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Data description:

Table S1: Description of the whole OSA cohort.

Attitude

Value Range (mean)

Female #

Male #

Age

Diff_dgn

Visit cost

Patients’ record length

8091
16285

0- 101 (58.52)
0- 6192 (1121.10)
40 — 1100 (66.27)
1-515 (8.67)

Table S2: Description of the OSA cohort for cost prediction.

Attitude Value Range (mean)
Female # 1618

Male # 3337

Age 15 - 94 (59.67)
Diff_dgn 0 — 6095 (1427.47)
Visit cost 40— 1100 (74.17)

Patients’ record length

4222 (20.67)




Explorative data analysis:

83288 g
80000 60
70000 : 90
60000 110
50000
30000
20000
S0 s 100 125 150 175 200
10000 7398
o ! |/ an 16 142 20 19 35 a7
0 200 400 600 800 1000
visit cost
Figure S1. Visit cost distribution.
gender
1500 Female
Male
5 1000
3]
&)
500
0
20 30 40 50 60 70 80 a0
age

Figure S2. Age distribution for both genders.
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Figure S4. Visit cost distribution for each department.
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Figure S5. Annual number of new diagonsis for both genders (The legislation in Finland
changed in 2004 and long waiting lists were not any more allowed. Therefore the number of
new diagnoses peaked in year 2004).
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Figure S6. Age distriubution at each year of diagnosis.
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Figure S7. Annual visit frequency for each specialist.

For data augmentation, we filtered patients with more than 4 visits in EHRs. We assume
that more than two visits are needed to predict the coming one or two visits. For the cost
prediction, we collected the patients with more than 2 visits since at least one visit is needed
to predict the next visit.



Model performance with different loss functions and hyperparameters:

The data is first split into three sets: training, validation, and testing. Training, validation,
and testing are split into equal parts (80%, 10%, and 10%, respectively). Deep learning
algorithms have a lot of parameters, and they need a lot of training data to figure out what these
parameters should be set to (Yu et al., 2015). We choose to use 80% of total data for training
due to the small size of our cohort, 4887.

Second, we decide to use the Adam optimizer for our research. The word "adaptive moment
estimation™ appears in its name. A method or procedure for fine-tuning model parameters
during training is called an optimizer. As a result, the overall loss can be decreased while
improving precision. Adam is our choice since it is suggested as the default optimizer, it is
simple to set up, it runs faster and uses less memory than other optimizers, and it needs less
adjusting overall. (Gupta, 2022)

Third, we choose to test various combinations of batch size and learning rate to determine
which combination best suits the performance of our models. The experiment's learning rates
are 0.0001 and 0.0005. The experiment's batch sizes are 64 and 32. There are so a total of 4
combinations.

Fourthly, because there is a significant magnitude difference between L, and L,, we employ
three different approaches to merge the two sub loss functions 1) scaling L, using common
logarithm (log10) and natural logarithm (In), and 2) calculation of the harmonic mean of L,
and L,.

Initial experiments show that L; reduces from about 20000 to about 2000, whereas L,
decreases from about 4 to 0.02. Therefore, we must devise a method for bringing these two
losses to a comparable scale of magnitude. We create two scaling plans. Applying logarithm
functions to L, is the first. Three typical logarithm functions with a range of 2000 to 20000 are
depicted in Figure S8 as curves. log2 is the least similar to 4 of the three functions, with a range
from 10 to 14. We choose to scale L, using the other two. We compare three logarithm
functions for the scaling functions and settle on the two previously mentioned ones since log10
and In can scale the L; more effectively.
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Figure S8. Three common logarithm functions.



Finally, we start training and evaluating Transformer models with 2 encoder layers and 2

decoder layers under different strategies.

Table S3: Model performance based on test data.

Loss Learnin Batch Indicators for Single Visit Indicators for Total Cost
Function Rate g Size No. Prediction Performance Prediction Performance
= op- op- op-
(L= Top-3 Top-5 Top-10 MAE | RMSE R?
0.0005 64 1 60.95% 84.26% 93.73% | 11.19 | 134.15 | 0.797
In (L) ' 32 2 64.28% 83.08% 95.50% | 12.94 | 141.85 | 0.766
+ 1L, 0.0001 64 3 77.36% | 87.60% | 93.77% 6.64 84.43 | 0.920
' 32 4 77.69% 85.57% 93.64% 9.61 | 132.67 | 0.795
0.0005 64 5 78.57% 88.50% 95.46% | 10.54 | 132.60 | 0.802
log10(L,) ' 32 6 68.35% 89.06% 96.33% | 12.89 | 141.09 | 0.768
+L, 0.0001 64 7 85.19% | 89.11% | 94.50% 7.02 92.84 | 0.903
' 32 8 82.73% 84.54% 84.43% | 10.80 | 135.00 | 0.788
2 0.0005 64 9 81.89% 88.65% 95.07% | 119.86 | 238.61 | 0.358
1 ' 32 10 84.05% 91.06% 95.52% | 121.48 | 236.86 | 0.347
T 0.0001 64 11 89.65% | 95.79% | 98.13% | 109.89 | 238.67 | 0.358
o ' 32 12 82.21% 89.25% 94.34% | 125.55 | 250.88 | 0.267
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Figure S9.Training and validation RMSE curves for model 3, 7, and 11.
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Figure S10.Training and validation R? curves for model 3, 7, and 11.
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Figure S11.Training and validation Top-3 Accuracy for model 3, 7, and 11.
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Figure S12.Training and validation Top-5 Accuracy for model 3, 7, and 11.
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Figure S13.Training and validation Top-10 Accuracy for model 3, 7, and 11.
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Figure S14. Algorithm 1 flowchart.
For the sake of simplicity, let us assume that D? has a visiting vector V = {A, B, C, D, E, F}.
When we randomly sample the data, we obtain a visiting vector V% = {A, C, D, F}, with its
complement being V¢ = {B, E}. Now, consider a hypothetical patient who has visited the
facility 20 times. We randomly select their first five visits and predict the subsequent visit.
By calculating the predicted probability of V, we can compare it to the values of V% and V°.
If the maximum value of the probability of V% is lower than the maximum value of the
probability of V¢, it indicates that the predicted visit is more likely to be outside the set of V2.



In such a scenario, we would remove the sixth visit from the patient's record. This approach
allows us to refine the dataset based on the predictions made by our model.

Computational resource and time:

To achieve better efficiency in running deep learning models, we use a MacBook Pro
(version: MacOS Monterey 12.6, memory: 32 GB, chip: Apple M1 Max) as our device and
use Anaconda in the version developed for M1. From Anaconda, we then launch the Jupyter
Notebook, in which we deploy and run models developed by PyTorch. The computational
time for M* was two hours and three mins. The computation time for baseline and
Transformer M? are listed in the following table.

Table S4: Model performance based on test data.

Original data With augmented data
LSTM without attention 01h:14m:45s 01h:31m:06s
LSTM with attention 00h:57m:40s 01h:14m:38s
BiLSTM without attention 00h:26m:33s 01h08m:48s
BiLSTM with attention 01h:01m:46s 02h:41m:25s
Transformer 02h:03m:25s 06h:47m:58s
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