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Supplementary Materials for “Accuracy and Safety of Novel Designs for 
Phase I Drug-Combination Oncology Trials” 

A. Details of the designs for one maximum tolerated dose (MTD) 

A1. Notations 

In a drug-combination trial, 𝐽𝐽 dose levels (𝑑𝑑1𝐴𝐴 < ⋯ < 𝑑𝑑𝐾𝐾𝐴𝐴) of drug A combined with 𝐾𝐾 dose levels 

(𝑑𝑑1𝐵𝐵 < ⋯ < 𝑑𝑑𝐾𝐾𝐵𝐵) of drug B are investigated. Let (𝑗𝑗,𝑘𝑘) denote the dose level of a combination with 

dose 𝑑𝑑𝑗𝑗𝐴𝐴 of drug A and dose 𝑑𝑑𝑘𝑘𝐵𝐵 of drug B. Let 𝑝𝑝1 < ⋯ < 𝑝𝑝𝐾𝐾 and 𝑞𝑞1 < ⋯ < 𝑞𝑞𝐽𝐽 be the marginal 

toxicity probabilities of drug A and drug B, respectively. The joint toxicity probability at dose 

combination (𝑗𝑗,𝑘𝑘)  is denoted by 𝜋𝜋𝑗𝑗𝑘𝑘 , and the target toxicity probability is denoted by 𝜙𝜙 . A 

common assumption imposed in existing phase I drug-combination trials is the partial ordering 

constraint, which says that we only know that the toxicity rates increase with the dose level of one 

drug when the dose level of the other drug is fixed, i.e., 𝜋𝜋1𝑘𝑘 < ⋯ < 𝜋𝜋𝐽𝐽𝑘𝑘 for 𝑘𝑘 = 1, … ,𝐾𝐾 and 𝜋𝜋𝑗𝑗1 <

⋯ < 𝜋𝜋𝑗𝑗𝐾𝐾 for 𝑗𝑗 = 1, … , 𝐽𝐽. 

 

A2. 3+3 design 

The 2D 3+3 design first selects a subset of dose combinations {(1,1), (𝑗𝑗,𝑘𝑘), … , (𝐽𝐽,𝐾𝐾)} that satisfy 

𝜋𝜋11 < 𝜋𝜋𝑗𝑗𝑘𝑘 < ⋯ < 𝜋𝜋𝐽𝐽𝐾𝐾 from the whole drug-combination space. In other words, the selected subset 

constitutes a one-dimensional searching line such that the toxicity rate increases monotonically 

with the dose level. Then the 2D 3+3 design applies the conventional 3+3 method to the selected 

dose combination levels.  

1. The first three patients are treated at the lowest dose combination (1,1). 

2. Suppose that three patients have been treated at the current dose combination. 

a. If there are no patients with DLT, escalate to the next higher dose combination in 

the selected subset.  

b. If there is one patient with DLT, treat three more patients at the current dose 

combination.  
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c. If there is more than one patient with DLT, de-escalate to the next lower dose 

combination in the selected subset. If the next lower dose combination has already 

treated six patients, then claim it as the MTD. 

3. Suppose that six patients have been treated at the current dose combination,  

a. If there are one or no patients with DLT, escalate to the next higher dose 

combination in the selected subset. If the number of patients treated at the next 

higher dose combination is not zero, then claim the current dose combination as the 

MTD.  

b. If there is more than one patient with DLT, de-escalate to the next lower dose 

combination in the selected subset. If the next lower dose combination has already 

treated six patients, then claim it as the MTD. 

In the simulation study with fixed scenarios, the subset of selected dose combinations is provided 

in Figure 2 from the main manuscript; in the study with random scenarios, the subset is randomly 

selected for each simulated trial. To match the sample size with other designs, after the dose-

escalation stage of the 3+3 design, the remaining patients will be treated at the selected MTD in a 

subsequent cohort expansion stage.  

A3. Partial ordering continual reassessment method (POCRM) 

Suppose that the toxicity order of the dose levels in the drug-combination space is completely 

known, then the two-dimensional searching space can be reduced on a one-dimensional searching 

line based on the complete ordering. As a result, the standard CRM can be applied to the reduced, 

one-dimensional searching line. According to the CRM, the joint toxicity probability can be 

modeled using the following empiric function,  

𝜋𝜋𝑗𝑗𝑘𝑘 = 𝑎𝑎𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽), 

where 𝑙𝑙 is the rank of dose combination (𝑗𝑗,𝑘𝑘) in the completely known ordering, 𝛽𝛽 is the unknown 

parameter, and 𝛼𝛼1 < ⋯ < 𝛼𝛼𝐽𝐽𝐾𝐾  is the prespecified toxicity probabilities of a set of 𝐽𝐽 × 𝐾𝐾  dose 

levels, i.e., the skeleton of the CRM.  

In real applications, the true toxicity order is typically unknown. The POCRM1 adopts the idea of 

Bayesian model selection and prespecifies a set of several ordering relationships, according to the 
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partial order information. For example, suppose 𝑀𝑀 orderings are prespecified, 𝑂𝑂1, … ,𝑂𝑂𝑀𝑀, and the 

prior probability of ordering 𝑂𝑂𝑚𝑚 is denoted by Pr(𝑂𝑂𝑚𝑚),𝑚𝑚 = 1, … ,𝑀𝑀. Let 𝐿𝐿(𝛽𝛽 ∣ 𝑂𝑂𝑚𝑚,𝐷𝐷) denotes 

the likelihood based on the order 𝑂𝑂𝑚𝑚 and the observed data 𝐷𝐷. Then the posterior probability of 

order 𝑂𝑂𝑚𝑚 is given by  

Pr(𝑂𝑂𝑚𝑚 ∣∣ 𝐷𝐷 ) ∝ Pr(𝑂𝑂𝑚𝑚)∫ 𝐿𝐿(𝛽𝛽 ∣∣ 𝑂𝑂𝑚𝑚,𝐷𝐷 )𝑓𝑓(𝛽𝛽)𝑑𝑑𝛽𝛽, 

where 𝑓𝑓(𝛽𝛽) is the prior distribution of the unknown parameter 𝛽𝛽. 

The next dose assignment of POCRM is guided by the following steps. 

• Based on the accumulated data 𝐷𝐷, select the ordering 𝑂𝑂𝑚𝑚 that has the largest posterior model 

probability Pr(𝑂𝑂𝑚𝑚 ∣∣ 𝐷𝐷 ).  

• The estimated toxicity probabilities  𝜋𝜋�𝑗𝑗𝑘𝑘 are obtained based on the selected ordering 𝑂𝑂𝑚𝑚. 

• The next cohort of patients are then allocated to the dose combination that has the estimated 

toxicity probability closest to the target toxicity rate.  

• At the end of the trial, the MTD is selected as the suggested next dose combination.  

We obtained the simulation results of the POCRM based on the R package “pocrm” available from 

CRAN. To implement POCRM in our simulation study, we took five orderings for the 2 × 3 trial: 

𝑂𝑂1: 1 → 2 → 3 → 4 → 5 → 6; 

𝑂𝑂2: 1 → 2 → 4 → 3 → 5 → 6; 

𝑂𝑂3: 1 → 2 → 4 → 5 → 3 → 6; 

𝑂𝑂4: 1 → 4 → 2 → 3 → 5 → 6; 

𝑂𝑂5: 1 → 4 → 2 → 5 → 3 → 6; 

and used the model calibration approach2 to specify the skeleton by setting the halfwidth at 0.05 

and the prior guess of the MTD at dose 3. We took eight orderings for the 2 × 4 trial: 

𝑂𝑂1: 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8; 

𝑂𝑂2: 1 → 3 → 2 → 4 → 5 → 6 → 7 → 8; 

𝑂𝑂3: 1 → 2 → 3 → 5 → 4 → 6 → 7 → 8; 

𝑂𝑂4: 1 → 2 → 3 → 4 → 5 → 7 → 6 → 8; 

𝑂𝑂5: 1 → 3 → 2 → 5 → 4 → 6 → 7 → 8; 
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𝑂𝑂6: 1 → 3 → 2 → 4 → 5 → 7 → 6 → 8; 

𝑂𝑂7: 1 → 2 → 3 → 5 → 4 → 7 → 6 → 8; 

𝑂𝑂8: 1 → 3 → 2 → 5 → 4 → 7 → 6 → 8,  

and used the model calibration approach2 to specify the skeleton by setting the halfwidth at 0.05 

and the prior guess of the MTD at dose 4; We took six orderings for the 3 × 5 trial: 

𝑂𝑂1: 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 → 13 → 14 → 15; 

𝑂𝑂2: 1 → 2 → 6 → 3 → 7 → 11 → 4 → 8 → 12 → 5 → 9 → 13 → 10 → 14 → 15; 

𝑂𝑂3: 1 → 6 → 11 → 2 → 7 → 12 → 3 → 8 → 13 → 4 → 9 → 14 → 5 → 10 → 15; 

𝑂𝑂4: 1 → 6 → 2 → 11 → 7 → 3 → 12 → 8 → 4 → 13 → 9 → 5 → 14 → 10 → 15; 

𝑂𝑂5: 1 → 2 → 6 → 11 → 7 → 3 → 4 → 8 → 12 → 13 → 9 → 5 → 10 → 14 → 15; 

𝑂𝑂6: 1 → 6 → 2 → 3 → 7 → 11 → 12 → 8 → 4 → 5 → 9 → 13 → 14 → 10 → 15, 

and used the model calibration approach2 to specify the skeleton by setting the halfwidth at 0.05 

and the prior guess of the MTD at dose 8. Similarly, we took six orderings for the 4 × 4 trial: 

𝑂𝑂1: 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 → 13 → 14 → 15 → 16; 

𝑂𝑂2: 1 → 2 → 5 → 3 → 6 → 9 → 4 → 7 → 10 → 13 → 8 → 11 → 14 → 12 → 15 → 16; 

𝑂𝑂3: 1 → 5 → 2 → 3 → 6 → 9 → 13 → 10 → 7 → 4 → 8 → 11 → 14 → 15 → 12 → 16; 

𝑂𝑂4: 1 → 5 → 2 → 9 → 6 → 3 → 13 → 10 → 7 → 4 → 14 → 11 → 8 → 15 → 12 → 16; 

𝑂𝑂5: 1 → 5 → 9 → 13 → 2 → 6 → 10 → 14 → 3 → 7 → 11 → 15 → 4 → 8 → 12 → 16; 

𝑂𝑂6: 1 → 2 → 5 → 9 → 6 → 3 → 4 → 7 → 10 → 13 → 14 → 11 → 8 → 12 → 15 → 16, 

and used the model calibration approach2 to specify the skeleton by setting the halfwidth at 0.05 

and the prior guess of the MTD at dose 10.  

The reason why we used more orderings in 2 × 3  and 2 × 4  trials is all (or most) possible 

orderings can be enumerated in these cases where the numbers of dose levels for the combined 

drugs are small. Using as many as possible orderings can ensure the completeness of the parameter 

space. However, for 3 × 5 and 4 × 4 trials, it is infeasible to list all possible ordering. According 

to the guidance on POCRM, the setting with six orderings is capable of yielding good 

performances3. The discrete uniform distribution was taken as the prior order probability.   

A4. Copula method 
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Usually, prior to the combination trial, each drug has been thoroughly studied when administered 

alone. This means that we have plenty of prior information on the marginal toxicity rate 𝑝𝑝𝑗𝑗 and 𝑞𝑞𝑘𝑘. 

The copula dose-finding method adopts a copula function to model the joint toxicity rate 𝜋𝜋𝑗𝑗𝑘𝑘 by 

linking the marginal rates 𝑝𝑝𝑗𝑗  and 𝑞𝑞𝑘𝑘 . For example, by borrowing the structure of the Clayton 

copula, Yin and Yuan4 proposed that 𝜋𝜋𝑗𝑗𝑘𝑘 can be modeled as  

𝜋𝜋𝑗𝑗𝑘𝑘 = 1 − ��1 − 𝑝𝑝𝑗𝑗𝛼𝛼�
−𝛾𝛾

+ �1 − 𝑞𝑞𝑘𝑘
𝛽𝛽�

−𝛾𝛾
− 1�

−1/𝛾𝛾
, 

where 𝛼𝛼,𝛽𝛽, and 𝛾𝛾 are unknown parameters, and the drug-drug interactions are characterized by the 

parameter 𝛾𝛾. The copula dose-finding method is not specific to the Clayton copula, and any copula 

function from the Archimedean copula family can be employed to model 𝜋𝜋𝑗𝑗𝑘𝑘. Under the Bayesian 

framework, the dose escalation/de-escalation rule of the copula method is guided by the posterior 

probabilities Pr(𝜋𝜋𝑗𝑗𝑘𝑘 < 𝜙𝜙 ∣ 𝐷𝐷)  and the posterior mean estimate 𝜋𝜋�𝑗𝑗𝑘𝑘 . Suppose the current dose 

combination is (𝑗𝑗,𝑘𝑘), then the following rules apply. 

• If Pr(𝜋𝜋𝑗𝑗𝑘𝑘 < 𝜙𝜙 ∣ 𝐷𝐷) > 𝑐𝑐𝑒𝑒 , then assign the next cohort of patients to the adjacent dose 

combination whose estimated toxicity probability is higher than  𝜋𝜋�𝑗𝑗𝑘𝑘 and closest to the target 

toxicity rate 𝜙𝜙. 

• If Pr(𝜋𝜋𝑗𝑗𝑘𝑘 > 𝜙𝜙 ∣ 𝐷𝐷) > 𝑐𝑐𝑑𝑑 , then assign the next cohort of patients to the adjacent dose 

combination whose estimated toxicity probability is lower than  𝜋𝜋�𝑗𝑗𝑘𝑘 and closest to the target 

toxicity rate 𝜙𝜙. 

• Otherwise, treat the next cohort of patients at the current dose combination.  

Here, 𝑐𝑐𝑒𝑒 and 𝑐𝑐𝑑𝑑 are prespecified probability cutoffs. At the end of the trial, the MTD is selected as 

the dose combination (𝑗𝑗,𝑘𝑘) that has the estimated toxicity rate  𝜋𝜋�𝑗𝑗𝑘𝑘 closest to the target toxicity 

rate 𝜙𝜙. 

In the simulation study, we consider 𝑐𝑐𝑒𝑒 = 0.8 and 𝑐𝑐𝑑𝑑 = 0.45. The prior distributions for 𝛼𝛼,𝛽𝛽, and 

𝛾𝛾  are specified as follows: 𝛼𝛼 ∼ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(1.2,0.6) , 𝛽𝛽 ∼ 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(1.2,0.6),  and 𝛾𝛾 ∼

𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(0.1,0.1) . In 2 × 3  drug-combination trials, we took (𝑝𝑝1,𝑝𝑝2) = (0.15, 0.3)  and 

(𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3) = (0.10, 0.20, 0.30).  In 2 × 4  drug-combination studies, we choose (𝑝𝑝1,𝑝𝑝2) =

(0.15,0.3)  and (𝑞𝑞1, … , 𝑞𝑞4) = (0.08,0.15,0.23,0.30).  In 3 × 5  combination studies, we choose 
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(𝑝𝑝1,𝑝𝑝2,𝑝𝑝3) = (0.10, 0.20, 0.30) , and (𝑞𝑞1, … , 𝑞𝑞5) = (0.06,0.12,0.18,0.24,0.30).  In 4 × 4  drug-

combination studies, we choose (𝑝𝑝1, … ,𝑝𝑝4) = (𝑞𝑞1, … , 𝑞𝑞4) = (0.08,0.15,0.23,0.30). 

 

A5. Bayesian logistic regression method (BLRM) 

The BLRM5 first quantifies the marginal toxicity rates for each drug using the logistic regression 

model 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝑙𝑙𝑑𝑑𝑑𝑑𝑜𝑜�𝑝𝑝𝑗𝑗�� = 𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼1 + 𝛽𝛽1 𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑗𝑗𝐴𝐴 �̃�𝑑𝐴𝐴⁄ �, 

𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑑𝑑𝑑𝑑𝑜𝑜(𝑞𝑞𝑘𝑘)� = 𝑙𝑙𝑙𝑙𝑙𝑙 𝛼𝛼2 + 𝛽𝛽2 𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘𝐵𝐵 �̃�𝑑𝐵𝐵⁄ �, 

where  �̃�𝑑𝐴𝐴  and  �̃�𝑑𝐵𝐵  are reference doses for drugs A and B, respectively. When there is no 

interaction between the two drugs, the toxicity rate of the combined dose (𝑗𝑗,𝑘𝑘) is given by  

𝜋𝜋𝑗𝑗𝑘𝑘0 = 𝑝𝑝𝑗𝑗 + 𝑞𝑞𝑗𝑗 − 𝑝𝑝𝑗𝑗𝑞𝑞𝑘𝑘. 

By adding interaction, the joint toxicity probability can be modeled as  

𝑙𝑙𝑑𝑑𝑑𝑑𝑜𝑜�𝜋𝜋𝑗𝑗𝑘𝑘� = 𝑙𝑙𝑑𝑑𝑑𝑑𝑜𝑜�𝜋𝜋𝑗𝑗𝑘𝑘0 � 𝑒𝑒𝑒𝑒𝑝𝑝(
𝜂𝜂𝑑𝑑𝑗𝑗

𝐴𝐴𝑑𝑑𝑘𝑘
𝐵𝐵

𝑑𝑑�𝐴𝐴𝑑𝑑�𝐵𝐵  
). 

As a result, the joint toxicity rate model of 2D BLRM has five unknown parameters 

(𝛼𝛼1,𝛽𝛽1,𝛼𝛼2,𝛽𝛽2, 𝜂𝜂), where the parameter 𝜂𝜂 characterizes the drug-drug interactive effects.  

The BLRM categorizes the probability of DLT into three intervals. For example, if the target 

toxicity rate 𝜙𝜙 = 0.25, according to Neuenschwander et al.,5 the three intervals can be defined as  

• Underdosing interval: 𝜋𝜋𝑗𝑗𝑘𝑘 ∈ (0,0.16); 

• Targeted dosing interval: 𝜋𝜋𝑗𝑗𝑘𝑘 ∈ (0.16,0.33); 

• Overdosing interval: 𝜋𝜋𝑗𝑗𝑘𝑘 ∈ (0.33,1).  

For the next cohort of patients, BLRM selects the adjacent dose combination that has the highest 

posterior probability of target dosing, i.e., Pr(𝜋𝜋𝑗𝑗𝑘𝑘 ∈ (0.16,0.33) ∣ 𝐷𝐷) as well as has the posterior 

probability of overdosing less than 25%.   
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The trial based on the BLRM will be terminated and selects the dose combination (𝑗𝑗,𝑘𝑘) as the 

MTD if one of the following conditions is satisfied: 

(a) At least 15 patients have been enrolled; 

(b) The posterior probability of target dosing at (𝑗𝑗,𝑘𝑘)  exceeds 50%, i.e., Pr(𝜋𝜋𝑗𝑗𝑘𝑘 ∈

(0.16,0.33) ∣ 𝐷𝐷) ≥ 0.5; or at least 6 patients have been treated at dose combination (𝑗𝑗,𝑘𝑘). 

If the maximum sample size is exhausted while neither of the above conditions is met, the MTD 

is selected as the suggested next dose combination.  

Following the original article of the BLRM,5 we assume independent normal priors, 

𝑁𝑁(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(0.1), 2.52), for log𝛼𝛼1 and log𝛼𝛼2; independent standard normal priors, 𝑁𝑁(0,1), for log𝛽𝛽1 

and log𝛽𝛽2 ; and a normal prior, 𝑁𝑁(0,12), for 𝜂𝜂 . For 2 × 4  drug-combination studies, we take 

(𝑑𝑑1𝐴𝐴,𝑑𝑑2𝐴𝐴) = (0.5,1) , (𝑑𝑑1𝐵𝐵, … ,𝑑𝑑4𝐵𝐵) = (0.25,0.5,0.75,1) ,  �̃�𝑑𝐴𝐴 = 1 , and  �̃�𝑑𝐵𝐵 = 1 . For 3 × 5 

combination studies, we take (𝑑𝑑1𝐴𝐴,𝑑𝑑2𝐴𝐴,𝑑𝑑3𝐴𝐴) = (0.33, 0.67, 1) , (𝑑𝑑1𝐵𝐵, … ,𝑑𝑑5𝐵𝐵) =

(0.125,0.25,0.5,0.75,1) , and  �̃�𝑑𝐴𝐴 = �̃�𝑑𝐵𝐵 = 1.  For 4 × 4  drug-combination studies, we take 

(𝑑𝑑1𝐴𝐴,𝑑𝑑2𝐴𝐴,𝑑𝑑3𝐴𝐴,𝑑𝑑4𝐴𝐴) = (𝑑𝑑1𝐵𝐵,𝑑𝑑2𝐵𝐵, 𝑑𝑑3𝐵𝐵,𝑑𝑑4𝐵𝐵) = (0.25,0.5,0.75,1), and  �̃�𝑑𝐴𝐴 = �̃�𝑑𝐵𝐵 = 1. 

To avoid confounding issues due to early stopping and ensure a fair comparison with other designs, 

we do not include the aforementioned stopping rule of BLRM in the main study. Instead, we 

conduct an additional study of the BLRM and make comparisons with other designs using similar 

stopping rules. Details of this additional study can be found in Section E of Supplementary 

Materials.  

A6. BOIN combination design 

The dose assignment rules of the BOIN combination design are guided by comparing the observed 

toxicity rate  𝜋𝜋�𝑗𝑗𝑘𝑘 = 𝑦𝑦𝑗𝑗𝑘𝑘/𝑛𝑛𝑗𝑗𝑘𝑘 with some prespecified lower and upper cutoff values, denoted by 𝜆𝜆𝑒𝑒 

and 𝜆𝜆𝑢𝑢 . Liu and Yuan6 optimized 𝜆𝜆𝑒𝑒  and 𝜆𝜆𝑑𝑑  by minimizing the probability of incorrect 

assignments,  

𝜆𝜆𝑒𝑒 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
1 − 𝜙𝜙1
1 − 𝜙𝜙

� / 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜙𝜙(1 − 𝜙𝜙1)
𝜙𝜙1(1 − 𝜙𝜙)�  , 𝜆𝜆𝑑𝑑 = 𝑙𝑙𝑙𝑙𝑙𝑙 �

1 −𝜙𝜙
1 − 𝜙𝜙2

� / 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝜙𝜙2(1 −𝜙𝜙)
𝜙𝜙(1 −𝜙𝜙2)� , 

where 𝜙𝜙1 denotes a prespecified DLT rate that is regarded as subtherapeutic and 𝜙𝜙2 denotes a DLT 

rate that is considered too toxic. Suppose the current dose level is (𝑗𝑗,𝑘𝑘), define an admissible dose 
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escalation set as 𝐴𝐴𝐸𝐸 = {(𝑗𝑗 + 1, 𝑘𝑘), (𝑗𝑗, 𝑘𝑘 + 1)} and an admissible dose de-escalation set as 𝐴𝐴𝐷𝐷 =

{(𝑗𝑗 − 1, 𝑘𝑘), (𝑗𝑗,𝑘𝑘 − 1)} . The BOIN combination design treats the patients according to the 

following rules7:  

• If  𝜋𝜋�𝑗𝑗𝑘𝑘 ≤ λe , then escalate to the dose combination in 𝐴𝐴𝐸𝐸  that has the maximum value of 

Pr(𝜋𝜋𝑗𝑗′𝑘𝑘′ ∈ (𝜆𝜆𝑒𝑒 ,𝜆𝜆𝑑𝑑) ∣ 𝐷𝐷𝑗𝑗′𝑘𝑘′).  

• If  𝜋𝜋�𝑗𝑗𝑘𝑘 ≥ λu, then de-escalate to the dose combination in 𝐴𝐴𝐷𝐷 that has the maximum value of 

Pr(𝜋𝜋𝑗𝑗′𝑘𝑘′ ∈ (𝜆𝜆𝑒𝑒 ,𝜆𝜆𝑑𝑑) ∣ 𝐷𝐷𝑗𝑗′𝑘𝑘′). 

• Otherwise, if 𝜆𝜆𝑒𝑒 < 𝜋𝜋�𝑗𝑗𝑘𝑘 < 𝜆𝜆𝑢𝑢, stay at the current dose level (𝑗𝑗,𝑘𝑘). 

Here 𝐷𝐷𝑗𝑗𝑘𝑘 = (𝑦𝑦𝑗𝑗𝑘𝑘,𝑛𝑛𝑗𝑗𝑘𝑘) denotes the observed data at dose combination (𝑗𝑗,𝑘𝑘). At the end of the trial, 

the bivariate isotonic regression procedure is applied to the observed toxicity rates �𝜋𝜋�𝑗𝑗𝑘𝑘� to obtain 

the isotonic estimates �𝜋𝜋�𝑗𝑗𝑘𝑘�. The MTD is selected as the dose combination that has been tested as 

well as has 𝜋𝜋�𝑗𝑗𝑘𝑘 closest to the target toxicity rate 𝜙𝜙. In the simulation study, we take the default 

values of 𝜙𝜙1 and 𝜙𝜙2, i.e., 𝜙𝜙1 = 0.6𝜙𝜙 and 𝜙𝜙2 = 1.4𝜙𝜙. 

The BOIN combination design only uses the local data collected at the current dose combination, 

and it does not look “ahead” when making dose escalation decisions. To prevent escalating to 

overly toxic dose levels, a dose-elimination rule is imposed: if the current dose combination (𝑗𝑗,𝑘𝑘) 

is too toxic, as noted by Pr� 𝜋𝜋𝑗𝑗𝑘𝑘 > 𝜙𝜙 ∣∣ 𝐷𝐷𝑗𝑗𝑘𝑘 � > 𝜂𝜂 with 𝜂𝜂 being a cutoff probability, then the current 

dose combination and its higher combinations {(𝑗𝑗′,𝑘𝑘′): 𝑗𝑗′ ≥ 𝑗𝑗,𝑘𝑘′ ≥ 𝑘𝑘} are eliminated from the 

trial. In the simulation study, a uniform 𝑈𝑈𝑛𝑛𝑙𝑙𝑓𝑓(0,1) prior distribution is assigned to 𝜋𝜋𝑗𝑗𝑘𝑘 and 𝜂𝜂 is 

chosen to be 0.95.  

 

A7. Additional rules 

Start-up rule 

For model-based methods including POCRM, Copula, and BLRM, a start-up phase is needed to 

prevent aggressive dose escalation at the beginning of the trial when the data are too sparse. To 

make the methods comparable, we initiate the same start-up rule for all the model-based methods. 

Specifically, the first cohort of patients are treated at the lowest dose combination (1,1). If no DLT 
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is observed, then we randomly increase one dose level of drug A or one dose level of drug B, while 

fixing the dose level of the other drug for the next cohorts. As long as one DLT is observed, the 

start-up phase is terminated, and the trial is kicked into the main phase.  

 

Early stopping rule 

We impose an early stopping rule for all considered designs for fair comparisons: if the lowest 

dose combination is too toxic, as noted by Pr(𝜋𝜋11 > 𝜙𝜙 ∣ 𝐷𝐷11) > 𝜂𝜂, then the trial is early terminated 

for safety. The posterior probability is modeled by the Beta-Binomial model and calculated based 

on the local data of the lowest dose combination only. Using such an approach can avoid an 

excessively high/low incorrect early termination probability under model misspecification. In the 

simulation study, a uniform Unif(0,1) prior distribution is assigned to 𝜋𝜋11 and 𝜂𝜂 is chosen to be 

0.95.  

 

B. Details of the designs for multiple MTDs 

B1. PIPE design 

The dose escalation of the product of independent beta probabilities escalation (PIPE)8 is guided 

by finding the most likely MTD contour, which is a contour partitioning the dose combination 

space into the regions with the target toxicity rate above 𝜙𝜙 and less than or equal to 𝜙𝜙, respecitvley. 

We impose a toxicity monotonicity constraint, such that the MTD contour does not violate the 

assumption that the toxicity probability increases as the dose increases. 

Given 𝑛𝑛𝑗𝑗𝑘𝑘 patients at the dose combination (𝑗𝑗,𝑘𝑘), the number of DLT(s) 𝑦𝑦𝑗𝑗𝑘𝑘 follows a binomial 

distribution 𝐵𝐵𝑙𝑙𝑛𝑛(𝑛𝑛𝑗𝑗𝑘𝑘,𝜋𝜋𝑗𝑗𝑘𝑘), where 𝜋𝜋𝑗𝑗𝑘𝑘  is the probability of DLT at the dose combination (𝑗𝑗,𝑘𝑘). 

Assume an independent beta prior 𝐵𝐵𝑒𝑒𝑙𝑙𝑎𝑎(𝑎𝑎, 𝑏𝑏) for 𝜋𝜋𝑗𝑗𝑘𝑘 . Then the posterior probability of DLT 

𝜋𝜋𝑗𝑗𝑘𝑘 |𝐷𝐷𝑗𝑗𝑘𝑘 is also a beta distribution 𝐵𝐵𝑒𝑒𝑙𝑙𝑎𝑎(𝑦𝑦𝑗𝑗𝑘𝑘 + 𝑎𝑎,𝑛𝑛𝑗𝑗𝑘𝑘 − 𝑦𝑦𝑗𝑗𝑘𝑘 + 𝑏𝑏). 

Denote the MTD contour as a binary matrix where 1 represents the toxicity risk > 𝜙𝜙  and 0 

represents the toxicity risk ≤ 𝜙𝜙. Then the posterior probability that an MTD contour binary matrix 

𝐶𝐶𝑠𝑠 is the true MTD contour 𝑀𝑀𝑀𝑀𝐷𝐷𝜃𝜃 is as follows: 
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𝑃𝑃�𝑀𝑀𝑀𝑀𝐶𝐶𝜙𝜙 = 𝐶𝐶𝑠𝑠�𝑌𝑌� ∝ ∏ �1 − 𝑝𝑝𝑗𝑗𝑘𝑘�𝜙𝜙�𝐷𝐷𝑗𝑗𝑘𝑘��
𝐶𝐶𝑠𝑠[𝑗𝑗,𝑘𝑘]

𝑝𝑝𝑗𝑗𝑘𝑘�𝜙𝜙�𝐷𝐷𝑗𝑗𝑘𝑘�
1−𝐶𝐶𝑠𝑠[𝑗𝑗,𝑘𝑘]

𝑗𝑗,𝑘𝑘 , 

where 𝑝𝑝𝑗𝑗𝑘𝑘(𝜙𝜙|𝑌𝑌) is the posterior probability that the DLT rate is less than or equal to 𝜙𝜙, i.e., 

𝑝𝑝𝑗𝑗𝑘𝑘�𝜙𝜙�𝐷𝐷𝑗𝑗𝑘𝑘� = 𝑃𝑃�𝜋𝜋𝑗𝑗𝑘𝑘 ≤ 𝜙𝜙�𝐷𝐷𝑗𝑗𝑘𝑘�, in which 𝑃𝑃(. ) is the cumulative distribution function of 𝜋𝜋𝑗𝑗𝑘𝑘 |𝐷𝐷𝑗𝑗𝑘𝑘,  

and 𝐶𝐶𝑠𝑠[𝑗𝑗,𝑘𝑘] is the (𝑗𝑗,𝑘𝑘)th element of the binary matrix 𝐶𝐶𝑠𝑠. 

For each monotonic MTD contour indexed by the matrix 𝐶𝐶𝑠𝑠, its posterior probability of being the 

true contour 𝑀𝑀𝑀𝑀𝐷𝐷𝜙𝜙 , 𝑃𝑃�𝑀𝑀𝑀𝑀𝐶𝐶𝜙𝜙 = 𝐶𝐶𝑠𝑠�𝑌𝑌�,  is computed, and the contour with the largest 

𝑃𝑃�𝑀𝑀𝑀𝑀𝐶𝐶𝜙𝜙 = 𝐶𝐶𝑠𝑠�𝑌𝑌� is selected as the most likely MTD contour and denoted as 𝐶𝐶∗. The next cohort 

is assigned to the least experimented dose among the admissible doses, which are the dose 

combinations that are adjacent (i.e., differ by one dose level of only one drug) to the most likely 

MTD contour 𝐶𝐶∗. After each cohort of patients has been recruited, the most likely MTD contour 

𝐶𝐶∗ is estimated (updated). The MTDs are selected as the already tested lower dose combinations 

that are closest to 𝐶𝐶∗ and that meet the safety constraint.  

The simulation results of PIPE were obtained based on the R package “pipe.design” available from 

CRAN. The prior median probability for each dose combination was set to be equal to the target 

toxicity rate 𝜙𝜙, and the prior sample size was chosen to be 1/𝐽𝐽𝐾𝐾. According to the reference 

manual, we took strategy="ss", constraint="neighbouring", epsilon=0.8, admis="closest", and 

alternate=FALSE as the specification for the other design parameters. 

 

B2. Waterfall design 

Built upon the single-agent BOIN design, the waterfall design uses a divide-and-conquer strategy 

to find multiple MTDs. To illustrate the general dose-finding rule of the waterfall design, we 

consider a 3× 4 drug-combination trial as an example. As illustrated in Figure S4, the waterfall 

design partitions the 𝐽𝐽 × 𝐾𝐾 dose-combination matrix into 𝐽𝐽 subtrials (or blocks), within which the 

toxicity rates of the doses are fully ordered. As a result, the single-agent BOIN design can be 

applied to each subtrial for finding a candidate MTD. These subtrials are conducted sequentially 

from the top of the matrix to the bottom, which is why we refer to the design as the waterfall design. 
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As shown in panel (a) of Figure S4, the waterfall design conducts the first subtrial with the starting 

dose(1,1) using the BOIN design. After the first subtrial identified (3,2)as the candidate MTD, 

we then conduct the second subtrial with the starting dose (2,3)(see panel (b)). After the second 

subtrial identified (2,3) as the candidate MTD, we conduct the third subtrial with the starting dose 

(1,4) (see panel (c)). After all subtrials complete, we select the MTD contour based on the data 

from all subtrials using a statistical method known as matrix isotonic regression, as shown in panel 

(d). Using the results of each subtrial to inform the design (e.g., the dose range and the starting 

dose) of subsequent subtrials is a key feature of the waterfall design. Such information borrowing 

allows the design to explore the two-dimensional dose space efficiently using limited sample size, 

and decreases the chance of overdosing or underdosing patients. 

The waterfall design requires the users to specify a stopping rule for the subtrials. As a rule of 

thumb, Zhang and Yuan9 recommend the 𝑗𝑗th subtrial, 𝑗𝑗 = 1, … , 𝐽𝐽, terminates, if the number of 

patients allocated to this subtrial reaches 𝑁𝑁𝑗𝑗𝑚𝑚𝑚𝑚𝑒𝑒 = 4 × the number of doses in the 𝑗𝑗th subtrial. This 

means that given a 𝐽𝐽 × 𝐾𝐾  dose combination, the maximum total sample size for the trial is 

4 × 𝐽𝐽 × 𝐾𝐾. 

To simulate the waterfall design, we implement the “get.oc.comb” function in the R package 

“BOIN” available from CRAN. For a 2 × 4 combination trial with 27 patients, we allocate 18 

patients to subtrial 1, and the remaining 9 patients to subtrial 2; For a 2 × 4 combination trial with 

36 patients, we allocate 24 patients to subtrial 1, and the remaining 12 patients to subtrial 2; For a 

3 × 5 combination trial with 48 patients, we allocate 24 patients to subtrial 1, and allocate 12 

patients to each of the remaining two subtrials; For a 4 × 4 combination trial with 48, we allocate 

21 patients to subtrial 1, and allocate 9 patients to each of the remaining three subtrials. Default 

values are used for the other design parameters of the waterfall design.  

 

C. A random scenario generator 

Let 𝜙𝜙  denote the target toxicity rate, and 𝜖𝜖 > 0  be a small positive number that defines the 

indifference interval of the target, i.e., any dose with a DLT rate inside (𝜙𝜙 − 𝜖𝜖,𝜙𝜙 + 𝜖𝜖) can be 

treated as an MTD. Given a 𝐽𝐽 × 𝐾𝐾 drug-combination space and 𝑛𝑛𝑚𝑚, the number of MTDs that exist 

in the dose-combination space, and 𝑝𝑝𝑢𝑢, the upper limit of the toxicity probability, and let (𝑗𝑗𝑖𝑖,𝑘𝑘𝑖𝑖) 
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denote the dose combination of the 𝑙𝑙th MTD, we generate two-dimensional dose-toxicity scenarios 

via the following steps: 

1. Determine the locations of the 𝑛𝑛𝑚𝑚 MTDs in the 𝐽𝐽 × 𝐾𝐾 space. For the 𝑙𝑙th MTD, 𝑙𝑙 = 1, … ,𝑛𝑛𝑚𝑚, 

a. Randomly sample 𝑗𝑗𝑖𝑖 from the set {𝑗𝑗𝑖𝑖−1 + 1, … , 𝐽𝐽 − 𝑛𝑛𝑚𝑚 + 1}, where 𝑗𝑗0 = 0.  

b. Randomly sample 𝑘𝑘𝑖𝑖 from the set {𝑛𝑛𝑚𝑚 − 𝑙𝑙 + 1,𝑛𝑛𝑚𝑚 − 𝑙𝑙 + 2, … ,𝑘𝑘𝑖𝑖−1 − 1}, where 𝑘𝑘0 = 𝐾𝐾 + 1. 

2. Generate a random variable 𝑢𝑢 from Unif(0,1).  

3. If 𝑢𝑢 < 0.5, then the dose-toxicity space is generated by row as follows: 

a. Initiate 𝑚𝑚0 = 0 and 𝑚𝑚1 = 𝑚𝑚𝑙𝑙𝑛𝑛{𝑘𝑘𝑖𝑖} . For the 𝑗𝑗th row, starting from the highest row 𝐽𝐽 to the 

lowest row 1, i.e., 𝑗𝑗 = 𝐽𝐽, … ,1. 

b. If the 𝑗𝑗th row does not contain the MTD, then let 𝑚𝑚2 = 𝑚𝑚1 −𝑚𝑚0 − 1. Generate 𝑚𝑚0 samples 

from Unif(0,𝜙𝜙 − 𝜖𝜖),  𝑚𝑚2  samples from 0.5Unif(0,𝜙𝜙 − 𝜖𝜖) + 0.5Unif(𝜙𝜙 + 𝜖𝜖,𝑝𝑝𝑢𝑢),  and  𝐾𝐾 −

𝑚𝑚1 + 1 samples from Unif(𝜙𝜙 + 𝜖𝜖,𝑝𝑝𝑢𝑢). Then sort these samples. 

c. If the 𝑗𝑗th row contains the MTD and supposing that the MTD is dose combination (𝑗𝑗,𝑘𝑘), then 

generate 𝑘𝑘 − 1 samples from Unif(0,𝜙𝜙 − 𝜖𝜖), one sample from Unif(𝜙𝜙 − 𝜖𝜖,𝜙𝜙 + 𝜖𝜖), and 𝐾𝐾 − 𝑘𝑘 

samples from Unif(𝜙𝜙 + 𝜖𝜖,𝑝𝑝𝑢𝑢). Then sort these samples. In the meantime, update 𝑚𝑚0 = 𝑘𝑘 and 

𝑚𝑚1 to be the lowest dose level of drug B in the remaining MTD set. If there is no MTD remaining, 

𝑚𝑚1 = 𝐾𝐾 + 1. 

d. In the end, sort the column vectors to satisfy the partial ordering.  

4. If 𝑢𝑢 ≥ 0.5, the dose-toxicity space is symmetrically generated by column, and thus is omitted. 

In the simulation study, we fix 𝜖𝜖 = 0.05 and 𝑝𝑝𝑢𝑢 = 0.75, which can generate various reasonable 

dose-toxicity spaces. We have provided the R code to generate random drug-combination 

scenarios in Table S3. 

 

D. Simulation results 
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The results of all designs were computed using R. In particular, the POCRM, BOIN, PIPE, and 

waterfall designs were simulated based on their respective R packages (as listed in Table 1), which 

are available from the R CRAN network. The BLRM and Copula designs involve Bayesian 

posterior samplings, which were conducted using the JAGS software through the “R2jags” 

package available from CRAN. 

The simulation results using random scenarios, stratified by the number of MTDs presenting in 

the dose space, are reported in Figures S5-S6 (for designs aimed at finding one MTD) and Figures 

S7-S8 (for designs aimed at findings multiple MTDs), respectively. It shows that when the number 

of MTDs presenting in the dose space is one or two, the BOIN design on average has a good and 

robust selection percentage of the MTD, and the BLRM design generally is safer compared to 

other designs. Among designs for finding multiple MTDs, the Waterfall design’s performance on 

average is better than PIPE, regardless of how many MTDs exist in the dose space. 

 

E. Additional study 

We conducted additional simulation studies, for the designs aimed at one MTD, by including a 

stopping rule. Suppose the current dose combination is (𝑗𝑗,𝑘𝑘), we implemented the following 

stopping rules for the BLRM design: 

(a) At least 15 patients have been enrolled; 

(b) The posterior probability of target dosing at (𝑗𝑗,𝑘𝑘)  exceeds 50%, i.e., Pr(𝜋𝜋𝑗𝑗𝑘𝑘 ∈

(0.16,0.33) ∣ 𝐷𝐷) ≥ 0.5; or at least 6 patients have been treated at dose combination (𝑗𝑗,𝑘𝑘). 

For the other designs, we adopted the following stopping criteria: 

(a) At least 15 patients have been enrolled; 

(b) The posterior probability of target dosing at (𝑗𝑗,𝑘𝑘)  exceeds 50%, i.e., Pr(𝜋𝜋𝑗𝑗𝑘𝑘 ∈

(0.16,0.33) ∣ 𝐷𝐷) ≥ 0.5; or at least 6 patients have been treated at dose combination (𝑗𝑗,𝑘𝑘). 

In this study, we only considered the 2 × 4 combination trial and took the maximum sample size 

of 36. According to Figure S9 of Supplementary Materials, the designs except Copula generally 

yield similar average sample sizes. In terms of accuracy, BOIN achieves the highest correct 

selection percentage with comparably small sample size. The trial efficiency index, defined as the 
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ratio of the correct MTD selection percentage divided by the average sample size, shows that both 

the BLRM and BOIN are more efficient than the other designs in MTD identification.   

 

F. Matching prior distributions 

To ensure fair comparisons, it is desirable to make sure that the prior distributions of the model-

based designs (including POCRM, Copula and BLRM) are comparable with each other. We do so 

by matching approximately the prior distributions of the joint toxicity probability of each dose 

combination among the three designs. However, because different parametric models of different 

designs have different numbers of parameters, equivalently different degrees of freedom, it is 

impossible to obtain a perfect match for all dose combinations, especially for higher-dimensional 

dose combination spaces. The final prior distributions used in this simulation study were carefully 

selected such that 1) the prior distributions of the joint toxicity probabilities of the majority dose 

combinations are comparable between the three model-based designs, and 2) each design on 

average has desirable or best performance among the prespecified set of prior distributions. For 

example, Figure S12 displays prior density distributions of the joint toxicity probabilities in the 

2×3 combination trial for the POCRM, Copula and BLRM methods. Since there are only 6 dose 

combinations under consideration, it is easier to obtain a good match for the 6 combinations. In 

contrast, Figure S13 shows the boxplots of the prior joint toxicity probabilities in the 4×4 

combination trial for the three methods. Since POCRM only has two degrees of freedom, it is less 

flexible in controlling the prior joint toxicity probabilities.  
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Figure S1. Challenges in drug-combination dose-finding trials. In the left panel, partial order in 
toxicity is present, where A1B1 < A1B2 indicates that the toxicity probability of combination A1B2 
is greater than that of A1B1. In the drug-combination trial, the toxicity order among all dose 
combinations is not fully known. In the right panel, MTD contour is present in the dose--toxicity 
surface. 
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Figure S2. The “Trial Protocol” tab included in the BOIN combination design web app, freely 
available from https://trialdesign.org, to generate the trial protocol template.  

 

 

 

https://trialdesign.org/
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Figure S3. The interface window of the POCRM web app, freely available from 
http://uvatrapps.uvadcos.io/pocrm/.  

 

 

 

Figure S4. Illustration of the waterfall design for a 3 × 4 combination trial. The doses in the 
rectangle form a subtrial, and the star denotes the candidate MTD.  

 

http://uvatrapps.uvadcos.io/pocrm/
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Figure S5. Average percentage of correct selection (panel (a)) and average percentage of patients 
treated at MTDs (panel (b)) based on 3000 random scenarios, stratified by number of MTDs 
presenting in the dose space, for each of the 3+3, BLRM, POCRM, Copula, and BOIN designs. 
Scenario “a.x” indicates that “a” = (i) 2 × 4 dose space with 27 patients; (ii) 2 × 4 dose space with 
36 patients; (iii) 3 × 5 dose space with 48 patients; and (iv) 4 × 4 dose space with 48 patients. The 
number “x” indicates the number of MTDs presenting in the dose space.  
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Figure S6. Average percentage of overdose selection (panel (a)) and average percentage of 
patients treated at overdoses (panel (b)) based on 3000 random scenarios, stratified by number of 
MTDs presenting in the dose space, for each of the 3+3, BLRM, POCRM, Copula, and BOIN 
designs. Scenario “a.x” indicates that “a” = (i) 2 × 4 dose space with 27 patients; (ii) 2 × 4 dose 
space with 36 patients; (iii) 3 × 5 dose space with 48 patients; and (iv) 4 × 4 dose space with 48 
patients. The number “x” indicates the number of MTDs presenting in the dose space. The 
overdoses were defined as the dose combinations with DLT rates greater than 0.33. 
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Figure S7. Average percentage of patients treated at MTDs (panel (a)) and percentage of selecting 
all MTDs (panel (b)) based on 3000 random scenarios, stratified by number of MTDs presenting 
in the dose space, for each of the PIPE and Waterfall designs. Scenario “a.x” indicates that “a” = 
(i) 2 × 4 dose space with 27 patients; (ii) 2 × 4 dose space with 36 patients; (iii) 3 × 5 dose space 
with 48 patients; and (iv) 4 × 4 dose space with 48 patients. The number “x” indicates the number 
of MTDs presenting in the dose space.  
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Figure S8. Average percentage of overdose selection (panel (c)) and average percentage of 
patients treated at overdoses (panel (d)) based on 3000 random scenarios, stratified by number of 
MTDs presenting in the dose space, for each of the PIPE and Waterfall designs. Scenario “a.x” 
indicates that “a” = (i) 2 × 4 dose space with 27 patients; (ii) 2 × 4 dose space with 36 patients; 
(iii) 3 × 5 dose space with 48 patients; and (iv) 4 × 4 dose space with 48 patients. The number 
“x” indicates the number of MTDs presenting in the dose space. The overdoses were defined as 
the dose combinations with DLT rates greater than 0.33. 
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Figure S9. Simulation results of designs for finding one MTD, based on 3000 random scenarios 
of the 2 × 4 combination trial with a maximum of 36 patients with the stopping rule described in 
Section E included. The overdoses were defined as the dose combinations with DLT rates greater 
than 0.33. The trial efficiency index was defined as the percentage of correct MTD selection 
divided by the average sample size.  
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Figure S10. Average percentage of trials selecting at least one dose that is overly toxic as the 
MTD under 9 fixed scenarios for each combination design for finding multiple MTDs, including 
the product of independent beta probabilities escalation (PIPE) design and the waterfall design. 

 

Figure S11. Average percentage of trials selecting at least one dose that is overly toxic as the 
MTD under 3000 random scenarios for each combination design for finding multiple MTDs, 
including the product of independent beta probabilities escalation (PIPE) design and the waterfall 
design. (i) 2×4 combination trial with 27 patients; (ii) 2×4 combination trial with 36 patients; (iii) 
3×5 combination trial with 48 patients; and (iv) 4×4 combination trial with 48 patients. 
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Figure S12. Prior density distributions of the joint toxicity probabilities in the 2×3 combination 
trial for the POCRM, Copula, and BLRM methods.  
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Figure S13. Boxplots of the prior joint toxicity probabilities in the 4×4 combination trial for the 
POCRM, Copula, and BLRM methods.  
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Table. Decision Tables for the BOIN design with the target rate of 0.25. 

Dose escalation/De-escalation Table 

Actions 
The number of patients treated at the current dose 

1 2 3 4 5 6 7 8 9 10 11 12 

Escalate if # of 
DLT <=  0 0 0 0 0 1 1 1 1 1 2 2 

De-escalate if 
# of DLT >= 1 1 2 2 2 2 3 3 3 3 4 4 

Eliminate if # 
of DLT >= NA NA 3 3 3 4 4 4 5 5 6 6 

Note: # of DLT is the number of patients with at least 1 DLT. 

Desirability Score Table 

# 
patients 

# 
DLTs 

Desirability 
score 

0 0 5 

3 0 7 

3 1 11 

3 2 3 

3 ≥ 3 E 

6 0 4 

6 1 14 

6 2 13 

6 3 6 

6 ≥ 4 E 

   

# 
patients 

# 
DLTs 

Desirability 
score 

9 2 18 

9 3 15 

9 4 9 

9 ≥ 5 E 

12 0 1 

12 1 8 

12 2 17 

12 3 19 

12 4 26 

12 5 10 
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9 0 2 

9 1 12 
 

12 ≥ 6 E 

   
 

 

 

Table S2. Website URLs for the available software applications to implement the existing phase I drug-
combination trial designs.  

Designs Software Website URLs 
3+3 No  

Copula Executable app https://odin.mdacc.tmc.edu/~yyuan/index_code.html 

POCRM R package https://cran.r-project.org/web/packages/pocrm/index.html 

 Web app http://uvatrapps.uvadcos.io/pocrm/ 

BLRM R package https://cran.r-project.org/web/packages/OncoBayes2/index.html 

 EAST app https://www.cytel.com/software/east 

BOIN R package https://cran.r-project.org/web/packages/BOIN/index.html 

 Web app https://trialdesign.org/ 

 Desktop app https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99 

Waterfall R package https://cran.r-project.org/web/packages/BOIN/index.html 

 Web app https://trialdesign.org/ 

 Desktop app https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/99 

PIPE R package https://cran.r-project.org/web/packages/pipe.design/index.html 

 EAST app https://www.cytel.com/software/east 

 

Table S3. R code to generate random drug-combination scenarios.  

randcomb<-function(target,epi,ub,nmtd,J,K){ 

# target is the target toxicity rate 

# epi is the epsilon in the algorithm 

# ub is the upper bound 

# nmtd is the number of MTDs in the dose space 

if(nmtd==0){nmtd<-sample(seq(1,min(J,K)),1)} 

mtdset<-c() 

tempj<-0 
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tempk<-K+1 

nmtd0<-nmtd 

for(i in 1:nmtd){ 

  candj<-seq(tempj+1,J-nmtd0+1) 

  if(length(candj)==1){tempj<-candj} else {tempj<-sample(candj,1)} 

  candk<-seq(nmtd0,tempk-1) 

  if(length(candk)==1){tempk<-candk} else {tempk<-sample(candk,1)} 

  nmtd0<-nmtd0-1 

  mtdset<-rbind(mtdset,c(tempj,tempk)) 

} 

 

if(is.matrix(mtdset)==0){mtdset=rbind(mtdset,mtdset)} 

 

for(i in 1:1){ 

p<-matrix(0,J,K) 

u<-runif(1,0,1) 

# generate row by row 

if(u<0.5){ 

  ksaf<-0;ktox<-mtdset[ max(which(mtdset[,1]<(J+1))),2] 

  for(j in J:1){ 

    if(sum(mtdset[,1]==j)==0){ 

      ktemp<-ktox-ksaf-1 

      utemp<-rbinom(ktemp,1,0.5) 

      p[j,]<-sort(c(runif(ksaf,0,target-epi), 

                   runif(ktemp,0,target-epi)*utemp+runif(ktemp,target+epi,ub)*(1-utemp), 

                   runif(K-ktox+1,target+epi,ub))) 

    } else { 

      ktemp<-mtdset[which(mtdset[,1]==j)[1],2] 

      p[j,]<-sort(c(runif(ktemp-1,0,target-epi), 

                    runif(1,target-epi,target+epi), 

                    runif(K-ktemp,target+epi,ub))) 

      ksaf<-mtdset[which(mtdset[,1]==j)[1],2] 
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      if(sum(mtdset[,1]<j)>0){ 

        ktox<-mtdset[max(which(mtdset[,1]<j)),2] 

      } else {ktox<-K+1} 

    } 

  } 

  for(k in 1:K){ 

    p[1:J,k]<-sort(p[1:J,k]) 

  } 

} else { # generate column by column 

  jsaf<-0;jtox<-mtdset[ min(which(mtdset[,2]<(K+1))),1] 

  for(k in K:1){ 

    if(sum(mtdset[,2]==k)==0){ 

      jtemp<-jtox-jsaf-1 

      utemp<-rbinom(jtemp,1,0.5) 

      p[,k]<-sort(c(runif(jsaf,0,target-epi), 

                    runif(jtemp,0,target-epi)*utemp+runif(jtemp,target+epi,ub)*(1-utemp), 

                    runif(J-jtox+1,target+epi,ub))) 

    } else { 

      jtemp<-mtdset[which(mtdset[,2]==k)[1],1] 

      p[,k]<-sort(c(runif(jtemp-1,0,target-epi), 

                    runif(1,target-epi,target+epi), 

                    runif(J-jtemp,target+epi,ub))) 

      jsaf<-mtdset[which(mtdset[,2]==k)[1],1] 

      if(sum(mtdset[,2]<k)>0){ 

        jtox<-mtdset[min(which(mtdset[,2]<k)),1] 

      } else {jtox<-J+1} 

    } 

  } 

  for(j in 1:J){ 

    p[j,1:K]<-sort(p[j,1:K]) 

  } 

} 



30 
 

} 

return(list(nmtd=nmtd,mtdset=mtdset,p=p)) 

} 
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