
Reviewer 1

We are very grateful to the reviewer for carefully reading of our manuscript
and providing helpful comments and perspectives. Based on this feedback,
we have added additional discussion and analyses, which we hope will serve
to address the reviewer’s concerns.

Below, the reviewer’s original comments are in italics and our responses
proceed in non-italics. Quotes from the updated manuscript are in blue.

The manuscript proposes a normative computational account of
subgoal formation, which aims to integrate how the subgoals are
chosen with the ways they are subsequently used, in the class of
problems that translates into pathfinding problems on graphs. The
authors implement a human behavioural experiment to assess the
predictive power of the computational account and conclude that
one of the graph search algorithms, one that closely corresponds to
an interesting heuristic, corresponds to human choices of subgoals
the best. In my opinion the paper is very thorough, thoughtful and
very successful in integrating computational insight with empirical
observation in a rather subtle domain. I think it would be a great
addition to the scientific record - however, I believe addressing the
following concerns would make it easier for readers to correctly
contextualise the presented results:

There are three problem classes defined by the paper: the one
described by the mathematical formalism of the model, the one
implemented in the experiment, and the one from which the ex-
amples in the text are given. I think the text basically treats all
these three to be the exact same, and I think they are not. I don’t
necessarily think that this is a problem - abstracting away some
aspects of the experimental setup and addressing a more general
set of phenomena in the examples might even be desired - but I
think writing very clearly about these differences is important to
help the reader see what the results really mean. My first two
questions address these differences.

1. The mathematical formalism assumes T to be known, and to be
accessed locally (i.e. no searching from the goal backwards). This
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is fortunate since learning T would almost certainly be entangled
with the choice of Z making the formalism way too complicated.
However, in the experiment, people have to learn T from scratch,
and aren’t expected to have a noiseless version of it at any point.
In the navigation trials, this is compensated by the local informa-
tion about edges that can be said to correspond to the local access
in the model - but there people are making actual moves on the
graph, not merely mental ones, as e.g. in the given example of
chess. And in the probes, where they presumably are making men-
tal simulations, they presumably not only learned T already (albeit
noisily) but also already constructed Z - thus people aren’t really
‘planning’ while constructing the subgoals, but rather ‘exploring’.
All this might be perfectly fine, it just gave me pause not to see
these points addressed more directly.

We thank the reviewer for this keen perspective. We agree that these
differences are critical to note, since the formal alignment between the ex-
amples, experiment, and models are imperfect. We have called attention to
this issue in the Discussion, noting this difference between how participants
have learned task structure during the probe trials and navigation trials:

An additional difference during navigation trials is that partici-
pants are still learning the task structure and shown connections
from the current state. By contrast, during the probe trials, par-
ticipants are unable to see any connections and must rely solely on
what they have learned. These subtle differences may reduce the
relationship between these two trial types. They are also differ-
ent from the formal framework which assumes perfect knowledge
about task structure—because this could influence task decom-
position, we note a relevant extension below. The effect of this
difference could be studied by introducing a separate experimen-
tal phase where participants are trained on the task structure
directly, outside the context of navigation—the first experiment
in Solway et al. (2014) contains a similar phase, but had limited
navigation trials.

As mentioned above, we note a relevant extension to the framework later
in the Discussion:
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A particularly interesting direction could incorporate model learn-
ing (as in the Dyna architecture [Sutton and Barto, 2018]) across
tasks in order to explain the influence of task learning on task de-
composition.

The reviewer’s concern about when Z and plans are constructed is re-
lated to a general issue regarding efficient computation of resource-rational
objectives. These objectives require an estimate of computational cost, but
estimating that cost in a naive fashion is usually more computationally costly
than the original objective. We discuss this issue further in the second re-
viewer’s fifth major question (Page 28).

2. The text of the manuscript gives various real-world examples
of problems, most notably that of physical navigation, choosing
landmarks (the café) as subgoals. I think the café example works
through a different mechanism: I’d choose it as a subgoal because
I already know how to get there, i.e. there is an existing (habitu-
alised) policy I can reuse, and not because it will make planning
cheaper now. Habits seem to be a consideration orthogonal to this
paper, but maybe I’m failing to see a connection. Furthermore,
in tasks like physical navigation people seem to heavily rely on
distance-from-goal or directional heuristics, both available due to
the existence of an embedding into a feature space. This could
result in something like an IDA* search algorithm instead of the
ones discussed here. No such embedding is assumed either in the
model or the experiment - in fact it’s explicitly avoided. The ex-
ample of navigating in the dark is closer to the experiment, how-
ever not the model. Board game examples are closer to the model,
as they involve planning in symbolic spaces (but one has to ignore
heuristic-generating feature embeddings for e.g. chess). Cooking
might be the example I find the most fitting for the model.

We thank the reviewer for carefully considering the alignment between
our examples and modeling framework. We have taken a few actions in order
to address these issues.

First, in the closing paragraph of A Formal Framework for Task Decom-
position, we take care to note this divergence in search algorithms between
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the real-world examples and the brute-force approach our manuscript focuses
on:

The formal presentation of our framework considers subgoal choice
with intentionally restricted algorithms: brute-force search meth-
ods that exclude problem-specific heuristics to accelerate plan-
ning. However, the examples in this section (navigating to the
post office via the café, navigating in a place with low visibil-
ity) likely rely on algorithms that incorporate heuristics, par-
ticularly related to spatial navigation. While outside the scope
of this manuscript, our framework can flexibly incorporate any
search algorithm that can define an algorithmic cost, including
those that make use of heuristics. For example, in a previous
theoretical study we applied an early version of our framework
to task decomposition in the Tower of Hanoi by using A* Search
[Ghallab et al., 2016] with an edit distance heuristic [Correa et al., 2020].

We still think the examples based on spatial navigation are valuable be-
cause they are very concrete and easy for readers to visualize, as in our
motivating gridworld-like figure.

We strongly agree with the reviewer’s concern about policy reuse. Habits
are an entirely orthogonal concern, and expressly avoided in our formulation.
We have made a brief note about policy reuse when discussing extensions of
the model in the Discussion:

At present, our framework assumes planning for tasks occur in-
dependently, avoiding the reuse of previous solutions to subtasks.
Despite this absence, our framework still predicts a normative
benefit for problem decomposition. However, research has found
that people learn hierarchically, exhibiting neural signatures con-
sistent with those predicted by hierarchical reinforcement learning
theory [Ribas-Fernandes et al., 2011]. Further research could re-
lax the independence between task solutions by explicitly reusing
solutions (as in [Solway et al., 2014]) or turning to formulations
based on reinforcement learning [Harb et al., 2018], particularly
those designed for a distribution of goal-directed tasks with shared
structure as studied in this manuscript [Nasiriany et al., 2019]. A
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particularly interesting direction could incorporate model learn-
ing (as in the Dyna architecture [Sutton and Barto, 2018]) across
tasks in order to explain the influence of task learning on task de-
composition.

For the purpose of this example, we think habits and policy reuse should
not be emphasized. To do so, we have made a small change in the language
of the example, from

Maybe the café you stop by every morning before work...

to a version that deemphasizes habit:

Maybe the café you sometimes stop by before work...

3. The Discussion mentions in passing that this work is comple-
mentary to option discovery. This seems to be an important point
to address, and although I myself am not well versed enough in
the options literature to be able to tell the exact relationship, I’d
be very interested how exactly is it complementary. In fact, I’d
probably mention this in the introduction as well instead of only
at the very end.

We thank the reviewer for noting the importance of more clearly relating
our framework and research to the options framework. In response to this
comment, we have explicitly described how our framework relates to the op-
tions framework at the end of A Formal Framework for Task Decomposition:

Our framework also considers a constrained set of task decom-
positions that consist of individual subgoals. In comparison, the
influential options framework [Sutton et al., 1999] defines a more
general set of hierarchical task decompositions, in which, for in-
stance, subtasks can be defined by the subgoal of reaching any
one out of a set of states and subtask completion can be non-
deterministic. However, finding such subtasks remains a chal-
lenging problem in machine learning, so by focusing on the sim-
pler problem of selecting a single subgoal we are able to make a
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significant amount of progress in understanding a key component
of how humans plan. While not yet fully explored, our formalism
can be extended to encompass broader types of hierarchy (and
also varied search algorithms). For instance, another theoretical
study adapted our framework to support more varied kinds of
hierarchical structure by incorporating abstract spatial subgoals
in a block construction task [Binder et al., 2021].

4. Relatedly, the learning problem in this paper is formalised sim-
ilarly to goal-directed reinforcement learning. In particular, this
paper looks at defining subgoals in such a setting: https://arxiv.org/abs/2106.01404.
It might worth relating to this literature as well.

We thank the reviewer for this reference to goal-directed reinforcement
learning. In the Discussion, we have made explicit reference to this reinforce-
ment learning setting (reference italicized):

Further research could relax the independence between task solu-
tions by explicitly reusing solutions (as in [Solway et al., 2014]) or
turning to formulations based on reinforcement learning [Harb et al., 2018],
particularly those designed for a distribution of goal-directed tasks
with shared structure as studied in this manuscript [Nasiriany et al., 2019].

5. Why is IDDFS an intuitive choice despite the large computa-
tional cost depicted in Fig 1b? It has presumably been proposed
previously because of some favorable property, was it good mem-
ory complexity? If so, would it also make sense to look at how
subgoals reduce memory costs?

We thank the reviewer for bringing up this point about the relative cost
of IDDFS in Fig 1b. To address this issue we have added additional discus-
sion. IDDFS does have smaller memory complexity than BFS, since it only
tracks visited states along the current trajectory, while BFS tracks all states
that have previously been considered. In classical planning, IDDFS is often
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preferred to BFS for this reason, since furthermore BFS and IDDFS have the
same form of runtime scaling with the size of the graph (both O(bd), though
of course with a larger constant multiplier for IDDFS). We draw explicit
attention to this at the end of the Action-level Planning subsection:

While only noted in passing above, each of these algorithms makes
subtle trade-offs between run-times, memory usage, and optimal-
ity. Focusing on BFS and IDDFS, the two optimal algorithms, we
briefly examine these trade-offs. BFS visits states at most once,
but requires remembering every previously visited state; by con-
trast, IDDFS will revisit states many times (i.e. greater run-time
compared to BFS), but only has to track the current candidate
plan (i.e. smaller memory use compared to BFS). In effect, ID-
DFS increases its run-time to avoid the cost of greater memory
use. We briefly return to this point below when examining algo-
rithm run-times.

We also discuss this at the end of A Formal Framework for Task Decom-
position:

The gap in run-time between IDDFS and BFS might make IDDFS
seem inefficient—however, as noted in the algorithm descriptions
above, IDDFS makes a trade-off of increased run-time in order to
decrease memory usage. While outside the scope of the current
manuscript, our formulation can be extended to incorporate other
resource costs like memory usage in order to study how they
influence task decomposition.

Relatedly, we note in our response to the reviewer’s second question
(Page 3) that a key strength of our framework is the ability to incorporate
any algorithm that can define a search cost.

Finally, since our framework can be extended by incorporating additional
computational costs, an intriguing future direction could integrate memory
costs into this modeling framework. To the best of our knowledge, this is
a relatively understudied topic, but we hope that our results might justify
further inquiry along these lines. We briefly mention this in the Discussion:

Another direction could explore other resource costs like mem-
ory use, motivated by the relatively low memory use of IDDFS
discussed above.
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6. Do Fig 1c-e show the costs incurred during one particular run
of each of these algorithms? Or why is e.g. the random walk not
symmetric around the start state? These panels are also a bit
far from the part of the text that describes them, moving them
closer, maybe on a separate figure could streamline the reading
experience.

We are grateful for the reviewer’s attention to detail here. We were able
to address this issue, which arose because our grid implementation—used
only for this figure—had the complete set of movements in the four cardinal
directions for all states. Since some directions have no effect at a border, this
meant that a random walk might get “stuck” at a border because some ac-
tions kept it in place. We have modified the grid implementation to avoid this
issue. The random walk is implemented analytically, so that was unrelated
to this issue.

The figure has been updated in the text. The RW without hierarchy
appears as follows:

And RW with hierarchy is as follows:

We have also split the figure so that the toy example is closer to the text
where it is referenced. We have separately added additional context to the
figure, in the hopes that it will be easier to understand without needing to
reference the text.

Caption: State-specific search costs of the algorithms. The de-
picted task requires navigating on a grid from the start state
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(green) to the goal state (orange) with fewest steps. Each col-
umn corresponds to a different algorithm and demonstrates two
scenarios—Top: Search cost without subgoals, Bottom: Search
cost when using the path midpoint as a subgoal (blue). We de-
fine the search cost as the number of iterations required for the
search algorithm to find a solution. Larger states were consid-
ered more often during the search algorithm, resulting in greater
search cost.

7. In the experiment could stimulus salience distort the results in
any way? E.g. is the red balloon overrepresented in the choice of
subgoals?

We thank the reviewer for noting this potential confound. We would first
note that while icon effects are plausible, the assignment of icons to states
was pseudorandomized across subjects (though not exactly counterbalanced),
which mitigates many concerns about whether such effects would confound
our broader conclusions. To investigate this formally, we added an analysis in
the Appendix in Testing whether icons influence participant choice analysis
to investigate whether the inclusion of icon as a regressor in our probe choice
models has any impact on our observed results:

We test whether icons influence participant choice by extending
the hierarchical multinomial analyses of probe choice in the main
text. We first evaluate whether subgoal predictions meaningfully
explain the same choice data pooled across probe types when
added to a null model containing fixed effects and per-participant
random effects for the dummy-coded icon regressors. We use a
likelihood ratio test for the addition of fixed and random effects
for subgoal predictions to this null model—this test mirrors the
likelihood ratio tests in the main text, besides the change in null
model. Across all models, we find that addition of subgoal predic-
tions is justified (Table in manuscript). Now, we evaluate whether
the overall level of predictivity among models is impacted by the
presence of the icon regressor in Figure (below). We find that
the qualitative results observed in the main text are conserved.
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This strongly suggests that icons have minimal influence on the
results presented in the main text.
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Caption: Predicting probe trial choice using hierar-
chical multinomial regression using subgoal predictions
and additional regressors for the icon displayed. De-
spite the inclusion of the icon regressor, these qualita-
tive results mirror those in the main text. Log likeli-
hood (LL) is relative to the minimum model LL. Larger
values indicate better predictivity.

8. Would it be possible to make more direct comparisons between
the number of steps people make in the navigation trials and the
number of steps taken by the algorithms? Would such a compari-
son be meaningful given that for humans this is a learning phase
as well?

We appreciate the reviewer drawing attention to this issue. It is one
that we, the authors, have thought about over the course of preparing this
manuscript, and find it important to consider. The nature of the behav-
ioral experiment makes it difficult to quantitatively analyze navigation trial
behavior in order to identify the search algorithms that people use. The
main issue (which arises in many attempts to study planning through choice
behavior) is that planning steps are presumptively covert, and do not cor-
respond in any simple way with steps of overt behavior given by the plan
that is ultimately produced. Indeed, many different search algorithms (for
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instance, all optimal ones) will arrive at the same plan and identical choices.
We discuss this at more length in the Discussion:

A third limitation is that the navigation trials provide limited
insight into the algorithms people are using to plan. While par-
ticipants only see local connections during navigation, analogous
to the local visibility search algorithms have, there are a num-
ber of reasons why their navigation behavior would be difficult to
relate to the choice of search algorithm. The main issue is that
planning steps are generally covert, and do not correspond in any
simple way with steps of overt behavior given by the plan that is
ultimately produced. Such covert planning is better suited, in fu-
ture work, to being studied through process-tracing experiments
[Callaway et al., 2022, Ho et al., 2022], think-aloud protocols, or
by investigating neural signatures related to planning and learn-
ing [Liu et al., 2021]. It is possible that some aspects of plan-
ning are externalized in the current experiment, via exploration
on navigation trials, but this is at best incomplete. For instance,
participant behavior improves over the course of navigation trials,
suggesting they are performing mental search instead of search via
navigation. Also, the experiment restricts single-step movement
to neighboring states, whereas by contrast, algorithms like BFS
might plan over states in an order where subsequent states are
not neighbors. Identifying the search algorithm participants use
is critical for future studies, since our framework predicts that
task decomposition is driven by the search algorithm used.

9. Eq 3: is the Z that maximises this formula taken here? I
assume it is but it isn’t stated explicitly.

We have made sure to clarify this in the updated manuscript:

The optimal set of subgoals Z∗ for planning maximize this value,
so Z∗ = argmaxZ V (Z).

11



10. It is mentioned that the subjects were asked if they drew a
map. Did any of them answer yes to this question?

We thank the reviewer for drawing attention to this potential confound.
As detailed in the results, we have added an analysis predicting subgoal
choice, restricted to the subset of participants that did not draw a map.

Since the experiment was designed to so that only local connec-
tions were visible during navigation trials but conducted via an
online platform, in the closing survey we asked participants if
they used a reference to the task structure besides the interface
(“Did you draw or take a picture of the map? If you did, how
often did you look at it?”). Participant responses were as fol-
lows: 603 participants selected “Did not draw/take picture”, 65
selected “Rarely looked”, 90 selected “Sometimes looked”, and
48 selected “Often looked”. In order to ensure the above results
were not impacted, we ran the same analysis in the subset of par-
ticipants (N = 603) that selected “Did not draw/take picture”
and found qualitatively similar results (in the Appendix).

The following figure was included to support these results.
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Caption: Comparison of probe choice behavior in the subset of
participants (N = 603) that reported not using an additional
visual aid during the experiment. Analysis is otherwise identical
as that in main text, using mixed-effects multinomial regression
to predict subgoal choice behavior for each subgoal probe. Log
likelihood (LL) is relative to the minimum model LL for each
probe. Larger values indicate better predictivity.
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Reviewer 2

We are very grateful to the reviewer for carefully reading of our manuscript
and providing helpful comments and perspectives. Based on this feedback,
we have added additional discussion and analyses, which we hope will serve
to address the reviewer’s concerns.

Below, the reviewer’s original comments are in italics and our responses
proceed in non-italics. Quotes from the updated manuscript are in blue.

The paper describes behavioral predictions derived from a set of
(normative) computational accounts and heuristics for the (resource-
rational) decomposition of tasks in a graph-structured environ-
ment. For simulations, graph structures are selected such that
differences between model predictions about which states should be
sub-goals become qualitatively evident. Model predictions are qual-
itatively and quantitatively (using multinomial regression analy-
ses) compared against human behavior from a large, pre-registered
online study (N = 806). The authors report that human behav-
ior in a graph-structured planning task involving explicit and im-
plicit probe questions about sub-goals is most consistent with the
use of a task decomposition heuristic (betweenness centrality) and
– among the formal accounts – with a resource-rational model
performing an iterative-deepening depth-first search on the graph
structure.

The paper is well-written, addresses an interesting (and novel)
research question and features a variety of well-crafted compu-
tational accounts of task decomposition that are motivated by a
resource-rational perspective on planning. Predictions of previ-
ously considered formal accounts of planning from the literature
are pitted up against these new algorithms – allowing for quantita-
tive comparisons of the relative goodness of fit to observed human
behavior. The novelty and strength of the present computational
approach lies in the formalization of three nested levels of plan-
ning (action-level planning, subtask-level planning and task de-
composition), and their optimization considering computational
costs (limited resources).
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The idea that humans (and potentially other cognitive systems)
engage in resource-rational trade-offs during planning and decom-
position of tasks is intriguing, and has far-reaching implications,
even beyond the field of cognitive psychology/neuroscience.

While I enjoyed reading the paper and think it would be of much
interest to the diverse readership of PLOS Computational Biol-
ogy, I have a few comments that I would like to see addressed.
These are mainly related to a potential confound in the behav-
ioral task design (that should at least be discussed), the presen-
tation/analysis of the behavioral data and the interpretation of
the findings. I am very confident that the authors will be able to
address my concerns.

Major questions and comments:

1.) I would like to see the human behavior unpacked and explored
a bit more:

a. A figure for the observed associations between navigation trial
performance and probe behavior could be used to illustrate these
findings. This would help readers to get a better sense for the vari-
ability of performance across subjects and the data distributions
at hand.

We thank the reviewer for this comment, and have incorporated an addi-
tional figure to address this concern. We have added a plot that shows the
relationship between participant subgoal choice counts and navigation path
length (Figure below). We hope this plot gives readers an enriched perspec-
tive into the data. In this revised version, the reported correlation is now
negative, because we report “subgoal choice count” instead of “goal choice
count” to clarify our exposition—these two features are perfectly negatively
related, since participants either selected a subgoal or the goal for each of
the Explicit Probe trials.
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Caption: Participants that choose a subgoal instead of the goal
more often in Explicit Probe trials have shorter average path
length, relative to the optimal path length (r = −0.29, p < .001).

Unrelated to the above figure, while revisiting the code relating probe
behavior to optimal path choice, we found that the reported results were
based on an outdated analysis using an incorrect exclusion criteria. We
have updated the results, which are qualitatively identical and quantitatively
extremely similar.

b. In Figure 5a it is unclear how many participants performed
choices on each of the depicted graphs. Please clarify this, and
potentially consider adding a supplementary figure showing the
results for the remaining 26 graph structures that were considered
in the study.

We thank the reviewer for calling attention to this. We have updated the
figure caption to incorporate the number of participants per graph

Each participant responded to a total of 21 subgoal probes and
the number of participants per graph, from the top graph to the
bottom graph, was 28, 26, 25, and 26.
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and added the below figure to the supplement which displays the behavioral
data for all 30 graphs.

Caption: Visualization of participant behavior by graph. State
color and size is proportional to subgoal choice, summed across
participants and probe types. Participants per graph ranged from
21–30 and each participant responded to a total of 21 probe ques-
tions.

c. A potential confound that should be controlled for is the vary-
ing complexity of the employed graph structures. Is discovery and
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usage of sub-goals further modulated by measures of graph com-
plexity/minimum description length?

We appreciate this suggestion from the reviewer. In a new analysis in
the appendix, we compare participant subgoal choice counts on the Explicit
Probe to two different measures of graphs: one related to complexity and the
other to structural properties. We are not aware of a clear consensus around
measures of graph complexity, so we used these two quantities that we felt
we could justify. We appreciated the opportunity to analyze the data from
this perspective, and hope the reviewer finds the results interesting.

We consider the influence of two graph measures on reports of
subgoal choice, in order to understand how graph complexity and
structure influence the ability of participants to identify subgoals
or plan hierarchically. We compare graph measures to the subgoal
choice count, or the number of times participants reported the
use of a subgoal instead of the goal in the Explicit Probes. The
subgoal choice count is also compared with navigation behavior
in the main text.

First, we consider how the complexity of a graph might influ-
ence subgoal use. We note that participants may be influenced
in either direction: A complex graph could be more difficult to
learn, impeding identification of hierarchy. On the other hand,
a complex graph may incentivize the use of hierarchy to support
efficient planning. We use the number of edges per graph as a
simple proxy for complexity. When a graph is represented as an
adjacency list—a list of all the edges in the graph—it has a de-
scription length that is directly related to the number of edges.
We find that edge count and the average per-graph subgoal choice
counts are uncorrelated (r = 0.04, p = .821). This analysis sug-
gests subgoal choice identification and use is minimally impacted
by graph complexity as measured by edge count.

The second measure we consider is related to structural properties
of the graph—the spectral gap. We describe the spectral gap at
length below, but briefly note that the spectral gap corresponds
to a measure of graph modularity—graphs with small spectral
gap should be more modular and those with large spectral gap
should be more densely connected. Beyond this relationship to
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graph modularity, it has a relationship to the mixing time, or
the rate at which a random walk converges to a stationary dis-
tribution [Lovász, 1993]. We find a small, but non-significant,
correlation between the spectral gap and the average per-graph
subgoal choice count (r = −0.22, p = .246). A negative corre-
lation means that participants selected subgoals more often for
modular graphs (smaller spectral gap), and less often for densely
connected graphs (larger spectral gap).

d. Does behavioral performance improve across trials/repeated
exposures to planning tasks?

We agree with the reviewer that it is an interesting question whether
participant performance increased over the course of planning trials. As we
mention in the response to the reviewer’s next point (1e), we add one addi-
tional measure of performance (number of solutions that included a repeated
state visit) that is consistent with an increase in behavioral performance. In
our initial submission, we had also mentioned a few measures.

Even though the experimental interface obfuscated task structure
by showing the task states in a random circular layout, partic-
ipants became more effective from the first to the second half
of training: “long” trials were solved more quickly (from 10.30s
(SD = 29.74) to 7.60s (SD = 11.19)), with more efficient so-
lutions (from 36% to 20% more actions than the optimal path;
completely optimal solutions increased from 70% to 79%; solu-
tions that included a repeated state decreased from 14% to 9%),
and with decreased use of the map (on-screen duration decreased
from 9.01s (SD = 20.97) to 2.98s (SD = 12.66); number of hov-
ered states decreased from 5.43 (SD = 8.70) to 1.38 SD = 3.99;
duration of state hovering decreased from 2.52s (SD = 7.23) to
0.60s (SD = 9.04)).

e. Is there evidence that participants learned the structure well-
enough? What looks like absence of use of normative task de-
composition could in fact be failure to acquire the structure. This
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learning deficit could be assessed by investigating exploration be-
havior before setting sub-goals (entropy in cursor/mouse move-
ment, return to previously visited states – over and above the
reported control for state occupancy during navigation trials) as
marker of how well the structure has been learned.

We agree with the reviewer’s concern—a failure to learn task structure
would confound our results. In order to address these concerns, we have
added a few measures to our experimental results to explicitly note how
participant behavior changes from the first to second half of navigation trials.
These measures augment those in the initial submission (trials were solved
more rapidly; solutions were shorter and a greater fraction were optimal; map
was used less). The first additional measure is the fraction of solutions that
contained a repeated state during navigation trials:

solutions that included a repeated state decreased from 14% to
9%

We were also able to add two additional measures of map use, in addition
to our initial measure of overall duration of map use. While neither measure
directly addresses the reviewers suggestion for entropy of cursor movements,
they give more insight into how participants used the between-trial map, and
are related to cursor movements (since participants had to hover on states
with the cursor in order to reveal state icons).

number of hovered states decreased from 5.43 (SD = 8.70) to
1.38 SD = 3.99; duration of state hovering decreased from 2.52s
(SD = 7.23) to 0.60s (SD = 9.04)).

Unfortunately, because we did not collect further cursor information, cer-
tain kinds of analysis (e.g. entropy of cursor coordinates) are not possible
with this dataset.

Finally, we would direct the reviewer to the first reviewer’s first point
(Page 2), which is related. Our ideal-observer formalism assumes the graph
structure T is known, and does not at present contemplate additional uncer-
tainty about it, although this clearly arises in practice during learning in the
experiment. We now highlight this difference between theory and experiment
in discussion now, and note that future work could extend the formalism to
incorporate such uncertainty.
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f. Relatedly, was there evidence for (overall) longer reaction times
on the task (e.g. longer planning duration, or time to complete a
trial) for subjects choosing less optimal sub-goals (or no sub-goals
at all), which would be expected if there are advantages of using
a normative strategy to solve the task?

We thank the reviewer for this analysis idea. We have added a simple
analysis comparing participant subgoal choice counts to their response times
during navigation trials:

We also briefly examine the relationship between subgoal choice
count on Explicit Probe trials and response times during naviga-
tion. We were unable to find evidence of a correlation between
the subgoal choice count of a participant and their average log-
transformed navigation trial duration (r = 0.01, p = .858). In
order to understand how subgoal use influences response times,
future studies should examine trial-level measures in appropriate
experimental designs, an issue we remark on in the discussion.

As noted, we find no relationship between trial duration and subgoal use.
This null result may be a result of the coarse participant-level measures we
analyze, so more granular trial-level measures of response time and subgoal
use may be necessary to determine whether subgoal use influences response
times. We also think that future studies should probe these questions fur-
ther with experimental designs that encourage a distinct phase of up-front
planning—for instance, by prohibiting participant action during an explicit
initial planning phase. We note these issues in the Discussion:

Second, though we report analyses of participant response times,
these analyses were not pre-registered and our experiment was
not designed to assess response times. These findings should
be reevaluated in experimental designs appropriate to assess re-
sponse times. For example, we found that participants were
slower to respond at their subgoals, suggesting they were plan-
ning at those states. However, our normative framework makes
no prediction about when planning occurs. The framework only
defines a resource-rational value for subgoals that can be used to
simplify planning whether it happens before action or after reach-
ing a subgoal. Future experiments could investigate this further
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through manipulations to influence when planning is employed,
like a timed phase for up-front planning or incentive for fast plan
execution.

2.) Does task decomposition in the behavioral experiment occur
“naturally”, or is it induced by task instructions, e.g. “Plan how
to get from A to B. Choose a location you would visit along the
way,” (lines 340-341), and subjects feel encouraged to do so; i.e.
due to demand characteristics of the task? The authors should
acknowledge and discuss this potential confound and its implica-
tions for the interpretation of the results. Additionally, it would
be beneficial to point out that future studies should try to ad-
dress this confound by using the same task but without explicitly
prompting sub-goal use (and therefore task decomposition). This
would allow to test whether the results are still aligned with the
predictions of normative accounts and heuristics.

We understand the reviewer’s concern and agree that this should be dis-
cussed in the manuscript. When designing the experiment, we were moti-
vated by prior studies [Solway et al., 2014, Tomov et al., 2020, Balaguer et al., 2016]
that reported participant behavior consistent with the formation and use of
subgoals, even when unprompted. We draw particular notice to the first
experiment in Solway et al. (2014), where participants report meaningful
hierarchical structure when solely learning graph connections outside the
context of planning. In our work, we thought it appropriate to prompt par-
ticipants, since our focus is which subgoals participants choose, in contrast to
whether participants plan hierarchically. However, we recognize that future
work should investigate how experimental instructions influence behavior.
We draw attention to this issue in the Discussion:

The first [limitation] is that participants are encouraged to plan
hierarchically (“It might be helpful to set subgoals” in Fig [...]).
While this seems likely to have minimal impact on which sub-
goals participants choose, the main focus of this manuscript, it
may impact whether participants plan hierarchically in the first
place. Future studies intending to assess how people choose to
plan hierarchically should consider avoiding prompts like this.
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3.) It is unclear to me, how exactly the tested approximations/heuristics
are more psychologically plausible and tractable for humans than
the presented normative computations. As also discussed by the
authors, betweenness centrality is computationally very demand-
ing, given that all shortest paths of a given graph need to be com-
puted and stored in memory to calculate the importance of each
node using this heuristic. Relatedly, I would like to encourage the
authors to include a section elaborating on how these heuristics
(and potentially the computations used in the normative accounts)
might plausibly be implemented by humans/brains (i.e. how cog-
nitively and also how biologically plausible their implementation
is). The authors acknowledge that even simpler heuristics than
the ones considered here could be used by participants. I think
it would be beneficial to elaborate more on what these simpler,
more tractable heuristics may be. For example, simple count-
based strategies, keeping track of the number of edges of and how
often each node occurred in each query about start and end node
seem to be a more tractable approximation (akin to something like
a successor representation).

We thank the reviewer for voicing this concern. We agree that Between-
ness Centrality is not trivial to estimate, and think it is interesting to discuss
and investigate how it might be approximated by people. We have taken
a few steps to address this issue, by discussing the issue of tractable esti-
mation earlier in the text and clearly relating a trivial heuristic we examine
(state occupancy) to another heuristic (betweenness centrality). While we
were able to rule out the use of this trivial heuristic, we note that future
research should give more attention to the question of how people might be
approximating quantities such as Betweenness Centrality.

We have added additional discussion in the closing paragraph of Com-
paring Accounts of Task Decomposition that draws attention to the issue of
tractable estimation of Betweenness Centrality, drawing notice to a simple
memory-based strategy tracking visit rate, or state occupancy:

The second approach might approximately optimize the objec-
tive by using a more tractable heuristic—the results in this sec-
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tion suggest two examples, where Betweenness Centrality can ap-
proximate RRTD-IDDFS and Degree Centrality can approximate
RRTD-RW. While Degree Centrality is straightforward to com-
pute, Betweenness Centrality is still computationally costly be-
cause it requires finding optimal paths for all tasks. Importantly,
Betweenness Centrality has a probabilistic formulation, so it can
be estimated with analytic error bounds [Borassi and Natale, 2019].
In this formulation, states that are more central appear more of-
ten in paths sampled from an appropriate distribution (i.e. sam-
ple a task, then sample an optimal path uniformly at random).
This suggests a trivial memory-based strategy that tracks the
occupancy of states visited along paths—when the paths are ap-
propriately sampled, the expected occupancy should be related
to Betweenness Centrality. Another approach is to approximate
Betweenness Centrality, like in one planning-specific method that
analyzes small regions of the environment separately, then pools
this information to choose subgoals [Şimşek and Barto, 2009].

We have additionally added explicit connections to this memory-based
strategy where appropriate. In describing the experimental design:

In simulations and pilot studies, states with high visit rate co-
incided with the predictions of RRTD-IDDFS and Betweenness
Centrality. This made it difficult to dissociate model predictions
from an alternative memory-based strategy where frequently vis-
ited states are selected as subgoals. As noted in the previous
section, this memory-based strategy is related to sampling-based
estimation of Betweenness Centrality. To address this confound,
we modified the experimental task distribution so that long tri-
als were interleaved with filler trials requiring navigation to a
state directly connected to the start state. These filler trials were
adaptively selected to increase visits to states besides the most-
frequently visited one; in pilot studies and simulations, this was
sufficient to dissociate visit rate and model predictions.

And in the motivation of analyses:

We additionally compare model predictions to participant state
occupancy during navigation trials in order to assess whether
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people are relying on simple, memory-based strategies to respond
to the probes, as described above.

As well as the results:

In contrast, we found that state occupancy was a worse fit to
participant behavior than either of RRTD-IDDFS or Betweenness
Centrality, suggesting that the introduction of filler trials was
sufficient to rule out a trivial strategy based on state occupancy.

Finally, we mention these issues in the Discussion (new text in bold):

However, Betweenness Centrality is also expensive to compute
since it requires finding optimal paths between all pairs of states–
something our participants are not likely doing. Since we were
able to rule out one trivial estimation strategy (state
occupancy) through the inclusion of filler trials, the is-
sue of tractable estimation is an open question for fu-
ture research to explore by proposing other estimation
strategies and experimental manipulations to dissociate
their predictions. Identifying even more efficient approxima-
tions to resource-rational task decomposition will be essential for
a process-level account of human behavior, as well as for advanc-
ing a theory of subgoal discovery for problems with larger state
spaces.

4.) The current study presents a normative account for resource-
rational behavior in graph-structured environments, where sub-
tasks are well-defined and the state space can be decomposed with
reasonable certainty, only by considering the graph structure itself
(subjects transition from one state to another, transitions do not
depend on skill level of executing the behavioral task at hand, or
the time to complete it etc). To keep up with the general motiva-
tion of the study as put forth in the author summary and introduc-
tion (“how do people decompose tasks to begin with?”, line 11),
the authors could elaborate on the extent of how generalizable the
presented normative accounts are to other, non-graph-structured
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planning tasks. How are sub-goals identified in the more gen-
eral case, e.g. in more complex, less discrete tasks that involve
more uncertainty about the state space and completion of sub-
tasks/achievement of sub-goals?

We agree that broader consideration of the limits and extensibility of the
framework should be added to the text. We have made a few changes in
response to this comment. First, in A Formal Framework for Task Decompo-
sition we note a few published extensions to an early version of framework,
though all deal with problems that are discrete, deterministic, and observed:

The formal presentation of our framework considers subgoal choice
with intentionally restricted algorithms: brute-force search meth-
ods that exclude problem-specific heuristics to accelerate plan-
ning. However, the examples in this section (navigating to the
post office via the café, navigating in a place with low visibil-
ity) likely rely on algorithms that incorporate heuristics, par-
ticularly related to spatial navigation. While outside the scope
of this manuscript, our framework can flexibly incorporate any
search algorithm that can define an algorithmic cost, including
those that make use of heuristics. For example, in a previous
theoretical study we applied an early version of our framework
to task decomposition in the Tower of Hanoi by using A* Search
[Ghallab et al., 2016] with an edit distance heuristic [Correa et al., 2020].
Our framework also considers a constrained set of task decompo-
sitions that consist of individual subgoals. In comparison, the
influential options framework [Sutton et al., 1999] defines a more
general set of hierarchical task decompositions, in which, for in-
stance, subtasks can be defined by the subgoal of reaching any
one out of a set of states and subtask completion can be non-
deterministic. However, finding such subtasks remains a chal-
lenging problem in machine learning, so by focusing on the sim-
pler problem of selecting a single subgoal we are able to make a
significant amount of progress in understanding a key component
of how humans plan. While not yet fully explored, our formalism
can be extended to encompass broader types of hierarchy (and
also varied search algorithms). For instance, another theoretical
study adapted our framework to support more varied kinds of
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hierarchical structure by incorporating abstract spatial subgoals
in a block construction task [Binder et al., 2021].

In the Discussion, we note potential future extensions of our frame-
work to model spatial navigation and settings that involve learning across
tasks. We also note in passing some extensions that are further afield, like
control-theoretic settings and higher-dimensional reinforcement learning set-
tings solved through deep learning.

As mentioned in the text, our framework and experiment explic-
itly focus on the constrained setting of brute–force search. How-
ever, other theoretical studies have extended this framework to in-
corporate heuristic search [Correa et al., 2020, Binder et al., 2021]
and abstract subgoals [Binder et al., 2021]. Future research should
continue to explore extensions of this framework to more robustly
test the predictions of resource-rational task decomposition. For
example, our framework could be used to make predictions about
subgoal choice in spatial navigation tasks by incorporating spa-
tial distance heuristics and using heuristic search algorithms like
A* search or Iterative-Deepening A* search [Ghallab et al., 2016].
Another direction could explore other resource costs like memory
use, motivated by the relatively low memory use of IDDFS dis-
cussed above. At present, our framework assumes planning for
tasks occur independently, avoiding the reuse of previous solu-
tions to subtasks. Despite this absence, our framework still pre-
dicts a normative benefit for problem decomposition. However,
research has found that people learn hierarchically, exhibiting
neural signatures consistent with those predicted by hierarchi-
cal reinforcement learning theory [Ribas-Fernandes et al., 2011].
Further research could relax the independence between task solu-
tions by explicitly reusing solutions (as in [Solway et al., 2014]) or
turning to formulations based on reinforcement learning [Harb et al., 2018],
particularly those designed for a distribution of goal-directed tasks
with shared structure as studied in this manuscript [Nasiriany et al., 2019].
A particularly interesting direction could incorporate model learn-
ing (as in the Dyna architecture [Sutton and Barto, 2018]) across
tasks in order to explain the influence of task learning on task de-
composition. Further extension of this framework could build on
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resource-rational models developed in other domains, like Markov
Decision Processes [Jinnai et al., 2019] and feedback control [Prystawski et al., 2022],
and draw inspiration from approaches used to learn action hierar-
chies in high-dimensional tasks [Harb et al., 2018, Nasiriany et al., 2019].

5.) For resource-rational computations in subtask-level planning
to occur, subjects would need to have access to the computational
cost of a cognitive process – before deciding whether to engage in
the computation, or rather not to invest time and cognitive re-
source. This cost is of course only available after indeed running
the very same computation, which sort of seems to defeat the pur-
pose of resource-rational deliberation. It is more of a question out
of curiosity, but I assume many readers will have similar thoughts
– so it might be beneficial to elaborate (e.g. in the discussion) how
the necessary “ingredients” for the resource-rational deliberation
are thought to be accrued before engaging in resource-rational task
decomposition.

We thank the reviewer for calling attention to this. We agree that this
issue should be addressed in some capacity. We have added a few sentences
remark on this issue and citing a related study at the end of Comparing
Accounts of Task Decomposition. We hope this shines some light on this
broad concern that resource-rational accounts must address for feasibility.

First, finding the optimal task decomposition in a brute-force
manner is more computationally expensive than simply solving
the task. One alternative is to learn the value of task decomposi-
tions, relying on the shared structure between tasks and subgoals
to ensure learning efficiency—for example, in the domain of strat-
egy selection, one study uses shared structure to ensure efficient
estimation which is incorporated by decision-theoretic methods to
deal with the uncertainty in these estimates [Lieder et al. 2017].

6.) It would be beneficial to present an additional, alternative
metric for model comparison that is less dependent on the as-
sumption of uninformative (flat) priors and an approximately
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multivariate Gaussian posterior distribution as the AIC. I sug-
gest adding another metric like the WAIC, or preferably, cross-
validation to assess the predictive accuracy of the models under
consideration. Do other metrics produce convergent model com-
parison results?

We appreciate this suggestion from the reviewer and have given their
feedback careful consideration. While we agree that carefully accounting
for model complexity using measures like WAIC (or indeed, AIC) is critical
when comparing cognitive models with different free parameters, we do not
think these sophisticated measures are necessary or even appropriate in our
case. To the contrary, the additional ambiguity and complexity they add,
due to the proliferation of different metrics based on different construals of
the bias problem and different approximations, together with different ways
of applying them in the context of hierarchical models, actually obscures the
straightforward question of comparative model fit here. Indeed, on reflection
we believe that the invocation of AIC in our original submission was an
unnecessary and potentially confusing red herring, for which we apologize.

Before explaining why, we first briefly recapitulate the analysis strategy to
provide appropriate context. We predict participant choice on subgoal probes
using hierarchical multinomial regression with the predictions of various the-
ories of subgoal choice as regressors. A separate regression analysis is fit for
each subgoal theory, containing a fixed and random effect for predictions of
the theory. Importantly, our regressors (the predictions of the theories that
are actually being compared) have no free parameters and are not fit to data;
the question is just which of these structurally identical accounts provides
the best fit to choices.

Because these regression analyses have identical effect structure and no
theory-specific free parameters, we think that standard methods for model
comparison (e.g., WAIC) are not appropriate for deciding among the theo-
ries. Instead, we feel that the question of selecting among theories is best
framed by directly comparing their fit to data, e.g. by unadjusted LL. Ob-
viously, this provides a biased estimate of predictive fit to test data (or of
marginal model likelihood, on a Bayesian view) due to the free parameters in
the regression model itself, which is what usually motivates the profusion of
different adjusted model selection metrics in order to compare between struc-
turally different models. But importantly, this type of overfitting contributes
equivalently to each of the models here: not just the number of free parame-
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ters, but the actual model structure is the same for all the competing models,
with the only difference being the candidate explanatory regressor itself. In
this case, adjusting for a shared bias term seems at best unnecessary, and at
worst a potentially misleading source of noise. Thus, while considering this
comment, we realized that even the AIC (which we used in the original draft)
is just as informative as the log likelihood. The parameter penalty in AIC is
equivalent for each of these regression analyses, so any comparison between
them based on AIC is identical to a comparison based on the deviance or
negative log likelihood. While we agree that AIC should be replaced with a
more accurate approximation to predictive likelihood if it were doing useful
work, we are skeptical in this case that replacing it with a more elaborate
but still approximate computation would offer a more accurate view on the
problem at hand.

Based on this rationale, we have decided to compare theories on the basis
of the log likelihood, and have ensured that figures reflect this change, as
well as noting this rationale in the text:

Since the regression analyses have the same effect structure and
the underlying theories being compared have no free parameters,
we compare the relative ability of factors to predict probe choice
through their log likelihood (LL) in Fig [...].

Minor questions and comments

(1) It is surprising that predictions based on betweenness cen-
trality seem so closely aligned with predictions of RRTD-IDDFS
but not with RRTD-BFS (Fig. 3), given algorithmic work sug-
gesting that betweenness centrality can be efficiently (and proba-
bilistically) approximated using balanced bidirectional breadth-first
search (e.g. Borassi & Natale, 2019, https://doi.org/10.1145%2F3284359).
The authors could clarify and discuss this.

We appreciate the reference to these recent results and the opportunity
to examine this point in depth. Based on our understanding, the results
in Borassi and Natale (2019) do not contradict our results, since their use
of balanced bidirectional breadth-first search (bb-BFS) does not bias their
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computation of betweenness centrality (BC). We include extended consider-
ation of their results below in order to come to this conclusion. In the main
text, we have added discussion of probabilistic approximation of BC when
discussing tractable approximations of BC, as noted in a previous response.

Our understanding is that the general approach to probabilistic approxi-
mation of BC is based on sampling from a probabilistic definition of BC. As
Borassi and Natale (2019) describe probabilistic approximation of BC bc(v)
of a node v:

The main idea is to define a probability distribution over the set
of all paths, by choosing two uniformly random nodes s, t, and
then a uniformly distributed st-path π, so that Pr(v ∈ π) =
bc(v). As a consequence, we can approximate bc(v) by sampling
paths π1, . . . , πτ according to this distribution, and estimating
b̃(v) := 1

τ

∑τ
i=1 Xi(v), where Xi(v) = 1 if v ∈ πi (and v ̸= s, t), 0

otherwise.

The KADABRA algorithm proposed by Borassi and Natale (2019) is a
substantial speedup resulting from two contributions: an adaptive sampling
scheme with error bounds, and the use of balanced bidirectional breadth-first
search (bb-BFS). To the best of our knowledge, bb-BFS does not influence
the adaptive sampling scheme in the text, particularly based on their adap-
tive sampling algorithm—which isolates the use of bb-BFS to the function
samplePath() (see Algorithm 1)—and their proof of algorithm correctness—
which does not reference bb-BFS in describing shortest paths (see proof of
Theorem 4). This suggests that the use of bb-BFS primarily serves to opti-
mize the run-time of KADABRA, but doesn’t bias the results in a way that
is specific to bb-BFS. This seems reinforced by the fact that the adaptive
sampling scheme provides error bounds, but does not account for any bias
due to the choice of search algorithm.

Further, the section describing bb-BFS is motivated in a manner consis-
tent with this perspective: “The idea behind this technique is very simple:
if we need to sample a uniformly random shortest path from s to t, instead
of performing a full BFS from s until we reach t, [. . . ]”, which then goes on
to describe the bb-BFS algorithm. More generally, since BC is computed
without respect to a particular search algorithm and formulated assuming
sampling uniformly at random from optimal paths, we think that the lack of
algorithm-specific bias in KADABRA and BC does not contradict our ob-
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served results, and would not lead to the prediction that BC and RRTD-BFS
should make similar predictions.

(2) The last sentence of the abstract “Taken together, our results
provide new theoretical insight into the computational principles
underlying the intelligent structuring of goal-directed behavior.”,
seems to overstate the behavioral findings of the study and what
the models represent. In my view, the study shows how well pre-
dictions of a number of considered normative accounts and heuris-
tics are aligned with human behavior, but do not necessarily rep-
resent a proof for the use of these exact computational principles
by humans (there could be alternative computational accounts and
heuristics that are currently not considered in the model space of
the present study – e.g. Dijkstra’s algorithm for discovery of the
shortest path between nodes).

We thank the reviewer for making this point. We agree that this line
should be more precisely phrased to reflect the findings in the study. We
have rewritten the sentence as follows:

Taken together, our results suggest the computational cost of
planning is a key principle guiding the intelligent structuring of
goal-directed behavior.

Since a key attribute of our framework is that other search algorithms can
be incorporated with the definition of computational costs, we additionally
make explicit reference to the extensibility of our model at the end of A
Formal Framework for Task Decomposition and the Discussion, as noted in
our above response to Major Question 4.

(3) I was a bit confused by the fact that the authors indicate
the number of all possible unique 8-node graphs graph-structured
planning tasks (11,117) multiple times throughout the manuscript
without mentioning that this was not the number of graphs actu-
ally used in the behavioral experiment. It is more informative to
learn that the authors further limited this set by ensuring that
each graph had 10 distinct tasks with 3+ actions for an optimal

32



solution (lines 532-533), which greatly enhances the scrutiny of
the approach.

We appreciate that the reviewer made note of this. We agree that this
information should be foregrounded to ensure important details of the exper-
imental design are clearly noted. We have added explicit references to the
constrained subset of 1,676 in the Introduction:

To empirically evaluate this framework, we report results from a
pre-registered experiment (N = 806) that uses 30 distinct graph-
structured tasks sampled from 1,676 graphs, the subset of the
11,117 graphs that are compatible with our experimental design.

We have also mentioned this with similar language when describing the
experiment in An Empirical Test of the Framework.

(4) In which way was the multiple-choice survey question at the
end of the experiment used? Did it serve as an exclusion crite-
rion? It would be beneficial to rule out the potentially confounding
effects of participants using drawings or pictures of the graph and
re-run the behavioral analyses only including subjects who did in-
deed adhere to the protocol.

We thank the reviewer for drawing attention to this potential confound.
As detailed in the results, we have added a supplementary analysis predicting
subgoal choice, restricted to the subset of participants that did not draw a
map. We found results that were consistent with those in our initial submis-
sion.

Since the experiment was designed to so that only local connec-
tions were visible during navigation trials but conducted via an
online platform, in the closing survey we asked participants if
they used a reference to the task structure besides the interface
(“Did you draw or take a picture of the map? If you did, how
often did you look at it?”). Participant responses were as fol-
lows: 603 participants selected “Did not draw/take picture”, 65
selected “Rarely looked”, 90 selected “Sometimes looked”, and
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48 selected “Often looked”. In order to ensure the above results
were not impacted, we ran the same analysis in the subset of par-
ticipants (N = 603) that selected “Did not draw/take picture”
and found qualitatively similar results (in Appendix).

The below figure was included to support these results.

0 500 1000 1500 2000
LL

RRTD-IDDFS
RRTD-BFS
RRTD-RW

Solway et al. (2014)
Tomov et al. (2020)

QCut
Degree Cent. (log)

Betweenness Cent. (log)
State Occupancy (log)

Random Choice

Explicit Probe

0 500 1000 1500
LL

RRTD-IDDFS
RRTD-BFS
RRTD-RW

Solway et al. (2014)
Tomov et al. (2020)

QCut
Degree Cent. (log)

Betweenness Cent. (log)
State Occupancy (log)

Random Choice

Implicit Probe

0 20 40 60 80 100 120
LL

RRTD-IDDFS
RRTD-BFS
RRTD-RW

Solway et al. (2014)
Tomov et al. (2020)

QCut
Degree Cent. (log)

Betweenness Cent. (log)
State Occupancy (log)

Random Choice

Teleportation Question

Caption: Comparison of probe choice behavior in the subset of
participants (N = 603) that reported not using an additional
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visual aid during the experiment. Analysis is otherwise identical
as that in main text, using mixed-effects multinomial regression
to predict subgoal choice behavior for each subgoal probe. Log
likelihood (LL) is relative to the minimum model LL for each
probe. Larger values indicate better predictivity.

(5) The explanations of the toy example task decomposition in
the figure caption of Fig. 1 (c-e, page 3) are a bit unclear without
reading the section describing how the task was set up in the main
manuscript (only at page 6). Please expand the figure caption
such that this becomes clearer without having to refer to the main
text.

Based on this comment, we have split the figure so that the toy example
is closer to the text where it is referenced. We have also added additional
context to the figure, in the hopes that it will be easier to understand without
needing to reference the text. For the purpose of the example in this reviewer
response, we only include the search costs for IDDFS.

Caption: State-specific search costs of the algorithms. The de-
picted task requires navigating on a grid from the start state
(green) to the goal state (orange) with fewest steps. Each col-
umn corresponds to a different algorithm and demonstrates two
scenarios—Top: Search cost without subgoals, Bottom: Search
cost when using the path midpoint as a subgoal (blue). We de-
fine the search cost as the number of iterations required for the
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search algorithm to find a solution. Larger states were consid-
ered more often during the search algorithm, resulting in greater
search cost.

(6) Page 12, lines 354-355: I do not understand the pre-registered
exclusion criterion of “no more than 175% of the optimal number
of actions”. Is this a typo?

We have rewritten this exclusion criteria to emphasize that we are elimi-
nating participants with inefficient behavior:

Of the 952 participants that completed the experiment, 806 (85%)
satisfied the pre-registered exclusion criteria requiring efficient
performance on the navigation trials. If a participant took 75%
more actions than the optimal path (averaged across the last half
of “long trials”), their data was excluded.

(7) Page 13, line 403: The last sentence before Figure 5 seems to
overstate the behavioral findings. I do not think that the presented
analyses (of internal consistency) are sufficient to establish valid-
ity of the construct (from a test theoretic perspective) – internal
consistency is a metric of reliability. Please rephrase this.

We thank the reviewer for this feedback, and agree that the language
used to conclude this section should be more precise to ensure it accurately
reflects the results:

In sum, these results suggest the subgoal probes are well-correlated,
though to a lesser degree for the Teleportation Question. They
also suggest a strong connection between the probes and planning
behavior.
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(8) Figure 3: Why are there relatively low correlations between
RRTD-RW and Q-Cut model predictions, if one is a heuristic
approximation of a random walk, while correlations e.g. between
RRTD-IDDFS and betweenness centrality are much higher. Was
another than rank-one approximation used?

We thank the reviewer for the careful reading of these analyses. In the
appendix, we included a discussion about the relationship between QCut
and RRTD-RW at varying degrees of approximation. In brief, increasing the
rank of the approximation is sufficient to decrease the correlation between
QCut and RRTD-RW. In this updated version of the manuscript, we have
added an explicit note for the case where the simulations should have perfect
alignment with our formal analysis—in particular, rank-one RRTD-RW has
perfect correlation with QCut for regular graphs:

Our formal analysis makes a stronger prediction for the case of
regular graphs—in particular, QCut should be completely cor-
related with a rank-one approximation of RRTD-RW. When re-
stricting attention to regular graphs, we find that QCut and rank-
one RRTD-RW have a correlation of one, aligning with the formal
analysis.

In the course of verifying this quantity, we further clarified how the low-
rank approximation is computed in the Appendix. In addition, we found
a discrepancy with the figure relating varying degrees of approximation of
RRTD-RW to QCut and Degree Centrality. In the original submission, an
incorrect task distribution was used. Only the left panel of this figure was
impacted and has been updated to use the correct task distribution in the
updated manuscript. While there are small quantitative changes, the results
are still consistent with the reported qualitative results, where QCut is most
related to RRTD-RW for a rank 1 approximation, but for larger ranks, Degree
Centrality is more related to RRTD-RW. Notably, the correlations for full-
rank RRTD-RW are now the same quantities reported in the correlation
analysis between models. We apologize for this error. The updated figure
and original caption are below.
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Caption: Correlation of two models (QCut in blue and Degree
Centrality in orange) plotted as a function of rank of a spectral
approximation to RRTD-RW using the below formula for rank-k′

spectral approximation. Correlations were computed as in Fig 4.

(9) The Github link to data and code used for analysis
(https://github.com/cgc/resource-rational-task-decomposition) is
currently not working, please make this important information
available.

We are deeply sorry for this error on our part. In our initial submission, we
attached a private link (https://anonymous.4open.science/r/resource-rational-
task-decomposition-0CED) for data and code review as a “Data Review
URL” in the “File Inventory”. Since we only intended this private link
to be accessible during review, we had links in the text point to the link
where the code would eventually be publicly accessible. In order to avoid
any further confusion in the review process, the code is publicly accessi-
ble at https://github.com/cgc/resource-rational-task-decomposition and all
links in the text have been updated.
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Reviewer 3

We are very grateful to the reviewer for carefully reading of our manuscript
and providing helpful comments and perspectives. Based on this feedback,
we have added additional discussion and analyses, which we hope will serve
to address the reviewer’s concerns.

Below, the reviewer’s original comments are in italics and our responses
proceed in non-italics. Quotes from the updated manuscript are in blue.

In summary, my view is that this is a well-executed study which
makes a significant contribution to the literature on human plan-
ning. In particular, the authors are to be commended on their
efforts to integrate a variety of hitherto disparate studies within a
unified perspective under the framework of resource-rational DM.
Furthermore, a more detailed analysis of the hierarchy/bottleneck
problem is presented based on the most comprehensive experiment
on this topic to date. However, there are a couple of important
gaps in the data analysis approach in my view.

Regarding the data analysis and model comparisons. The authors
emphasize the algorithm-based approach in contrast to the struc-
ture inference approach. I agree with this perspective and find it
interesting however it seems to me that this suggests an investi-
gation into what planning algorithm is being used by the partici-
pants. To put it bluntly, what is the utility of considering a model
such as RRTD-IDDFS to predict subgoals if the participants are
not using IDDFS to plan? I wonder if the authors could at least
provide some perspectives on this if not actually run some model
fits/comparisons on choices during the navigation trials.

We appreciate the reviewer’s directness about this issue. It is an issue
that we discussed while initially writing the manuscript, so we do think that
it is particularly important.

We think that the present experimental design makes it difficult to iden-
tify signatures of search algorithms. Our experiment is not designed for
process tracing, so the data from our experiment can not be explicitly com-
pared to the computations in a search algorithm. In addition, our experience
is that the probabilities that optimal search algorithms (like BFS or IDDFS)
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assign to paths tend to vary with extreme subtlety. For that reason, we also
think it would be difficult to compare choices among paths to those predicted
by different search algorithms. We have incorporated mention of these issues
when discussing experimental limitations in the Discussion:

A third limitation is that the navigation trials provide limited
insight into the algorithms people are using to plan. While par-
ticipants only see local connections during navigation, analogous
to the local visibility search algorithms have, there are a num-
ber of reasons why their navigation behavior would be difficult to
relate to the choice of search algorithm. The main issue is that
planning steps are generally covert, and do not correspond in any
simple way with steps of overt behavior given by the plan that is
ultimately produced. Such covert planning is better suited, in fu-
ture work, to being studied through process-tracing experiments
[Callaway et al., 2022, Ho et al., 2022], think-aloud protocols, or
by investigating neural signatures related to planning and learn-
ing [Liu et al., 2021]. It is possible that some aspects of plan-
ning are externalized in the current experiment, via exploration
on navigation trials, but this is at best incomplete. For instance,
participant behavior improves over the course of navigation trials,
suggesting they are performing mental search instead of search via
navigation. Also, the experiment restricts single-step movement
to neighboring states, whereas by contrast, algorithms like BFS
might plan over states in an order where subsequent states are
not neighbors. Identifying the search algorithm participants use
is critical for future studies, since our framework predicts that
task decomposition is driven by the search algorithm used.

We do feel that this issue is critical, and hope that our findings can justify
further study of the search algorithms people use. We note in the Discussion
that we hope future research may shed light on these issues through process-
tracing paradigms or neuroscientific methods.

Related to this, it seems that an immediate computational hypoth-
esis emerging from the normative framework studied here (and
the principle of subgoaling more generally) regards the modula-
tion of reaction times. That is, given a task decomposition, then
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subtask-level planning should occur at a subgoal specifically and
this should be reflected in reaction times. More generally, reac-
tion times can be an important behavioural indicator of internal
computation and I think it should be somehow addressed in this
study.

We thank the reviewer for suggesting this, since our initial submission had
little analysis of participant response times. We have developed an additional
analysis to address this issue, which has been added to the appendix in Pre-
dicting navigation response times. In the analysis, we find that participant
response times are slower at their self-reported subgoals when examining
navigation trials that can be matched to probe trials. We also perform a
separate analysis using subgoal predictions from the various theories to pre-
dict response times during navigation. We find affirmative evidence that is
largely consistent with results in the remainder of the manuscript.

We first examined how participant response times vary during
navigation, focusing on the difference between response times at
self-reported subgoals and other states. For simplicity, we exam-
ine navigation trials with optimal behavior and an associated Ex-
plicit Probe trial where participants reported a subgoal that they
also visited during navigation. First, we found that participants
respond most slowly at the initial state (M = 5.36s, SD = 7.58),
when compared to their responses at their self-reported subgoals
(M = 2.00s, SD = 1.38; t(789.8) = 11.9, p < .001) or other
states (M = 1.70s, SD = 1.12; t(773.4) = 13.0, p < .001). We
also found that participants respond more slowly at their self-
reported subgoal than at other states (t(1423.9) = 4.6, p < .001).
We found similar results for the Implicit Probe trials. These find-
ings could indicate that participants defer making detailed plans
until they are necessary—that is, after reaching a subgoal, par-
ticipants figure out how to reach the subsequent subgoal or goal.

Based on this result, we used model predictions for subgoals to
predict response times during navigation. We analyzed every
state choice during long navigation trials where participants took
an optimal path. In order to focus on response times at sub-
goals compared to other states, we excluded the initial state to
avoid any effect from initial planning. We found results that were
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largely qualitatively consistent with those observed elsewhere in
the study (Figure inline and Table in manuscript):

0 20 40 60 80 100 120
LL

RRTD-IDDFS
RRTD-BFS
RRTD-RW

Solway et al. (2014)
Tomov et al. (2020)

QCut
Degree Cent. (log)

Betweenness Cent. (log)

Caption: Predicting navigation response times using
hierarchical linear regression. Log likelihood (LL) is
relative to the minimum model LL. Larger values indi-
cate better predictivity.

The models that fit the observed data best included Betweenness
Centrality and RRTD-IDDFS. Most models had positive coeffi-
cients, consistent with the idea that response times should be
higher at states that are more likely to be subgoals. However,
two other models also fit the data well: Degree Centrality and
QCut. The efficacy of Degree Centrality as a predictor suggests
that people simply take longer to act at states that have greater
degree (i.e. states that have more edges). The efficacy of QCut
is more difficult to interpret in the context of our other results,
particularly since it has a negative coefficient and is the best fit
to the data.

Hierarchical linear regression analyses were fit using lme4 and
predicted the logarithm of participant response times in seconds.
The regression models included an intercept and slope for sub-
goal predictions as effects at three levels: fixed effects, random
effects for each graph, and random effects for each participant. In
addition, they included a fixed effect of the trial number, in order
to fit differences resulting from learning over the course of trials.
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Because the regression models have identical effect structure, we
compare them by log likelihood (LL).

We do note that these were posthoc analyses and the experiment was not
designed to assess response times in the Discussion:

Second, though we report analyses of participant response times,
these analyses were not pre-registered and our experiment was
not designed to assess response times. These findings should
be reevaluated in experimental designs appropriate to assess re-
sponse times. For example, we found that participants were
slower to respond at their subgoals, suggesting they were plan-
ning at those states. However, our normative framework makes
no prediction about when planning occurs. The framework only
defines a resource-rational value for subgoals that can be used to
simplify planning whether it happens before action or after reach-
ing a subgoal. Future experiments could investigate this further
through manipulations to influence when planning is employed,
like a timed phase for up-front planning or incentive for fast plan
execution.

I think the authors could tune their introduction to the literature
a bit better. For example, on the critical idea of relating task de-
compositions to planning (rather than structure inference), it is
said that “. . . our framework differs from many existing accounts
because we directly incorporate planning costs into the criteria
used to choose a task decomposition.” I think it should be ac-
knowledged that this idea is not fundamentally new and existing
accounts have already considered planning costs in task decom-
positions computationally e.g. Jinnai et al 2019 (in RL) and
McNamee et al 2016 (regarding human planning) (both cited here
but there may be others). In particular, the latter considers a
random walk search policy and points to log(degree centrality) as
a key variable in determining decompositions/subgoals consistent
with the modelling results here (see Fig 3 RRTD-RW vs degree
centrality (log)). I think the specific computational novelty here
is the integrative framework (which generates new results).
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We thank reviewer for this feedback, and agree that more explicit coverage
of the relationship between our framework and previous research is necessary.
In the Introduction, we introduce the model as a direct extension of previous
accounts that account for planning costs when choosing task decompositions:

Instead, our formal framework extends research that performs
task decomposition based on algorithm-specific planning costs—
some algorithms previously studied are value iteration [Jinnai et
al. 2019], random walk search [McNamee et al. 2016], and ran-
dom sampling of optimal behavior [Solway et al. 2014]. General-
izing beyond a fixed algorithm, our framework explicitly considers
how planning efficiency shapes hierarchical representations, which
we use to demonstrate how resource-rational task decompositions
change with varied search algorithms.

In addition, in Comparing Accounts of Task Decomposition we have made
sure to reference the result from McNamee et al. 2016 that was noted by
the reviewer. We are particularly grateful to the reviewer for letting us know
about this connection.

This relationship between RRTD-RW and Degree Centrality is
qualitatively consistent with a published result that relates De-
gree Centrality to the task decomposition that minimizes a search
cost related to RW [McNamee et al. 2016].

Minor comment:

Can authors speculate on the low consistency of teleportation
probe? As I understand it, this measure is taken once per subject
at the end of the experiment thus I would intuitively expect this
measure of subgoals to be stable as opposed to the other measures
which may be varying throughout the experiment.

We thank the reviewer for calling our attention to this issue. We think
that the relatively low consistency of a teleportation probe directly results
from the smaller number of samples (one) that it has, compared to the rel-
atively large number of samples of the other probes (10). This makes it
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difficult to compare the self-consistency of these different probe types. In
order to avoid an invalid interpretation, we explicitly describe this issue in
the text:

While the Teleportation Question exhibits relatively low self-
consistency and cross-probe consistency, it is difficult to compare
to the consistency of the other probes since both the Explicit and
Implicit probes were sampled for 10 different tasks per partici-
pant, while the Teleportation Question was only sampled once
per participant.
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