.

Figure 7 shows the equivalent of figure 4D, obtained for different penalization coeffi-
cients. It shows the translation of this loss in specificity and sensitivity at the ROI level
caused by class imbalance, into the tissue scale. As mentioned above, for negative coeffi-
cients, when false negatives are penalized, the SVM tends to predict only tumoral ROIs to
maximize the accuracy. When merging all ROIs, it translates into all samples being predicted
as tumoral samples. In contrast, as the false positives become more and more penalized, the
global ratio of healthy vs tumoral ROIs increases. It therefore becomes possible to differenti-
ate healthy samples (blue dots) that exhibit higher ratios. The accuracy at the tissue level (i.e.
the separability between healthy and tumoral samples) is found maximal with a penalization
coefficient of 3, that corresponds to restoring class balance, and as chosen in the main study.
However, the models would still be effective for penalization coefficients of 2, or 4, around
the optimal value.
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Figure 7: Proportion of normal areas found for each healthy (blue) and cancerous sam-
ple (red) obtained for SVM models trained with varying penalization coefficients.
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ROC curves obtained with the linear SVM model.
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Figure 8: AUC Curves linear SVM
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