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Details on subsampling techniques In Supplementary Figure S1, we present an example of
the difference in the selected bases between a minimizer approach and a syncmer approach.
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syncmers: k=4, s=2, p=1 
minimizers: k=4, w=2
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shared among syncmers: {CATA, TACA, CACA, CACC} (4/4)

shared among minimizers: {ACAT, ATAC, ACAC} (3/4 in s1, 3/5 in s2) 
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Figure S1: Usage syncmers and minimizers for comparing two similar sequences. Sequences s1 and
s2 differ by a AA insertion in orange in S2. We show how selected syncmers and minimizers do not
produce the same sets of representative k-mers and therefore yield different fractions of shared k-mers
between s1 and s2. The k-mer size is 4, the s-mers in syncmers (smallest showed in pink, we choose
the lexicographic order) are of size 2, and in this example we require that the smallest s-mer appears
at the first position of the k-mer. Minimizers have windows of size 2, materialized in blue, with the
minimizer in pink. The selected k-mers are highlighted using a blue star.

Graphmap’s indexing strategy for fuzzy seeds Graphmap builds two hash indexes from
two types of shapes , called 6-1-6 and 4-1-4-1-4. As shown in Supplementary Figure S2, for each
position is seeded (no subsampling). A seeded key corresponds to the subsequence at a given position
of the reference when applying the shape mask: each don’t care (*) base is skipped.

Then, for each read in the query, several lookup keys (for mismatch, deletion and insertion) are
built from a shape (Supplementary Figure S3). To that extent, the lookup key treats the don’t care
base in three different ways. The mis(match) shape has the same behaviour as the indexed key, i.e.,
the don’t care base are skipped. The insertion shape skips two bases: the initial don’t care base and
the base next to it. Finally the deletion shape will simply build the key and keep all the base including
the don’t care base. In total, for a number d of don’t care base, 3d different keys are built per shape.

Graphmap’s backbone graph for LCSk Because of the possible spurious matches that occur
because of the ambiguous bases, Graphmap’s fuzzy seeds require more treatments to find proper chains.
A first step after seeding finds groups of anchors representing longer shared subsequences between the
query and the reference, on which is applied LCSk.

Anchors are placed in a vertex-centric positional graph of k-mers, in which k-mers in both sequences
appear, and share an arc if they are directly consecutive (or consecutive up to a distance parameter)1.
Most weighted paths of anchors (i.e. supported by the query and the reference) are found in this graph
and output as shared subsequences. After the LCSk pass, a L1 linear regression step is applied to fit
a straight line with a 45 degree slope and remove outliers, especially in the beginning and end of the
chain (see case 4 in Figure 5 in the main text). Note that other methods use graphs built over anchors
as backbones to the chaining and alignment steps without fuzzy seeds [2, 1].

Minimap2’s complete formula for regular and large gaps size

1NB: this is different from a de Bruijn graph since nodes with similar contents can be repeated
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Figure S2: Indexing scheme for fuzzy seeds allowing indels and substitutions in Graphmap. In the
figure the shape 4.1.4.1.4 is represented. The zeros represent the don’t care positions of the shape.
The shape is then applied for each position of the genome. The substring built from the shape is used
as key inside a hash index. Each key will correspond to one or more positions on the reference.

• For regular gaps size:

f(i) = max{ max
i>j≥1

xi−G<xj≤xi

yi−G<yj<yi

f(j) + min{dj i, w} − γr(gj i), w}

The property xi − G ≤ xj ≤ xi and yi − G ≤ yj < yi is equivalent to yj < yj , xj ≤ xi and
ej i < G.

• For large gaps size:

f ′(i) = max
i>j≥1

xi−G≤xj≤xi−w
yi−G≤yj≤yi−w

f ′(j) + w − γl(gj i, dj i)

where

dj i = min{yi − yj , xi − xj}

Smaller ”distance” between the two anchors. This
is not really a distance by definition : for (xi, yi) =
(−n, 0), (xj , yj) = (0, 0) and (xk, yk) = (0, n), we
have di j + dj k = 0 < n = di j .

ej i = max{yi − yj , xi − xj} Discrete Chebyshev distance between the two an-
chors

gj i = |(yi − yj)− (xi − xj)|
Gap length (or Manhattan distance between the di-
agonals passing by the two anchors)

γr(g) = 0.01× w × g + 0.5 log2 g

γl(g, d) = c1 × g + c2 × d+ log2 g where c1 and c2 are parameters

Hough transform principle Applying the Hough transform means going from the S1 = (query, reference)
space to the Hough S2 space of coordinates. If a line (y = ax + b) exists in S1, it is a point of co-
ordinates (a, b) in S2 (practically, polar coordinates are used for technical reasons). All possible lines
intersecting a point in S1 can be translated in S2 as a sine wave. Multiple anchors give multiple points
in S2, and the intersection of possible sinusoids intersecting the different points in S2 correspond to
a line roughly intersecting the initial anchors in S1. The Hough space is rasterized, and by counting
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Figure S3: Query in Graphmap, different possible sequences can be matched using a single key. As we
can see, there are three types of look-up shapes, and each of them is used to reconstruct a different
substring. Each type corresponds to three phenomena that can occur with errors in sequencing,
namely substitution, substitution + 1 insertion, and substitution + 1 deletion. Here, two don’t care
bases are present and nine substrings can be obtained. In this example the substring obtained from
the substitution + insertion shape and the mismatch leads to a match with the reference.

and weighing the possible solutions in S2, lines can be deduced in S1. Contrary to linear regression
which would output the best line explained by the seed distribution in S1, here an arbitrary number
of straight lines can be output and considered (see Supplementary Figure S4 for an overview of the
steps).
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Figure S4: An overview of the Hough transform steps.
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