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Legend: 

 

Table S1: Description of the whole OSA cohort.  

 
Table S2: Description of the OSA cohort for cost prediction.  

 
Figure S1. Visit cost distribution. 

 

Figure S2. Age distribution for both genders. 

 

Figure S3. Visit cost distribution for each visit type. 

 

Figure S4. Visit cost distribution for each department. 

 

Figure S5. Annual number of new diagonsis for both genders. 

 

Figure S6. Age distriubution at each year of diagnosis. 

 

Figure S7. Annual visit frequency for each specialist. 

 

Figure S8. Three common logarithm functions. 

 

Table S3: Model performance based on test data.  

 
Figure S9.Training and validation RMSE curves for model 3, 7, and 11. 

 

Figure S10.Training and validation R2 curves for model 3, 7, and 11. 

 

Figure S11.Training and validation Top-3 Accuracy for model 3, 7, and 11. 

 

Figure S12.Training and validation Top-5 Accuracy for model 3, 7, and 11. 

 

Figure S13.Training and validation Top-10 Accuracy for model 3, 7, and 11. 

 

Figure S14.Algorithm 1 flowchart. 

 

Table S4: Model performance based on test data.  

  



Data description: 

 

Table S1: Description of the whole OSA cohort.  

Attitude Value Range (mean) 

Female # 8091 

Male # 16285 

Age 0 – 101 (58.52) 

Diff_dgn 0 – 6192 (1121.10) 

Visit cost 40 – 1100 (66.27) 

Patients’ record length 1 – 515 (8.67) 
 

 

Table S2: Description of the OSA cohort for cost prediction.  

Attitude Value Range (mean) 

Female # 1618 

Male # 3337 

Age 15 – 94 (59.67) 

Diff_dgn 0 – 6095 (1427.47) 

Visit cost 40 – 1100 (74.17) 

Patients’ record length 4 – 222 (20.67) 
 

 

 

 

  



Explorative data analysis: 

 

 

 

Figure S1. Visit cost distribution. 

 

 

Figure S2. Age distribution for both genders. 

 

 

Figure S3. Visit cost distribution for each visit type. 

 

 

Figure S4. Visit cost distribution for each department. 

 



 

Figure S5. Annual number of new diagonsis for both genders (The legislation in Finland 

changed in 2004 and long waiting lists were not any more allowed. Therefore the number of 

new diagnoses peaked in year 2004). 

 

 

Figure S6. Age distriubution at each year of diagnosis. 

 



 

Figure S7. Annual visit frequency for each specialist. 

 

For data augmentation, we filtered patients with more than 4 visits in EHRs. We assume 

that more than two visits are needed to predict the coming one or two visits. For the cost 

prediction, we collected the patients with more than 2 visits since at least one visit is needed 

to predict the next visit.  



Model performance with different loss functions and hyperparameters: 

 

The data is first split into three sets: training, validation, and testing. Training, validation, 

and testing are split into equal parts (80%, 10%, and 10%, respectively). Deep learning 

algorithms have a lot of parameters, and they need a lot of training data to figure out what these 

parameters should be set to (Yu et al., 2015). We choose to use 80% of total data for training 

due to the small size of our cohort, 4887. 

Second, we decide to use the Adam optimizer for our research. The word "adaptive moment 

estimation" appears in its name. A method or procedure for fine-tuning model parameters 

during training is called an optimizer. As a result, the overall loss can be decreased while 

improving precision. Adam is our choice since it is suggested as the default optimizer, it is 

simple to set up, it runs faster and uses less memory than other optimizers, and it needs less 

adjusting overall. (Gupta, 2022) 

Third, we choose to test various combinations of batch size and learning rate to determine 

which combination best suits the performance of our models. The experiment's learning rates 

are 0.0001 and 0.0005. The experiment's batch sizes are 64 and 32. There are so a total of 4 

combinations. 

Fourthly, because there is a significant magnitude difference between L1 and L2, we employ 

three different approaches to merge the two sub loss functions 1) scaling L1 using common 

logarithm (log10) and natural logarithm (ln), and 2) calculation of the harmonic mean of L1 

and L2. 

Initial experiments show that L1  reduces from about 20000 to about 2000, whereas L2 

decreases from about 4 to 0.02. Therefore, we must devise a method for bringing these two 

losses to a comparable scale of magnitude. We create two scaling plans. Applying logarithm 

functions to L1 is the first. Three typical logarithm functions with a range of 2000 to 20000 are 

depicted in Figure S8 as curves. log2 is the least similar to 4 of the three functions, with a range 

from 10 to 14. We choose to scale L1  using the other two. We compare three logarithm 

functions for the scaling functions and settle on the two previously mentioned ones since log10 

and ln can scale the L1 more effectively.  

 

 
Figure S8. Three common logarithm functions. 



 

 

Finally, we start training and evaluating Transformer models with 2 encoder layers and 2 

decoder layers under different strategies. 

 

Table S3: Model performance based on test data.  

Loss 

Function 

(L =) 

Learning 

Rate 

Batch 

Size 
No. 

Indicators for Single Visit 

Prediction Performance 

Indicators for Total Cost 

Prediction Performance 

Top-3 Top-5 Top-10 MAE RMSE R2 

ln (L1)
+ L2 

0.0005 
64 1 60.95% 84.26% 93.73% 11.19 134.15 0.797 

32 2 64.28% 83.08% 95.50% 12.94 141.85 0.766 

0.0001 
64 3 77.36% 87.60% 93.77% 6.64 84.43 0.920 

32 4 77.69% 85.57% 93.64% 9.61 132.67 0.795 

log10(L1)
+ L2 

0.0005 
64 5 78.57% 88.50% 95.46% 10.54 132.60 0.802 

32 6 68.35% 89.06% 96.33% 12.89 141.09 0.768 

0.0001 
64 7 85.19% 89.11% 94.50% 7.02 92.84 0.903 

32 8 82.73% 84.54% 84.43% 10.80 135.00 0.788 

 
2

1
L1

+
1
L2

 
0.0005 

64 9 81.89% 88.65% 95.07% 119.86 238.61 0.358 

32 10 84.05% 91.06% 95.52% 121.48 236.86 0.347 

0.0001 
64 11 89.65% 95.79% 98.13% 109.89 238.67 0.358 

32 12 82.21% 89.25% 94.34% 125.55 250.88 0.267 
 

 

 

 

  
a) Training RMSE b) Training RMSE from 10th epoch 

  
c) Validation RMSE d) Validation RMSE from 10th epoch 

 

Figure S9.Training and validation RMSE curves for model 3, 7, and 11. 

 



 

 

  
a) Training R2 b) Training R2 from 3rd epoch 

  
c) Validation R2 d) Validation R2 from 3rd epoch 

 

Figure S10.Training and validation R2 curves for model 3, 7, and 11. 

 

  
a) Training Top-3 Accuracy b) Validation Top-3 Accuracy 

 

Figure S11.Training and validation Top-3 Accuracy for model 3, 7, and 11. 

 



  
a) Training Top-5 Accuracy b) Validation Top-5 Accuracy 

 

Figure S12.Training and validation Top-5 Accuracy for model 3, 7, and 11. 

 

  
a) Training Top-10 Accuracy b) Validation Top-10 Accuracy 

 

Figure S13.Training and validation Top-10 Accuracy for model 3, 7, and 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S14. Algorithm 1 flowchart. 

For the sake of simplicity, let us assume that D2 has a visiting vector V = {A, B, C, D, E, F}. 

When we randomly sample the data, we obtain a visiting vector V2
s = {A, C, D, F}, with its 

complement being Vc = {B, E}. Now, consider a hypothetical patient who has visited the 

facility 20 times. We randomly select their first five visits and predict the subsequent visit. 

By calculating the predicted probability of V, we can compare it to the values of V2
s and Vc. 

If the maximum value of the probability of V2
s is lower than the maximum value of the 

probability of Vc, it indicates that the predicted visit is more likely to be outside the set of V2
s. 



In such a scenario, we would remove the sixth visit from the patient's record. This approach 

allows us to refine the dataset based on the predictions made by our model. 

 

Computational resource and time: 

 

To achieve better efficiency in running deep learning models, we use a MacBook Pro 

(version: MacOS Monterey 12.6, memory: 32 GB, chip: Apple M1 Max) as our device and 

use Anaconda in the version developed for M1. From Anaconda, we then launch the Jupyter 

Notebook, in which we deploy and run models developed by PyTorch. The computational 

time for M1 was two hours and three mins. The computation time for baseline and 

Transformer M2 are listed in the following table. 

Table S4: Model performance based on test data.  

 Original data With augmented data 

LSTM without attention 01h:14m:45s 01h:31m:06s 

LSTM with attention 00h:57m:40s 01h:14m:38s 

BiLSTM without attention 00h:26m:33s 01h08m:48s 

BiLSTM with attention 01h:01m:46s 02h:41m:25s 

Transformer 02h:03m:25s 06h:47m:58s 
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