
The experimental validation provided is extremely impressive and illustrate well the functionality
of the algorithm. However, more detail needs to be provided for how the experimental validation
was preformed for usability/reproducibility.  Please include details of:

1) what proteins were used

2) which parts of the protein were redesigned using Rosetta or ProteinMPNN

3) which of those two methods was used for each protein

and 4) the parameters that were used in each case.

We thank the editors for this suggestion. We have provided input pdb files, all of the scripts used
for docking and sequence design, and descriptions of each script in an accompanying README
document in our RPXDock GitHub repository at https://github.com/willsheffler/rpxdock. We’ve
also added the following section in the supplemental information to provide the requested
details to the reader:

Computational design
As inputs to RPXDock we used one native scaffold (PDB ID: 1wa3) and cyclic oligomers of
either C3 or C4 symmetry generated via rigid helical fusion from validated oligomeric scaffolds
and de novo helical repeat proteins as input building blocks for RPXDock (Fallas et al. 2017;
Brunette et al. 2015; Hsia et al. 2021; Boyken et al. 2016, Huddy et al. in preparation, Edman
et al. submitted). Table S4 describes the input pdb files used to generate each dock, and the
asymmetric units of each input pdb file are provided in the inputs/ directory of the RPXDock
GitHub page (https://github.com/willsheffler/rpxdock). Docks were generated using the
tools/dock.sh file, also provided on GitHub. We used the sasa_priority score function,
providing a value of 1500 or 1125 for the  --weight_sasa option for one- and two-component
docking problems, respectively. Docks were allowed to sample a Cartesian bound space
between 0 and 300 Å with the ailv_h motif settings. The sequences of the interfaces for the
top 10 docks for each scaffold (one-component) or scaffold pair (two-component) were
optimized symmetrically using Rosetta sequence design (Leman et al. 2020) with the
tools/rpxdock_to_design.xml file provided on GitHub. Designable residues at the docked
interfaces were selected using Rosetta-based interface selection task operations. The
designable residues were split into core, boundary, and surface layers with residue selectors
and designed via layer design followed by side chain minimization (Bale et al. 2016). The
number of side-chain dependent clashes, interface size, and the predicted binding energy of
the complexes (ddG) were then calculated for each sequence using Rosetta-based filters.

Finally, we updated Table S4 to indicate the input pdb file that was used for each input argument
in the RPXDock program to generate the novel nanomaterials:

Table S4: Design construct renaming and input pdb files



Published name Original name Inputs1 Inputs2

T3-rpxdock-02 cage_twtls-02 C3_hfuse_twtls_003_4x_asu.pdb

I3-rpxdock-71 I3-71_M3I C3_1wa3_asu.pdb

O43-rpxdock-15 cage_twtls-15 C4_171-7_asu.pdb C3_hfuse_twtls_003_4x_asu.pdb

O43-rpxdock-HO11 O43-HO11 C4_171-7_asu.pdb C3_HO10_asu.pdb

O43-rpxdock-EK1 O43-EK1 C4_tpr1C4-pm3_asu.pdb C3_1na0HFuse_015_asu.pdb


