
Supplementary

1 Equations

Original CelFiE equations

Posterior distribution:
pntm1(α, β) := pntmc(α, β) if xnmc = 1

=
βtmαnt∑
k βktαnk

pntm0(α, β) := pntmc(α, β) if xnmc = 0

=
(1− βtm)αnt∑
k(1− βkt)αnk

(S1)

α and β update formula:

αnt =

∑
m

(
xnmpntm1 + (DX

nm − xnm)pntm0

)∑
km (xnmpnkm1 + (DX

nm − xnm)pnkm0)
(S2)

βtm =

∑
n pntm1Xnm + nYtm∑

n pntm0(DX
nm −Xnm) + nDY

tm +
∑

n pntm1Xnm
(S3)

Log-likelihood formulation:

Q(α, β) =
∑
n,t,m

[
(Ytm + pntm1Xnm) log(βtm) +

(
DY

tm − Ytm + pntm0(D
X
nm −Xnm)

)
log(1− βtm)

]
+
∑
n,t,m

(
Xnmpntm1 + (DX

nm −Xnm)pntm0

)
logαnt

(S4)
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Derivation of full data log-likelihood

Q(α, β̂) := Ez|X̂,α,β̂ logP (X̂, z, Y |α, β)

= Ez|X̂,α,β̂

(
logP (X̂|z, β̂) + logP (z|α) + logP (Ŷ |β̂)

)
=

∑
n,t,m,c

Ez|X̂,α,β̂

[
zntmc

∑
i

x̂nmci log β̂tmi + zntmc logαnt

]

+
∑
n,t,m

(
log(

∑
i

Ŷtmi!)−
∑
i

log(Ŷtmi!) +
∑
i

Ŷtmi log β̂tmi

)

=
∑

n,t,m,c

p̃ntmc

[∑
i

x̂nmci log β̂tmi + logαnt

]

+
∑
n,t,m

(
log(

∑
i

Ŷtmi!)−
∑
i

log(Ŷtmi!) +
∑
i

Ŷtmi log β̂tmi

)

=
∑
n,t,m

[∑
i

pntmix̂nmi log β̂tmi +
∑
i

pntmix̂nmi logαnt

]

+
∑
n,t,m

[
log(

∑
i

Ŷtmi!)−
∑
i

log(Ŷtmi!) +
∑
i

Ŷtmi log β̂tmi

]

=
∑

n,t,m,i

((pntmix̂nmi + Ŷtmi) log β̂tmi) +
∑

n,t,m,i

pntmix̂nmi logαnt + n
∑
t,m

[
log(

∑
i

Ŷtmi)!−
∑
i

log(Ŷtmi!)

]
(S5)

Derivation of α and β̂ update formulas

Maximization of the log-likelihood w.r.t α and β̂ can be done using the following fact that for a
probability simplex SK ⊂ RK and any a ∈ RK

++:

arg max
p∈SK

∑
k

ak log pk = (a1, ..., aK)/

K∑
k=1

ak

To derive αt, we let at =
∑

i ptmix̂i s.t.

αnt =

∑
m,i pntmix̂nmi∑
m,t,i pntmix̂nmi

(S6)

For β̂tmi we let ai = ptmix̂i + Ŷtmi s.t.

β̂tmi =

∑
n(pntmix̂nmi + Ŷtmi)∑
n,i(pntmix̂nmi + Ŷtmi)

(S7)
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2 Supplementary tables

Tab. S1: WGBS cell type data and sources

Cell type Database Sample 1 Sample 2

CD4-positive, alpha-beta T cell Blueprint S007G7 S007DD
CD8-positive, alpha-beta T cell Blueprint C003VO C00256
endothelial cell of umbilical vein (resting) Blueprint S00DCS S00BJM
monocyte Blueprint S01MAPA1 S01E03A1
erythroblast Blueprint S002S3 S002R5
macrophage Blueprint S0022I S00390
mature eosinophil Blueprint S00V65 S006XE
memory B cell Blueprint C003N3 S017RE51
cytotoxic CD56-dim natural killer cell Blueprint C006G5 C002CT
mature neutrophil Blueprint C0010K C000S5
conventional dendritic cell Blueprint S00CP651 S00D71
adipose ENCODE ENCFF318AMC ENCFF477GKI
HepG2 ENCODE ENCFF847OWL ENCFF064GJQ
pancreas ENCODE ENCFF753ZMQ ENCFF500DKA
small intestine ENCODE ENCFF266NGW ENCFF122LEF
spleen ENCODE ENCFF550FZT ENCFF333OHK
stomach ENCODE ENCFF435SPL ENCFF497YOO
tibial nerve ENCODE ENCFF843SYR ENCFF699KTW
skeletal muscle myoblast primary cell ENCODE ENCFF774GXJ -
placenta ENCODE ENCFF239DTC -

Tab. S2: Correlation between cell types proportions estimated by CelFEER and the true cell type
proportions after adding simulated noise.

Probability of flipping methylation status Correlation

0 0.9310 +- 0.0041
1/1000 0.9480 +- 0.0028
1/100 0.9591 +- 0.0017
1/50 0.9577 +- 0.0011
1/40 0.9485 +- 0.0004
1/30 0.9260 +- 0.0002
1/20 0.8093 +- 0.0001
1/10 0.1843 +- 0.0001

Tab. S3: Average distance between cell types for different genomic regions.

Marker preselection CpG islands MHB None

Distance in reference data 0.21 0.43 0.58
Distance in input data 0.20 0.59 0.71
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Tab. S4: Correlation (mean and standard deviation) between true and estimated cell type proportions
for using MHBs and for using the entire genome as input for marker selection.

Marker preselection MHB None

Read based correlation 0.90 +- 0.07 0.94 +-0.04
Beta values correlation 0.82 +- 0.12 0.86 +- 0.09

Tab. S5: Correlation (mean and standard deviation) between the true simulated cell type proportions
and those estimated by the compared methods.

Method Correlation

CelFEER 0.94 +- 0.04
CelFiE 0.86 +- 0.09
Least squares regression 0.73 +- 0.16
Houseman et al. 0.69 +- 0.19

Tab. S6: Correlation of CelFiE (mean and standard deviation) and Houseman before and after using
our improved method for finding markers.

Original markers Improved markers

CelFie 0.24 +- 0.24 0.87 +- 0.05
Houseman 0.35 0.71

3 Supplementary figures
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Fig. S1: Illustration of the two principal changes to the approach for findings markers in the genome.
The arrows indicate the difference between cell types. Figures (A) and (C) illustrate how the
markers are found originally, and Figures (B) and (D) how they are found after improvements.
Figures (A) and (B) show how measuring the distance between single CpG sites (A) results
in different markers than measuring the distance between 500 bp regions (B). Cell types 1 and
2 do not have a large distance when regarding their average over the entire region, making this
region an unsuitable marker. Figures (C) and (D) show that the distance from the median
cell type (C) is different from the distance from the min cell type (D). Using the median
would result in a marker that does not differentiate well between cell types 4 and 5.
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Fig. S2: Estimates of the proportion of a rare cell type (1%) that is present in group A but not in
group B, estimated over 50 replicate runs using CelFiE and CelFEER. Only the estimated
and true proportions of this rare cell type are plotted. The true proportions are represented
by the red dots.

Fig. S3: Cell type proportions estimated by CelFiE and CelFEER for zero, one and two unknowns
respectively. The boxplots visualize the estimated proportions of 50 replicates for a randomly
chosen individual. On top of the boxplots, the individual datapoints are plotted.
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Fig. S4: CelFiE and CelFEER run on different markers.

(a) CelFiE markers (b) CelFEER markers

Fig. S5: Markers found by (a) CelFiE and (b) CelFEER for seven different cell types.
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Fig. S6: CelFiE’s and Houseman’s estimated cell type proportions on a simulated cfDNA mixture using
WGBS cell type data, using both the markers found as described in [1] and the markers found
using our improved method. The results of 50 replicate runs on a randomly chosen individual
are displayed.

Fig. S7: Estimated proportions of cfDNA in ALS patients (n = 4) and a control group (n = 4) of (A)
CelFiE and (B) CelFEER.
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Fig. S8: Full cell type decomposition of first trimester (n = 8) and third trimester (n = 8) pregnancies
cfDNA.

Fig. S9: Cell type proportions estimated by CelFiE, CelFEER, least squares regression and Houseman.
The boxplots visualize the estimated proportions for a randomly chosen individual, using 50
replicates for CelFiE and CelFEER.

4 Selection of cell type informative markers

A crucial step in predicting the cell type of origin is selecting markers in the genome that represent
the cell types. Not only does a set of distinct markers improve prediction, it can make sequencing of
cfDNA less expensive since only the DNA overlapping the markers needs to be sequenced. Methylation
markers that span multiple CpG sites are in literature often referred to as differentially methylated
regions. To find cell type informative markers, we started by analyzing the markers found using the
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method created by Caggiano et al. [1], which is described in the materials and methods. This method
was then improved to find more informative markers. In this section and the following we refer to the
absolute counts of methylated CpG sites as methylation values, and to the fraction of methylated to
unmethylated CpG sites as methylation percentages.

Regions are more robust markers than single sites

Caggiano et al. [1] use the traditional approach of using single CpG sites as markers. This method,
however, decreases the ability to differentiate between different cell types as it is sensitive to both
biological and technical noise. In order to reduce noise, the CpG sites 250 bp upstream and 250 bp
downstream of the markers are added to the markers’ methylation counts. The authors showed that
their method only returns sensible results when the methylation values are thus summed into regions.
It nonetheless happens that the 500 bp surrounding the markers contain little CpG sites. This method
does not exploit earlier findings that the methylation status is highly coupled between adjacent CpG
sites [2]. Moreover, regions where CpG sites are clustered in high numbers, called CpG islands (CGIs),
are known to be epigenetic regulatory regions that can be cell type specific [3].

According to these findings, it makes more sense to compare regions containing multiple CpG sites
instead of single CpG sites to find differential markers. To test this hypothesis, CpG sites were grouped
in a simple fashion: CpG sites were summed if they were in a 500 bp vicinity of each other. The starting
location of each 500 bp window was set to be the first CpG site which contained measurements and
did not fall in a previous bin. This strategy has the downside that it may split clusters in two, but if
this is the case and if this cluster is differential, it is not harmful for the method to use both parts of
the cluster as markers.

In addition to summing over 500 bp windows, we also summed over 10 bp windows with the idea
of removing noise while still looking at mostly local methylation. After finding markers on the 10 bp
windows, the surrounding CpG sites were summed to nevertheless obtain a total window of 500 bp.
In order to compare the markers’ ability to differentiate between cell types, we looked at the absolute
difference between the methylation percentage of each marker’s cell type and the median methylation
percentage of all cell types. Accordingly, the distance for tissue k is defined as:

distance(tk) =

∑
m βm,tk

M
−median

{∑
m βm,t1

M
, ...,

∑
m βm,tT

M

}
(S8)

,where t indicates the tissue, T the total number of tissues, m the marker, and M the total number of
markers.

To test the generalizability of the markers, we did this for both the reference data (which was
used to find the markers) and for the input data. As can be seen in Figure S10, the markers are
most differential when they are first summed in 500 bp windows, and the variance in distance has
substantially decreased. This strategy also seems to result in markers that generalize relatively well to
unseen data, as the input and reference data have a similar distance to the median of other cell types.
Although summing in 500 bp windows seems to return better markers than summing in 10 bp windows,
it is remarkable how much improvement can be seen compared to the original method, especially for
the tibial nerve cells. This is probably the effect of the decrease in noise which appears even if we sum
over such small intervals. The results confirm the belief that markers are more differentiable when
CpG sites are first summed compared to when they are summed after selecting individual sites. For
this reason, all future experiments on markers are done on sites summed in 500 bp regions. In this
section, we used only hypomethylated markers as they promised to be most distinguishing between
cell types.

We additionally investigated the effect of using different window sizes. Firstly, we looked at the
distance between tissues in the reference dataset (which was used to find the markers). The distance is
measured by calculating the difference with the median methylation across all cell types of the average
methylation in the cell type (Equation S8). For window sizes of 10 bp, 100 bp, 500 bp, 700 bp and
1000 bp, we found an average distance of 0.40, 0.61, 0.58, 0.55 and 0.52, respectively. To find how
well the markers generalize to the input data, we measured the distance in the reference data as well.
In the same order, the different window sizes resulted in distances of 0.65, 0.56, 0.78, 0.63 and 0.41,
showing that a 500 bp window allows for best generalization.
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(a) Individual sites (b) Summed over 10 bp (c) Summed over 500 bp

(d) Distance measured from me-
dian (e) Hypermethylated

Fig. S10: Distance from median methylation percentage for three different strategies; Purple dots rep-
resent the input at different marker locations and orange dots represent the reference at the
same marker locations. The reference data was used to find the marker locations.
Row 1: Comparison between single CpG site markers which are summed with their 500 bp
neighbouring sites (S10a), 10 bp markers which are summed with their 490 bp neighbouring
sites (S10b) and 500 bp markers (S10c).
Row 2: Comparison between markers defined by their distance from the median methyla-
tion percentage (S10d), distance from the maximum (S10e) and distance from the minimum
(S10c).
All figures in row one use hypomethylated markers, and all figures in row two are first summed
over 500 bp.

Hypomethylated sites are easier to differentiate than hypermethylated sites or than a mixture of
both

Caggiano et al. [1] originally determined the best markers for each cell type by comparing the distances
between the methylation percentages of each individual cell type to the median methylation percentage
of all cell types. This should, in theory, result in a mixture of hypo- and hypermethylated markers.
A sufficiently large distance to the median is, however, not a very strict requirement as it does not
remove the probability of having two or more cell types with a very similar methylation percentage
(especially as the number of cell types in the reference grows). Moreover, in practice almost all of
the markers found using this method are hypomethylated, so there is little benefit in also allowing for
hypermethylated markers.

To make the markers more differential, we measured the distance between the methylation percent-
age of each cell type and the minimum methylation percentage of all other cell types. This approach
was compared to the original approach (where the distance from the median is measured instead) as
well as to a similar approach where we looked only for hypermethylated markers (and thus compared
to the maximum of all other cell types). When comparing the markers’ distances from the median,
the original method seems to result in the best markers for all cell types except adipose (Figure S10d).
Hypomethylated markers, on the other hand, have a slightly smaller distance from the median for all
cell types except for adipose, for which the distance is larger (Figure S10e). Hypermethylated markers
have overall the smallest distance from the median (Figure S10c).

However, as reasoned above, the distance from the median may not be the best metric for defining
the ability to differentiate between cell types. Therefore, we can not assume that the distance from
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the median also translates to the best cell type deconvolution results. For this reason, we looked at
the results on a simulated mixture of the WGBS data of 10 cell types and measured the Pearson’s
correlation between the true and estimated cell type proportions of 50 replicate runs for 10 individuals.
We set the true cell type proportions to a linearly incrementing array that sums to one. While the
hypomethylated markers resulted in a correlation of r2 = 0.86±0.01, the hypermethylated and original
method resulted in a correlation of r2 = 0.68 ± 0.04 and r2 = 0.58 ± 0.03 respectively. This confirms
the idea that the distance from the median is not the best metric for obtaining differentiable markers.

This can additionally be observed from the amount of markers found by each metric. The method
for finding markers works in such way that it first finds the 100 best markers for each cell type and
then removes the markers that are overlapping multiple cell types. As can be seen in Figure S11,
the original method finds less markers which means that the markers it finds have a high amount of
overlap between cell types. Especially monocytes and macrophage cells seem to have much overlap,
which makes sense given the fact that macrophage cells are differentiated monocyte cells [4]. Hypo- and
hypermethylated markers are nevertheless able to differentiate these two cell types. To test whether
the markers found using the original method would result in better performance if more markers were
included, we first tested for uniqueness of the 200 best markers of each cell type and then included the
100 best markers. This way each cell type had 100 markers. This resulted in a negligible increase in
performance.

As the hypomethylated markers seem to give the best results, all experiments in this section,
including the previous section, use hypomethylated markers.

Fig. S11: The bar chart shows the amount of markers found for each cell type using each of the three
different ways to measure the distance between cell types.

Restricting the genome for CpG islands or Methylation Haplotype Blocks results in less
differentiable markers

We create regions by binning the genome into 500 bp windows. Restricting the search for markers to
a subset of regions in the genome which are known to be cell type specific might improve the cell type
specificity of the markers. Methylation patterns at CpG islands are known to correlate with cell type
[5]. Alternatively, methylation haplotype blocks (MHBs), invented by Guo et al., are regions that aid
in tissue deconvolution [2]. We investigated whether replacing our approach of binning the genome in
regions of 500 bp by either of those two approaches could enhance the performance of CelFEER.

We rely on beta values to compare different markers to prevent optimizing the markers for our own
method. We used the same seven cell types used for comparing CelFiE and CelFEER in the main
text. We measured how good the new sets of markers are in differentiating between different cell types
by measuring the distance between the cell types (Equation S8). The resulting distances can be seen
in Table S3.

We additionally ran CelFiE and CelFEER on markers that were restricted to MHBs. As implied by
the distance, the average correlation between the true and estimated cell types suffers from restricting
the genome. The results can be seen in Table S4.
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Additional improvements for increased differentiation between cell types

In addition to the improvements discussed in the previous two sections, there were two possible un-
wanted outcomes in the original method for finding markers. The first of which is that the authors
introduced only a requirement for the median read depth of all cell types at a candidate marker site.
This means that if one cell type is covered by one single read only at a candidate CpG site, this CpG
site can still become a marker for that cell type as long as all other cell types have sufficient coverage.
A simple adjustment was made to the method by setting a minimum depth threshold for cell types at
their potential marker sites. This threshold was set equal to the median depth threshold.

The second possible undesirable behaviour is caused by the manner of checking for the uniqueness
of the markers. As only the top 100 markers of all cell types is checked for overlapping markers, it is
possible that the same site is the 100th best marker for cell type x and the 101st best marker for cell
type y. This situation was prevented by keeping a list of the 150 best markers for each cell type which
are all checked for uniqueness, such that the 100th best marker for cell type x could not even be the
150th best marker for cell type y.

The effects of both changes were measured by calculating the Pearson’s correlation between the
true and estimated cell type proportions for 10 individuals and 10 cell types of 50 replicate runs. The
true cell type proportions were drawn from a uniform distribution and made to sum to one. Using
no improvements, the correlation between the true and estimated cell types was r2 = 0.87 ± 0.09
. Using only the additional uniqueness criterion did not change the results, and resulted in the
same amount of correlation. The stricter depth criterion, however, improved the correlation to r2 =
0.91 ± 0.06. Combining both improvements resulted in the same correlation. This means that the
situation described above does not occur, and the markers are already sufficiently unique. This is
perhaps a consequence of using hypomethylated markers only.

Other methods also benefit from our proposed marker selection approach

Since CelFiE benefits from using our enhanced markers as input, we used this set of markers as input
for the array-based method by Houseman et al. [11] (Figure S6). We find that using the proposed
marker selection procedure significantly improves the results of this method compared to Caggiano et
al.’s procedure [1] (Table S6).
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