Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice

Persaud et al.

# Supplementary Information

Supplementary Figures 1-7 Supplementary Tables 1-5

Supplementary Figure 1



Supplementary Figure 1. Characterization of CNT1-null mice for blood and urinary parameters. (A) Relative gene expression in Slc28a1-/- mouse organs normalized to GAPDH and  $Slc28a1^{+/+}$  control displayed as a percent change (2- $\Delta\Delta$ Ct). Data represent mean ± SEM (n=3 mice/group mean ± SEM, \*p < 0.05 by two-tailed t-test). (B) Red blood cell and platelet parameters, including HCT (hematocrit; %), RBC (red blood cell count; 106/uL), HB (hemoglobin; g/dL), MCV (mean cell volume; fL), MCH (mean corpuscular hemoglobin; pg), MCHC (mean cell hemoglobin; pg), RDW (red cell distribution width; %), RSD (red cell (erythrocyte) standard deviation), RETIC%# (reticulocyte number; 10<sup>9</sup>/L), RETIC# (reticulocyte %; 10<sup>9</sup>/L), MVP (mean platelet volume; fL), PDW (platelet distribution width; %), PCT (plateletcrit; ug/L), and PLT (platelet count; 10<sup>9</sup>/L) were identified in 12-weekold  $Slc28a1^{-/-}$  (black) and  $Slc28a1^{+/+}$  (red) mice. Data represent mean ± SEM (n=13 mice/group mean  $\pm$  SEM, \*p < 0.05 by two-tailed t-test). (C) White blood cell count, including neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts, were identified in 12-week-old Slc28a1-/- (black) and  $Slc28a1^{+/+}$  (*red*) mice (n = 13, mean ± SEM). Data represent mean ± SEM (n=13 mice/group mean ± SEM). (D) Clinical chemistry results, including ALB (albumin; g/dL), ALP (alkaline phosphatase; U/L), ALT (alanine transaminase; U/L), AMYL (amylase; U/L), AST (aspartate aminotransferase; U/L), BUN (blood urea nitrogen; mg/dL) BUNCRE (blood urea nitrogen:creatinine), CA (calcium;mg/dL), CHOL (cholesterol; mg/dL), CK (creatine kinase, U/L), CL (chloride; mmol/L), CREAT (creatinine; umol/L) were identified in 12-week-old  $Slc28a1^{-/-}$  (red) and  $Slc28a1^{+/+}$  (black) mice. Data represent mean  $\pm$  SEM (n=3 mice/group mean  $\pm$  SEM, \*p < 0.05 by twotailed t-test). (E) Albumin bands (~66 kDa) shown on representative urine samples resolved on a gel. Equal volumes of urine (5 µl) were resolved on SDS-PAGE from female and male *Slc28a1*<sup>-/-</sup> and *Slc28a1*<sup>+/+</sup> mice and stained (n=6 mice (3 males and 3 females)/group). BSA (bovine serum albumin) was resolved on the same gel at specified amounts to generate a standard curve to determine albumin concentration from  $Slc28a1^{+/-}$  and  $Slc28a1^{+/+}$  mice (F) Urinary creatinine was measured using the Diazyme creatinine assay and the data represent mean  $\pm$  SEM (n=8 *Slc28a1*<sup>-/-</sup> mice; n=11 *Slc28a1*<sup>+/+</sup> mice/group, \*p < 0.05 by two-tailed t-test) (G) Urinary Albumin/Creatinine ratio was determined and plotted. Data represent mean  $\pm$  SEM (n= n=8 Slc28a1<sup>-/-</sup> mice; n=11 *Slc28a1*<sup>+/+</sup> mice/group, \*p < 0.05 by two-tailed t-test)

# Supplementary Figure 2



Α

Supplementary Figure 2: Analyte chromatograms and standard curves from targeted LC-MC/MS analysis of *Slc28a1<sup>-/-</sup>*mice urine. (A) LC chromatographs and standard curves for cytosine and cytosine derivatives.
(B) LC chromatographs and standard curves for uracil and uracil derivatives.
(C) LC chromatographs and standard curves for thymine and thymine derivatives. (D) LC chromatographs and standard curves for adenine and adenine derivatives. (E) LC chromatographs and standard curves for adenine and adenine derivatives.



Supplementary Figure 3. Untargeted metabolomics normalization of *Slc28a1-/- and Slc28a1+/+* mouse urine. Untargeted metabolomics normalization of  $Slc28a1^{+/+}$  and  $Slc28a1^{+/+}$  mouse urine. (A) Box plots and kernel density plots after normalization. The boxplots show median, minima and maxima for at most 50 features due to space limit. The density plots are based on all samples. Selected methods: Row-wise normalization: N/A; Data transformation: N/A; Data scaling: Autoscaling. Analysis of differentially produced metabolites in  $Slc28a1^{-/-}$  urine (n=6). Data are presented as mean values +/- SD. (B) Projection to latent structurediscriminant analysis (PLS-DA) score plot constructed based on metabolic profiles of *Slc28a1*<sup>+/+</sup> and *Slc28a1*<sup>-/-</sup> urine samples (black, *Slc28a1*<sup>+/+</sup>; red,  $Slc28a1^{-/-}$ ) (n = 6). (C) Volcano plots showing metabolite profiles of  $Slc28a1^{+/+}$  compared with  $Slc28a1^{-/-}$  urine samples. Dotted lines along x axis represent  $\pm \log 2(2)$  fold change and dotted line along y axis represents -log10(0.1). p-values derived from two-sided t-test. pink, differential metabolites; grey, other metabolites.



c

28

0

Normalized and Scaled Intensity

**Supplementary Figure 4. Untargeted metabolomics normalization of** *Slc28a1*-/- and *Slc28a1*+/+ mouse plasma. Box plots and kernel density plots after normalization. (**A**) The boxplots show median, minima and maxima for at most 50 features due to space limit. The density plots are based on all samples. Selected methods: Data scaling: Autoscaling. Analysis of differentially produced metabolites in *Slc28a1*-/- plasma (n=6). Data are presented as mean values +/- SD. (**B**) Projection to latent structure-discriminant analysis (PLS-DA) score plot constructed based on metabolic profiles of *Slc28a1*+/+ and *Slc28a1*-/- plasma samples (black, *Slc28a1*+/+; red, *Slc28a1*-/-) (n =6). (**C**) Volcano plots showing metabolite profiles of *Slc28a1*+/+ compared with *Slc28a1*-/- plasma samples. Dotted lines along x axis represent ± log2(2) fold change and dotted line along y axis represents –log10(0.1). p-values derived from two-sided t-test. pink, differential metabolites; grey, other metabolites.



Supplementary Figure 5. Untargeted metabolomics analysis and metabolite pathway analysis of  $Slc28a1^{-/-}$  mice plasma. (A) Heatmap illustrating hierarchical clustering of differential features (*left*) and the average abundances (right) for nucleoside derived metabolites detected across 5 *Slc28a1*<sup>+/+</sup> and 6 *Slc28a1*<sup>-/-</sup> mice plasma samples run in triplicate by mass spectrometry-based metabolomics. Data represent mean  $ng/ml \pm SEM$ (n=12 mice/group mean  $\pm$  SEM, \*p < 0.05 (Progenesis ANOVA Scores). MS signal intensities for all heatmaps were clustered in two dimensions based on Euclidean distance (row, metabolites; column, samples). Colors indicate the metabolite abundances (*red*, high; *blue*, low). For identified metabolites, increased (red) or decreased (blue) fold change in Slc28a1-/and corresponding p-value (black) indicated. (B) VIP (Variable Importance in Projection) Scores for annotated nucleoside derived features in partial Least Squares-discriminant Analysis (PLS-DA), (C) Correlation heatmap illustrating the overall correlation between different features. (**D**) Network visualization of the purine and pyrimidine metabolite networks with altered purine metabolites highlighted red and altered pyrimidine metabolites highlighted in blue for urine metabolomics data using Fisher's method of MS Peaks-to-Paths analysis, (E) the Mummichog and GSEA pathway Metaanalysis for MS Peaks to Paths combining the separate algorithms' p-values (\*p < 0.05 by one-tailed hypergeometric test), and (F) Quantitative enrichment analysis using the concentration table of the final annotated list of features for the untargeted differential analysis for Slc28a1-/- vs Slc28a1-/mice urine using the HMDB codes for each feature and the KEGG library (\*p < 0.05 by two-tailed Welch's t test).

# Supplementary Figure 6



в







#### Gemcitabine Triphosphate (dFdC-TP)







Supplementary Figure 6: Analyte chromatograms and standard curves for gemcitabine, <sup>13</sup>C,<sup>15</sup>N-gemcitabine and gemcitabine triphosphate LC-MC/MS analysis of *Slc28a1<sup>-/-</sup>* mouse plasma and urine. (A) LC chromatographs and standard curves for gemcitabine. (B) LC chromatographs and standard curves for <sup>13</sup>C,<sup>15</sup>N-gemcitabine. C) LC chromatographs and standard curves for gemcitabine triphosphate.

#### 2',2'-Difluorodeoxyuridine (dFdU)



В

#### 5'-Deoxy-5'-fluorouridine (dFdU-IS/dFUR)



Α

Supplementary Figure 7: Analyte chromatograms and standard curves for difluorodeoxyuridine (dFdU) and 2',2'-difluorodeoxyuridine LC-MC/MS analysis of *Slc28a1-'-* mouse plasma and urine. (A) LC chromatographs and standard curves for 2',2'-difluorodeoxyuridine (dFdU). (**B**) LC chromatographs and standard curves for 5'-deoxy-5'fluorouridine (dFdU-IS/dFUR).

| Sequence             | PAM | Score       | Gene               | Chromosome | Strand | Position  | Mismatches | On-target |
|----------------------|-----|-------------|--------------------|------------|--------|-----------|------------|-----------|
| CAGCTGAAGAGCCTAGCACA | TGG | 100         | ENSMUSG0000025726  | chr7       | 1      | 81115537  | 0          | TRUE      |
| AAACTGAAAAGCCTAGCACA | TGG | 1.726466667 |                    | chr12      | -1     | 24845404  | 3          | FALSE     |
| CAACTGAAGTGCCTAGCACC | TGG | 1.609602648 |                    | chr16      | -1     | 44103759  | 3          | FALSE     |
| GAGCTGACGAGCCTAGCAGA | TGG | 1.414893617 |                    | chr18      | 1      | 60631609  | 3          | FALSE     |
| CATCTGCACAGCCTAGCACA | GGG | 1.099569865 |                    | chr5       | 1      | 147629355 | 3          | FALSE     |
| CAGATGGAGATCCTAGCACA | GGG | 1.048360262 |                    | chr4       | -1     | 14813088  | 3          | FALSE     |
| CCACTGTTGAGCCTAGCACA | AAG | 0.99548667  |                    | chr13      | 1      | 34767268  | 4          | FALSE     |
| TAAATGCAGAGCCTAGCACA | CAG | 0.971304808 |                    | chr18      | -1     | 82105271  | 4          | FALSE     |
| CACATGGTGAGCCTAGCACA | TAG | 0.963503163 |                    | chr8       | -1     | 51318787  | 4          | FALSE     |
| CAGCAGAAGATCCTAGCACC | TAG | 0.888336364 |                    | chr13      | -1     | 34774121  | 3          | FALSE     |
| CAACCGAAGAGCCTTGCACA | CAG | 0.885487125 |                    | chr13      | 1      | 33355321  | 3          | FALSE     |
| CAACCGAAGAGCCTTGCACA | CAG | 0.885487125 |                    | chr13      | 1      | 33280691  | 3          | FALSE     |
| CTACTGAGGATCCTAGCACA | CGG | 0.882129808 | ENSMUSG0000040433  | chr9       | -1     | 96747360  | 4          | FALSE     |
| CAGCTCAATGGCCTAGCACA | CAG | 0.852252022 |                    | chrX       | -1     | 78584018  | 3          | FALSE     |
| CAGGCTAGGAGCCTAGCACA | GAG | 0.832166988 |                    | chr6       | 1      | 31011924  | 4          | FALSE     |
| CTTCTGAAGTGCCTAGCACT | AAG | 0.827636945 |                    | chr14      | 1      | 71249230  | 4          | FALSE     |
| AAGGGGAAGAGGCTAGCACA | CAG | 0.807718894 |                    | chr11      | 1      | 75595817  | 4          | FALSE     |
| TCGCTGAAGTGTCTAGCACA | GAG | 0.795213177 | ENSMUSG0000036768  | chr9       | 1      | 122988005 | 4          | FALSE     |
| CAGCTGCAGAGCCCAGCACA | TGG | 0.721482463 |                    | chr4       | 1      | 126025882 | 2          | FALSE     |
| AACCTGAAGGGCCTAGGACA | GGG | 0.711728078 | ENSMUSG00000015599 | chr17      | 1      | 46442935  | 4          | FALSE     |
| GGGCAGAAGAGCCTAGCAGA | GAG | 0.65625     |                    | chr1       | 1      | 43061706  | 4          | FALSE     |
| TAGATGGAAAGCCTAGCACA | CAG | 0.64358336  |                    | chrX       | -1     | 139613110 | 4          | FALSE     |
| AGGCTGCAGAGCCTAGCACT | CGG | 0.630210675 |                    | chr4       | -1     | 152449818 | 4          | FALSE     |
| CCGATGAAGAGCCTACCACA | GAG | 0.629672447 | ENSMUSG0000068923  | chr3       | 1      | 88746906  | 3          | FALSE     |
| CAGCTCCACAGCCTAGCACA | AGG | 0.61264533  |                    | chr1       | 1      | 57628904  | 3          | FALSE     |
| CAGCTGCAAAGCCTAGCACC | AGG | 0.608908085 |                    | chr13      | -1     | 34251453  | 3          | FALSE     |
| AAGTTTGAGAGCCTAGCACA | GGG | 0.600848342 |                    | chr15      | -1     | 28691321  | 4          | FALSE     |
| TAGCAACAGAGCCTAGCACA | GGG | 0.595983173 |                    | chr14      | -1     | 66932363  | 4          | FALSE     |
| GAGCTTAGCAGCCTAGCACA | GAG | 0.565191389 |                    | chr4       | -1     | 62258767  | 4          | FALSE     |
| CACCAAGAGAGCCTAGCACA | GGG | 0.560412872 |                    | chr10      | 1      | 70066802  | 4          | FALSE     |
| CAGGGAGAGAGCCTAGCACA | AGG | 0.555501297 |                    | chr1       | 1      | 38185290  | 4          | FALSE     |
| CATGTGCAGAGGCTAGCACA | CAG | 0.524608202 |                    | chr17      | 1      | 24919308  | 4          | FALSE     |
| CAGTTGAAGAGCATAGAACA | AGG | 0.521345304 | ENSMUSG0000092473  | chr7       | -1     | 23953311  | 3          | FALSE     |
| CTGCTGAAGAGCATAGCAGA | GAG | 0.51816443  |                    | chr7       | 1      | 134264785 | 3          | FALSE     |
| CAACTGGGGAGGCTAGCACA | CAG | 0.51544474  |                    | chr8       | -1     | 118422678 | 4          | FALSE     |
| CAACTGGCGAGACTAGCACA | GGG | 0.51544474  |                    | chr2       | 1      | 74464646  | 4          | FALSE     |
| GAACTGAAGAGCCAAGCACA | GAG | 0.51406372  |                    | chr6       | 1      | 137957805 | 3          | FALSE     |
| AGGCTGAGGAGCCTTGCACA | CAG | 0.50515873  |                    | chr17      | -1     | 31434602  | 4          | FALSE     |
| GAGCTTAAGAGCCTAGCTCA | AGG | 0.50403132  |                    | chr15      | -1     | 80779446  | 3          | FALSE     |
| CCGCTGGAGGGGCTAGCACA | TGG | 0.503449826 | ENSMUSG00000049800 | chr11      | -1     | 20650425  | 4          | FALSE     |
| CAGCACAAGAGCCTTGCACA | CAG | 0.500920325 |                    | chr16      | -1     | 5850168   | 3          | FALSE     |
| TAGATGATGAGCCTGGCACA | GAG | 0.494689119 |                    | chr8       | 1      | 104097301 | 4          | FALSE     |
| CTGCTTAAGCACCTAGCACA | GAG | 0.494035319 |                    | chr19      | 1      | 40275506  | 4          | FALSE     |
| TAGCGGAGGAGCCTGGCACA | GAG | 0 489615385 |                    | chr10      | -1     | 41392477  | 4          | FALSE     |
| CAGCCAAGGATCCTAGCACA | TGG | 0 48824426  |                    | chr14      | 1      | 80825040  | 4          | FALSE     |
| ATGATGAAGAGCCTGGCACA | GAG | 0.48464467  |                    | chr2       | -1     | 5140429   | 4          | FALSE     |
| TCGCTGAAGAATCTAGCACA | CAG | 0.483968284 |                    | chr1       | 1      | 57825352  | 4          | FALSE     |
| AAAGTGAAGAGCCTGGCACA | TAG | 0.473057035 |                    | chr4       | -1     | 11673606  | 4          | FALSE     |
| GACCTGAAGATTCTAGCACA | CAG | 0 472491321 |                    | chr14      | 1      | 113695173 | 4          | FALSE     |
| CCAGTGAAGAGCCTTGCACA | GAG | 0.459211463 |                    | chr13      | 1      | 107721060 | 4          | FALSE     |

**Supplementary Table 1**. Off-target effect summary for *Slc28a1* knockout mice generation. \*Table displays gRNA sequence parameters used for CRISPR/Cas9 genome editing of *Slc28a1*.

| Accepted Description                                                    | t.stat | p.value | minusLOG10(p) | FDR   | Fold Change | log2(FC) | Frag. Score | Mass Error (ppm) | Isotope Similarity |
|-------------------------------------------------------------------------|--------|---------|---------------|-------|-------------|----------|-------------|------------------|--------------------|
| N-Acetyl-S-allylcysteine                                                | -30.8  | 8E-25   | 24.1          | 2E-22 | 3E-02       | -5.1     | 41.6        | 5.0              | 92.6               |
| hydroxyvalerylglycine                                                   | -25.5  | 2E-22   | 21.6          | 3E-20 | 1E-01       | -2.8     | 41.6        | 5.2              | 95.6               |
| Glutamylmethionine                                                      | -24.9  | 5E-22   | 21.3          | 4E-20 | 2E-02       | -5.8     | 29.0        | 2.8              | 92.0               |
| 1-hydroxyhexanoylglycine                                                | -23.7  | 2E-21   | 20.7          | 1E-19 | 2E-01       | -2.4     | 42.6        | 4.1              | 93.7               |
| Indole-3-acetic-acid-O-glucuronide                                      | -22.3  | 1E-20   | 19.9          | 5E-19 | 3E-01       | -1.7     | 62.3        | 2.4              | 94.0               |
| 2-Aminoheptanedioic acid                                                | -22.3  | 1E-20   | 19.9          | 5E-19 | 3E-01       | -1.8     | 58.6        | 4.9              | 96.5               |
| Acetylcysteine                                                          | -20.1  | 2E-19   | 18.6          | 7E-18 | 2E-01       | -2.2     | 22.3        | 4.9              | 91.0               |
| 2,4-Pentadienal                                                         | -20.0  | 3E-19   | 18.5          | 7E-18 | 4E-01       | -1.3     | 25.8        | 9.8              | 98.8               |
| Butane-1,1-diamine                                                      | -19.7  | 4E-19   | 18.4          | 9E-18 | 3E-01       | -1.9     | 34.6        | 8.0              | 96.5               |
| Thiazole, 4,5-dihydro-2,4,4-trimethyl-                                  | -18.7  | 2E-18   | 17.7          | 4E-17 | 3E-04       | -11.6    | 50.0        | 6.5              | 93.9               |
| (8Z)-3-Hydroxydodec-8-enoylcarnitine                                    | 18.6   | 2E-18   | 17.7          | 4E-17 | 4E+00       | 2.2      | 73.2        | 8.9              | 93.7               |
| Tiglylglycine                                                           | -18.5  | 3E-18   | 17.6          | 5E-17 | 4E-01       | -1.4     | 36.7        | 7.3              | 97.8               |
| 2-Aminohippuric acid                                                    | -18.3  | 4E-18   | 17.4          | 6E-17 | 5E-01       | -1.1     | 67.0        | 6.7              | 96.9               |
| 2-hydroxyhexanoylglycine                                                | -17.4  | 1E-17   | 16.8          | 2E-16 | 4E-01       | -1.2     | 42.4        | 4.7              | 96.4               |
| 4-hydroxyhexanoylglycine                                                | -17.4  | 2E-17   | 16.8          | 2E-16 | 3E-01       | -1.6     | 33.0        | 5.2              | 96.6               |
| N-Acetyl-S-(3-hydroxypropyl)cysteine                                    | -17.3  | 2E-17   | 16.8          | 2E-16 | 4E-01       | -1.5     | 62.2        | 4.0              | 92.0               |
| 3-Hydroxybutyrylcarnitine                                               | -17.1  | 3E-17   | 16.6          | 3E-16 | 2E-02       | -6.0     | 38.7        | 3.0              | 93.3               |
| 5-Acetamidovalerate                                                     | 16.8   | 4E-17   | 16.4          | 5E-16 | 3E+00       | 1.7      | 54.8        | 5.8              | 99.1               |
| N-Acetyl-DL-homocysteine                                                | -16.4  | 8E-17   | 16.1          | 9E-16 | 1E-01       | -2.9     | 41.8        | 6.0              | 94.4               |
| 2-Piperidinone                                                          | 16.3   | 1E-16   | 16.0          | 1E-15 | 3E+00       | 1.5      | 30.8        | 8.6              | 98.1               |
| (Z)-1,3-Octadiene                                                       | -14.6  | 2E-15   | 14.7          | 2E-14 | 3E-01       | -2.0     | 49.2        | 8.0              | 97.9               |
| L-Proline                                                               | -14.6  | 2E-15   | 14.7          | 2E-14 | 6E-01       | -0.7     | 41.5        | 6.8              | 96.6               |
| 5-Decenoylcarnitine                                                     | 14.2   | 4E-15   | 14.4          | 4E-14 | 7E+00       | 2.8      | 73.3        | 6.6              | 94.7               |
| 2-Fluoro-2',3'-dideoxyadenosine                                         | -14.1  | 5E-15   | 14.3          | 4E-14 | 3E-01       | -2.0     | 44.6        | -5.7             | 97.6               |
| 3,8-Dihydroxytetradecanoylcarnitine                                     | 14.0   | 6E-15   | 14.3          | 4E-14 | 2E+02       | 7.6      | 74.6        | 7.8              | 94.0               |
| N-Acetyl-L-phenylalanine                                                | -13.6  | 1E-14   | 13.9          | 1E-13 | 4E-01       | -1.4     | 37.5        | 8.3              | 96.8               |
| L-alpha-Amino-1H-pyrrole-1-hexanoic<br>acid                             | 13.5   | 2E-14   | 13.8          | 1E-13 | 7E+01       | 6.1      | 56.2        | 4.7              | 96.3               |
| Cyclopentanone                                                          | -13.4  | 2E-14   | 13.7          | 1E-13 | 4E-01       | -1.2     | 32.9        | 9.1              | 97.6               |
| 4-Hydroxy-2,6,6-trimethyl-3-oxo-1,4-<br>cyclohexadiene-1-carboxaldehyde | 13.3   | 2E-14   | 13.6          | 2E-13 | 3E+00       | 1.7      | 59.6        | 4.2              | 96.9               |
| 2-Hydroxy-p-mentha-1,8-dien-6-one                                       | 13.3   | 2E-14   | 13.6          | 2E-13 | 3E+00       | 1.7      | 79.9        | 5.5              | 96.2               |
| Styrene                                                                 | -13.2  | 3E-14   | 13.5          | 2E-13 | 4E-01       | -1.3     | 60.5        | 7.7              | 95.0               |
| 1-Nitro-7-glutathionyl-8-hydroxy-7,8-<br>dihydronaphthalene             | -12.9  | 5E-14   | 13.3          | 3E-13 | 3E-01       | -1.8     | 66.9        | 3.4              | 92.4               |
| Estriol                                                                 | -12.9  | 5E-14   | 13.3          | 3E-13 | 3E-01       | -1.9     | 62.6        | 1.2              | 94.6               |
| Tryptophyl-Asparagine                                                   | -12.9  | 5E-14   | 13.3          | 3E-13 | 6E-02       | -4.0     | 56.6        | -1.2             | 93.3               |
| N-[(3s)-2-Oxotetrahydrofuran-3-<br>Yl]butanamide                        | -12.4  | 2E-13   | 12.8          | 9E-13 | 2E-01       | -2.5     | 31.3        | 6.2              | 97.4               |
| (3Z,5E,7E)-Decatrienoylcarnitine                                        | 12.4   | 2E-13   | 12.8          | 9E-13 | 2E+00       | 1.2      | 44.5        | 3.7              | 88.5               |
| Thioproline                                                             | -12.1  | 3E-13   | 12.6          | 1E-12 | 2E-02       | -5.8     | 25.8        | 7.0              | 95.5               |
| 3-Hydroxytetradecanoyl carnitine                                        | 12.1   | 3E-13   | 12.5          | 2E-12 | 3E+01       | 4.8      | 78.5        | 8.5              | 96.0               |
| Terbutaline                                                             | -11.8  | 5E-13   | 12.3          | 3E-12 | 3E-01       | -1.6     | 31.6        | 6.3              | 96.4               |
| Rivularine                                                              | -11.6  | 9E-13   | 12.0          | 5E-12 | 5E-02       | -4.2     | 34.3        | 6.7              | 96.3               |
| Cyclohexanone                                                           | -11.5  | 1E-12   | 12.0          | 5E-12 | 4E-01       | -1.2     | 41.8        | 8.0              | 98.2               |
| 2,3-Dimethyl-2-cyclohexen-1-one                                         | -11.4  | 1E-12   | 11.9          | 6E-12 | 9E-02       | -3.4     | 59.7        | 6.1              | 95.4               |
| Tetradeca-9,11-dienedioylcarnitine                                      | 11.2   | 2E-12   | 11.7          | 8E-12 | 9E+00       | 3.2      | 35.8        | 1.8              | 92.7               |
| Epinephrine glucuronide                                                 | -11.2  | 2E-12   | 11.7          | 9E-12 | 2E-04       | -12.3    | 61.8        | 1.7              | 94.8               |
| Prostaglandin F-main urinary metabolite                                 | 11.1   | 2E-12   | 11.6          | 1E-11 | 3E+03       | 11.5     | 74.0        | 1.7              | 96.0               |
| 3-(4-Isopropylphenyl)propanal                                           | 10.8   | 5E-12   | 11.3          | 2E-11 | 4E+00       | 2.1      | 47.0        | 4.7              | 91.6               |
| 3-Epinobilin                                                            | 10.7   | 7E-12   | 11.2          | 3E-11 | 4E+02       | 8.8      | 72.3        | 2.2              | 97.4               |
| butenoylcarnitine                                                       | -10.6  | 7E-12   | 11.1          | 3E-11 | 1E-01       | -2.8     | 23.8        | 5.9              | 98.8               |
| Glutamylisoleucine                                                      | 10.5   | 9E-12   | 11.0          | 4E-11 | 4E+00       | 2.1      | 75.5        | 1.5              | 93.8               |
| Adenosine                                                               | 10.1   | 2E-11   | 10.6          | 9E-11 | 2E+00       | 1.0      | 50.3        | 7.8              | 96.5               |

**Supplementary Table 2**: Important features identified by two-sided t-tests from the urine of *Slc28a1* mice, including the fragmentation and metabolite identification information and fold-changes (*Slc28a1*-/- / *Slc28a1*+/+) \*FDR: False Discovery Rate

| Accepted Description                                   | t.stat | p.value | minusLOG10(p) | FDR     | Fold Change | log2(FC) | Score        | Frag. Score  | Mass Error (ppm) | Isotope Similarity |
|--------------------------------------------------------|--------|---------|---------------|---------|-------------|----------|--------------|--------------|------------------|--------------------|
| L-Tryptophan                                           | 5.0    | 2.0E-05 | 4.7           | 5.6E-04 | 1.2         | 0.3      | 47.8         | 50.3         | 7.4              | 97.0               |
| Hypoxanthine                                           | -4.9   | 3.1E-05 | 4.5           | 5.6E-04 | 0.8         | -0.4     | 45.3         | 36.9         | 7.0              | 97.7               |
| D-Pipecolic acid                                       | -4.9   | 3.1E-05 | 4.5           | 5.6E-04 | 0.5         | -0.9     | 45.5         | 40.0         | 4.9              | 93.4               |
| Indoleacrylic acid                                     | 4.8    | 3.8E-05 | 4.4           | 5.6E-04 | 1.2         | 0.3      | 47.8         | 50.8         | 7.7              | 96.9               |
| 4-Hydroxyquinoline                                     | 4.5    | 9.6E-05 | 4.0           | 1.0E-03 | 1.2         | 0.3      | 50.6         | 61.3         | 4.1              | 96.6               |
| Arabinosylhypoxanthine                                 | -4.4   | 1.0E-04 | 4.0           | 1.0E-03 | 0.8         | -0.4     | 46.5         | 39.8         | 3.0              | 96.4               |
| Nicotyrine                                             | 4.3    | 1.5E-04 | 3.8           | 1.3E-03 | 1.2         | 0.2      | 53.0         | 72.6         | 3.4              | 96.6               |
| Corticosterone                                         | 3.9    | 4.2E-04 | 3.4           | 3.1E-03 | 1.5         | 0.6      | 54.9         | 82.5         | 2.5              | 94.9               |
| 3a,4,5,6,7,7a-Hexahydroindene-<br>1,2,3-trione         | 3.8    | 5.8E-04 | 3.2           | 3.1E-03 | 2.1         | 1.0      | 42.1         | 21.8         | 2.5              | 91.8               |
| 1,4-Ipomeadiol                                         | 3.8    | 6.2E-04 | 3.2           | 3.1E-03 | 3.7         | 1.9      | 44.4         | 31.1         | 4.6              | 96.5               |
| (E,E)-2,6-Octadienal                                   | 3.8    | 6.8E-04 | 3.2           | 3.1E-03 | 3.6         | 1.9      | 45.8         | 39.9         | 5.6              | 95.5               |
| 3-Hydroxytetradecanedioic acid                         | 3.8    | 6.9E-04 | 3.2           | 3.1E-03 | 3.7         | 1.9      | 50.2         | 61.6         | 6.4              | 96.4               |
| 4-Heptenoic acid                                       | 3.8    | 7.0E-04 | 3.2           | 3.1E-03 | 3.8         | 1.9      | 46.4         | 42.6         | 5.8              | 95.8               |
| Methylenecyclohexane                                   | 3.7    | 7.3E-04 | 3.1           | 3.1E-03 | 4.3         | 2.1      | 42.8         | 27.2         | 6.0              | 93.7               |
| 3-[(2-Mercapto-1-<br>methylpropyl)thio]-2-butanol      | -3.6   | 1.0E-03 | 3.0           | 3.9E-03 | 0.6         | -0.6     | 46.3         | 46.7         | -1.0             | 85.8               |
| 6-Hydroxypentadecanedioic acid                         | 3.5    | 1.4E-03 | 2.9           | 5.0E-03 | 3.8         | 1.9      | 49.7         | 58.1         | 2.8              | 93.9               |
| Hippuric acid                                          | -3.5   | 1.4E-03 | 2.8           | 5.0E-03 | 0.6         | -0.8     | 43.6         | 29.0         | 3.8              | 93.4               |
| 3-Cyclopentylpropionic acid                            | 3.3    | 2.2E-03 | 2.7           | 7.3E-03 | 3.2         | 1.7      | 47.8         | 41.7         | 1.3              | 98.8               |
| 2-Methylindole                                         | 3.2    | 2.9E-03 | 2.5           | 8.7E-03 | 1.2         | 0.2      | 51.5         | 64.8         | 3.9              | 97.3               |
| xi-7-Hydroxyhexadecanedioic acid                       | 3.2    | 2.9E-03 | 2.5           | 8.7E-03 | 4.0         | 2.0      | 48.9         | 54.1         | 2.2              | 93.2               |
| Pantothenic acid                                       | 3.2    | 3.1E-03 | 2.5           | 8.8E-03 | 1.5         | 0.6      | 52.4         | 70.5         | 4.1              | 96.2               |
| 6-Hydrazinonicotinic acid                              | -3.2   | 3.4E-03 | 2.5           | 9.0E-03 | 0.6         | -0.8     | 49.0         | 59.8         | -9.3             | 95.5               |
| (3S,5R,6R,7E)-3,5,6-Trihydroxy-7-<br>megastigmen-9-one | 3.1    | 3.8E-03 | 2.4           | 9.9E-03 | 1.7         | 0.8      | 52.5         | 69.5         | 3.3              | 96.7               |
| Creatinine                                             | -3.1   | 4.2E-03 | 2.4           | 1.0E-02 | 0.6         | -0.7     | 40.1         | 11.2         | 6.5              | 96.7               |
| imolamine                                              | 3.1    | 4.6E-03 | 2.3           | 1.0E-02 | 1.7         | 0.8      | 45.2         | 31.5         | 0.0              | 94.5               |
| N-Hexadecanoyl-serine                                  | -3.0   | 4.7E-03 | 2.3           | 1.0E-02 | 0.8         | -0.3     | 46.4         | 41.2         | 0.7              | 91.6               |
| Octyl gallate                                          | 3.0    | 4.8E-03 | 2.3           | 1.0E-02 | 1.4         | 0.4      | 45.4         | 41.2         | -6.7             | 93.2               |
| Sebacic acid                                           | 3.0    | 4.8E-03 | 2.3           | 1.0E-02 | 1.9         | 0.9      | 46.5         | 42.6         | 2.6              | 93.1               |
| 8-Hydroxy-5,6-octadienoic acid                         | 3.0    | 5.4E-03 | 2.3           | 1.1E-02 | 1.6         | 0.7      | 40.0         | 10.4         | 3.8              | 94.2               |
| Glutamylleucylarginine                                 | 3.0    | 5.8E-03 | 2.2           | 1.1E-02 | 1.9         | 0.9      | 47.1         | 49.3         | 8.8              | 96.1               |
| alpha-Campholonic acid                                 | 3.0    | 5.9E-03 | 2.2           | 1.1E-02 | 1.9         | 0.9      | 47.1         | 44.2         | 3.7              | 95.9               |
| met-lys-lys                                            | 2.9    | 6.3E-03 | 2.2           | 1.1E-02 | 1.7         | 0.7      | 53.3         | 86.2         | -9.5             | 90.9               |
| N-Eicosapentaenoyl Methionine                          | 2.9    | 6.4E-03 | 2.2           | 1.1E-02 | 1.9         | 0.9      | 45.7         | 50.8         | 8.1              | 86.6               |
| (2R,3S)-3-(6-Amino-9H-purin-9-<br>yl)nonan-2-ol        | 2.9    | 6.6E-03 | 2.2           | 1.1E-02 | 1.6         | 0.7      | 46.1         | 43.0         | -3.3             | 91.6               |
| 20-Trihydroxy-leukotriene-B4                           | 2.9    | 7.3E-03 | 2.1           | 1.2E-02 | 1.6         | 0.7      | 44.5         | 31.8         | 0.8              | 91.6               |
| Butanedioic acid, octenyl-                             | 2.8    | 7.9E-03 | 2.1           | 1.3E-02 | 1.6         | 0.6      | 46.8         | 43.8         | 5.7              | 96.7               |
| Dynorphin B (10-13)                                    | 2.8    | 8.1E-03 | 2.1           | 1.3E-02 | 1.5         | 0.6      | 43.5         | 33.5         | -3.3             | 88.1               |
| 3-Hydroxydodecanedioic acid                            | 2.8    | 8.5E-03 | 2.1           | 1.3E-02 | 1.5         | 0.6      | 48.2         | 51.5         | 6.1              | 96.5               |
| 1-Benzazepine                                          | 2.8    | 8.6E-03 | 2.1           | 1.3E-02 | 1.2         | 0.2      | 51.8         | 66.5         | 1.9              | 94.8               |
| 9,13-Dihydroxy-4-megastigmen-3-<br>one 9-glucoside     | 2.8    | 8.7E-03 | 2.1           | 1.3E-02 | 1.6         | 0.7      | 53.0         | 75.0         | 3.1              | 93.5               |
| asn-gly-lys-gly                                        | 2.6    | 1.3E-02 | 1.9           | 1.8E-02 | 1.6         | 0.7      | 47.5         | 54.2         | 7.9              | 92.3               |
| L-Tyrosine                                             | 2.6    | 1.4E-02 | 1.9           | 2.0E-02 | 1.3         | 0.3      | 53.1         | 73.5         | 4.8              | 97.3               |
| Creatine                                               | -2.6   | 1.5E-02 | 1.8           | 2.0E-02 | 0.7         | -0.5     | 44.3         | 33.7         | 8.9              | 97.7               |
| Isocrotonic acid                                       | 2.6    | 1.5E-02 | 1.8           | 2.0E-02 | 1.5         | 0.6      | 40.5         | 13.8         | 7.8              | 97.2               |
| 13-Docosenamide                                        | 2.6    | 1.6E-02 | 1.8           | 2.0E-02 | 1.6         | 0.6      | 51.4         | 63.9         | 0.9              | 94.5               |
| 2,5-Diamino-4,5-diketopyrimidine                       | 2.5    | 1.6E-02 | 1.8           | 2.16-02 | 1.2         | 0.3      | 47.9         | 42.4         | -1.5             | 99.1               |
| 8-Aminooctanoic acid                                   | -2.5   | 1.8E-02 | 1.7           | 2.2E-02 | 0.6         | -0.7     | 48.1         | 50.0         | 6.2              | 97.5               |
| N-Eicosapentaenoyl Cysteine                            | 2.5    | 1.8E-02 | 1./           | 2.2E-02 | 1.5         | 0.5      | 42.5         | 35.6         | 7.0              | 84.b               |
| (3R,7R)-1,3,7-Octanetriol                              | 2.4    | 2.1E-02 | 1./           | 2.0E-U2 | 1.2         | 0.2      | 42.3         | 20.1         | 5.3              | 97.0               |
| 2-Ethyl-3,4-dihydroxyfuran                             | 2.3    | 2.0E-02 | 1.0<br>1 c    | 3.UE-UZ | 1.3         | 0.4      | 43.9         | 37.5         | -5.2             | 88.U<br>06 0       |
| LysoPC(18:3(6Z,9Z,12Z)/0:0)                            | -2.5   | 2.9E-02 | 1.5           | 5.3E-UZ | 0.0         | -0.2     | 52.0<br>16.0 | 19.9         | -2.0             | 00.3               |
| Propionylcarnitine                                     | -2.1   | 4.7E-02 | 1.3           | 3.3E-UZ | 0.0         | -0.4     | 40.6<br>45 5 | 43.1         | 4.0              | 90.0               |
| Hexanoylcarnitine                                      | -1.7   | 1.1E-01 | 1.0           | 1 1E-01 | 0.7         | -0.5     | 43.5         | 40.2         | 3.5              | 87.6               |
| Uxidized glutathione                                   | -1 4   | 1.6F-01 | 0.8           | 1.1E-01 | 0.7         | -0.0     | 44.9<br>47.1 | 40.5<br>26.6 | 9.0<br>9.3       | 94.0               |
| Pentadeca-5, /, 9-trienedioylcarnitine                 | -0.7   | 5.1F-01 | 0.3           | 5.2F-01 | 0.7         | -0.5     | 46.4         | 39.7         | 16               | 94.4               |
| Adenosine monophosphate                                | -0.5   | 6.0E-01 | 0.2           | 6.0E-01 | 0.9         | -0.2     | 49.3         | 54.6         | 4.2              | 96.6               |
|                                                        |        |         |               |         | -           | •        |              |              | -                |                    |

**Supplementary Table 3.** Important features identified by two-sided t-tests from the plasma of *Slc28a1* mice, including the fragmentation and metabolite identification information and fold-changes (*Slc28a1*-/- / *Slc28a1*+/+) \*FDR: False Discovery Rate

# Urine

| ab. | le : | 3: | Μ | leta-A | Anal | lysis | of | Ν | lummic | hog | and | G | iS | ΕA | ł | Result | $\mathbf{ts}$ |
|-----|------|----|---|--------|------|-------|----|---|--------|-----|-----|---|----|----|---|--------|---------------|
|-----|------|----|---|--------|------|-------|----|---|--------|-----|-----|---|----|----|---|--------|---------------|

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Valine, leucine and isoleucine biosynthesis $8.00$ $8.00$ $8.00$ $0.20$ $0.06$ $0$ Pyrimidine metabolism $39.00$ $12.00$ $11.00$ $0.33$ $0.04$ $0$ Aminoacyl-tRNA biosynthesis $22.00$ $15.00$ $14.00$ $0.21$ $0.07$ $0$ Steroid hormone biosynthesis $77.00$ $54.00$ $49.00$ $0.05$ $0.33$ $0$ Metabolism of xenobiotics by cytochrome P450 $64.00$ $18.00$ $10.00$ $1.00$ $0.02$ $0$ Purine metabolism $66.00$ $21.00$ $13.00$ $0.99$ $0.02$ $0$ Glutathione metabolism $19.00$ $6.00$ $5.00$ $0.71$ $0.07$ $0$ Terpenoid backbone biosynthesis $15.00$ $1.00$ $0.82$ $0.09$ $0.26$ D-Glutamine and D-relutamate metabolism $6.00$ $6.00$ $0.030$ $0.26$ $0$                                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Steroid hormone biosynthesis         77.00         54.00         49.00         0.05         0.33         0           Metabolism of xenobiotics by cytochrome P450         64.00         18.00         10.00         1.00         0.02         0           Purine metabolism         66.00         21.00         13.00         0.99         0.02         0           Glutathione metabolism         19.00         6.00         5.00         0.71         0.07         0           Terpenoid backbone biosynthesis         15.00         1.00         1.00         0.82         0.09         0           D-Glutamine and D-glutamate metabolism         6.00         6.00         6.00         0.30         0.26         0 |
| Metabolism of xenobiotics by cytochrome P450         64.00         18.00         10.00         1.00         0.02         0           Purine metabolism         66.00         21.00         13.00         0.99         0.02         0           Glutathione metabolism         19.00         6.00         5.00         0.71         0.07         0           Terpenoid backbone biosynthesis         15.00         1.00         1.00         0.82         0.09         0           D-Glutamine and D-glutamate metabolism         6.00         6.00         6.00         0.30         0.26         0                                                                                                                      |
| Purine metabolism         66.00         21.00         13.00         0.99         0.02         0           Glutathione metabolism         19.00         6.00         5.00         0.71         0.07         0           Terpenoid backbone biosynthesis         15.00         1.00         1.00         0.82         0.09         0           D-Glutamine and D-glutamate metabolism         6.00         6.00         6.00         0.30         0.26         0                                                                                                                                                                                                                                                           |
| Glutathione metabolism         19.00         6.00         5.00         0.71         0.07         0           Terpenoid backbone biosynthesis         15.00         1.00         1.00         0.82         0.09         0           D-Glutamine and D-glutamate metabolism         6.00         6.00         6.00         0.30         0.26         0                                                                                                                                                                                                                                                                                                                                                                     |
| Terpenoid backbone biosynthesis         15.00         1.00         1.00         0.82         0.09         0           D-Glutamine and D-glutamate metabolism         6.00         6.00         6.00         0.30         0.26         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D-Glutamine and D-glutamate metabolism 6.00 6.00 6.00 0.30 0.26 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Retinol metabolism 15.00 8.00 5.00 0.96 0.10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pantothenate and CoA biosynthesis 17.00 7.00 7.00 0.25 0.41 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Alanine, aspartate and glutamate metabolism 28.00 9.00 9.00 0.16 0.67 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Porphyrin and chlorophyll metabolism 27.00 8.00 7.00 0.56 0.21 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arachidonic acid metabolism 35.00 34.00 17.00 1.00 0.13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tyrosine metabolism 42.00 29.00 25.00 0.38 0.35 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Phenylalanine metabolism 12.00 9.00 9.00 0.16 0.88 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Valine, leucine and isoleucine degradation 35.00 13.00 12.00 0.29 0.58 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Butanoate metabolism 15.00 8.00 6.00 0.84 0.22 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Glycine, serine and threenine metabolism 31.00 11.00 9.00 0.69 0.28 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lysine degradation 19.00 5.00 5.00 0.37 0.52 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Phenylalanine, tyrosine and tryptophan biosynthesis 4.00 3.00 3.00 0.55 0.40 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ascorbate and aldarate metabolism 10.00 1.00 1.00 0.82 0.30 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Thiamine metabolism 5.00 1.00 1.00 0.82 0.32 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vitamin B6 metabolism 9.00 4.00 4.00 0.45 0.62 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fatty acid biosynthesis 10.00 1.00 1.00 0.82 0.35 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nitrogen metabolism 6.00 2.00 2.00 0.67 0.43 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| One carbon pool by folate 9.00 6.00 5.00 0.71 0.43 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Histidine metabolism 16.00 6.00 5.00 0.71 0.43 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arginine biosynthesis 14.00 4.00 4.00 0.45 0.74 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ubiquinone and other terpenoid-quinone biosynthesis 9.00 4.00 3.00 0.85 0.40 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Folate biosynthesis 24.00 10.00 6.00 0.98 0.35 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tryptophan metabolism 41.00 20.00 16.00 0.72 0.49 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Glycolysis or Gluconeogenesis 23.00 1.00 1.00 0.82 0.46 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propanoate metabolism 19.00 7.00 5.00 0.89 0.43 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| alpha-Linolenic acid metabolism 12.00 2.00 2.00 0.67 0.61 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Nicotinate and nicotinamide metabolism 15.00 4.00 2.00 0.98 0.46 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Glycerophospholipid metabolism 13.00 2.00 2.00 0.67 0.67 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Biosynthesis of unsaturated fatty acids 34.00 6.00 5.00 0.71 0.65 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cysteine and methionine metabolism 33.00 7.00 6.00 0.63 0.74 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drug metabolism - cytochrome P450 21.00 10.00 8.00 0.74 0.65 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Glyoxylate and dicarboxylate metabolism 31.00 7.00 6.00 0.63 0.77 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Taurine and hypotaurine metabolism8.003.003.000.550.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Synthesis and degradation of ketone bodies 5.00 2.00 1.00 0.97 0.53 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Biotin metabolism 4.00 1.00 1.00 0.82 0.65 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Phosphonate and phosphinate metabolism 4.00 1.00 1.00 0.82 0.65 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N-Glycan biosynthesis 38.00 2.00 1.00 0.97 0.61 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Primary bile acid biosynthesis 46.00 7.00 6.00 0.63 0.96 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Riboflavin metabolism         4.00         1.00         1.00         0.82         0.95         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Selenocompound metabolism 16.00 1.00 1.00 0.82 0.96 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D-Arginine and D-ornithine metabolism 4.00 1.00 1.00 0.82 0.96 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pyruvate metabolism 19.00 4.00 2.00 0.98 0.81 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| beta-Alanine metabolism 21.00 5.00 3.00 0.96 0.96 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Amino sugar and nucleotide sugar metabolism 35.00 4.00 2.00 0.98 0.94 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**Supplementary Table 4.** Mummichog and GSEA pathway analysis results table from *Slc28a1*-/- urine. Table displays ranked pathways that are enriched in *Slc28a1*-/-mice. The table displays matched pathways, the total number of hits per pathway, the raw p-values (\*p < 0.05 by one-tailed hypergeometric test) for each algorithm, and the combined p-values (\*p < 0.05 by two-tailed Welch's t test).

#### Plasma

|                                          | Total_Size | Hits  | Sig_Hits | Mummichog_Pvals | GSEA_Pvals | Combined_Pvals |
|------------------------------------------|------------|-------|----------|-----------------|------------|----------------|
| Steroid hormone biosynthesis             | 77.00      | 25.00 | 5.00     | 0.39            | 0.01       | 0.04           |
| Tryptophan metabolism                    | 41.00      | 5.00  | 3.00     | 0.03            | 0.22       | 0.04           |
| Arginine and proline metabolism          | 37.00      | 12.00 | 2.00     | 0.62            | 0.03       | 0.10           |
| Tyrosine metabolism                      | 42.00      | 16.00 | 3.00     | 0.51            | 0.04       | 0.11           |
| Riboflavin metabolism                    | 4.00       | 1.00  | 1.00     | 0.16            | 0.23       | 0.16           |
| Purine metabolism                        | 66.00      | 14.00 | 2.00     | 0.71            | 0.06       | 0.18           |
| Caffeine metabolism                      | 12.00      | 5.00  | 1.00     | 0.60            | 0.14       | 0.29           |
| Glycine, serine and threenine metabolism | 31.00      | 6.00  | 1.00     | 0.66            | 0.18       | 0.38           |
| Glycerophospholipid metabolism           | 13.00      | 2.00  | 1.00     | 0.30            | 0.47       | 0.42           |
| Primary bile acid biosynthesis           | 46.00      | 3.00  | 1.00     | 0.42            | 0.57       | 0.58           |
| Phenylalanine metabolism                 | 12.00      | 6.00  | 1.00     | 0.66            | 0.46       | 0.67           |
| Lysine degradation                       | 19.00      | 4.00  | 1.00     | 0.52            | 0.67       | 0.71           |
| Aminoacyl-tRNA biosynthesis              | 22.00      | 14.00 | 1.00     | 0.93            | 0.37       | 0.71           |
| Linoleic acid metabolism                 | 4.00       | 4.00  | 1.00     | 0.52            | 0.81       | 0.78           |
| Porphyrin and chlorophyll metabolism     | 27.00      | 4.00  | 1.00     | 0.52            | 0.81       | 0.78           |
| Pantothenate and CoA biosynthesis        | 17.00      | 7.00  | 1.00     | 0.72            | 0.58       | 0.78           |
| Arachidonic acid metabolism              | 35.00      | 14.00 | 1.00     | 0.93            | 0.70       | 0.93           |

Table 3: Meta-Analysis of Mummichog and GSEA Results

**Supplementary Table 5.** Mummichog and GSEA pathway analysis results table from  $Slc28a1^{-/-}$  plasma. Table displays ranked pathways that are enriched in  $Slc28a1^{-/-}$ mice. The table displays matched pathways, the total number of hits per pathway, the raw p-values (\*p < 0.05 by one-tailed hypergeometric test) for each algorithm, and the combined p-values (\*p < 0.05 by two-tailed Welch's t test).