S5 Text. Estimation of posterior average of population distribution.

Formally, the average of the population distribution over the posterior distribution, also known as the posterior predictive population distribution, is defined as

$$p(\psi|\mathcal{D}) = \mathbb{E}_{\theta|\mathcal{D}}[p(\psi|\theta)] = \int \mathrm{d}\theta \, p(\psi|\theta) \, p(\theta|\mathcal{D}).$$

While the integral is generally difficult, or impossible, to compute analytically, the above equation implicitly defines a joint distribution of the individual-level parameters and the population-level parameters, $p(\psi, \theta | D) = p(\psi | \theta) p(\theta | D)$. To sample from $p(\psi | D)$, we can sample from $p(\psi, \theta | D)$ and marginalise over the sampled population-level parameters afterwards. In particular, we first sample a θ from $p(\theta | D)$, and then draw a ψ from $p(\psi | \theta)$ using the sampled θ . The histogram over the sampled ψ converges to the posterior predictive population distribution as the number of samples tends to infinity. In practice, samples from $p(\theta | D)$ are generated by sampling with replacement from the MCMC posterior samples.