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Supplementary figures

Supplementary Fig. 1. Biased distribution of recording devices per diagnostic
category in the public ICBHI (International Conference on Biomedical Health
Informatics) data set [1]. A deep learning model could simply use the audible signature
of the recording device to discriminate classes resulting in clinically irrelevant models
with seemingly high performance estimates.

(a) Age (b) Respiratory rate

Supplementary Fig. 2. Age and respiratory rate distributions of internal
dataset’s cohort.
In both panels, the two histogram distributions were smoothed with a Gaussian kernel
with bandwidth parameter equal to 1, and were further normalized to ease their visual
comparison. (a) Age distribution. The means of the Control and Other groups are
respectively 1.6 and 2.2 years. (b) Respiratory rate distribution. The means of the
Control and Other groups are respectively 32.7 and 46.4 respirations per minute.
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Supplementary Fig. 3. Distribution of recording MAD values, produced by
the DeepBreath submodel for healthy vs pathological classification.
Distributions are shown per type of diagnosis, to highlight variations in the way the
model pays attention to different respiration phases, depending on the underlying
pathology.
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Supplementary tables

Supplementary Table 1. Biased distribution of age per diagnostic category in the
public ICBHI (International Conference on Biomedical Health Informatics) data set [1].
A deep learning model could simply use the age-related differences in respiratory rate to
discriminate classes resulting in clinically irrelevant models with seemingly high
performance estimates.

Healthy Chronic conditions Acute conditions

Age, yrs (mean) 6.2 67.2 15.9

CI95% 4.1—8.3 64.4—69.9 5.0—26.7

Supplementary Table 2. Cohort characteristics stratified by diagnostic label.
RR is the clinical respiratory rate.
* denotes a potentially predictive difference between diagnostic groups. Models may
detect age-related breathing rate differences rather than pathological signatures. This is
confirmed by the good performances of the baseline models, which only use age and RR
as features. Otherwise, pathological classes are similar in terms of mean SpO2 (a
marker of severity) and coughing prevalence.

Control Pneumonia Wheezing disorder Bronchiolitis

Age, yrs (mean) 3.1 2.6 4.3 0.3 *

—CI95% 2.6—3.7 2.2—3.0 3.7—4.9 0.3—0.4

RR, resp/min (mean) 30.5 42.9* 38.1* 55.0*

—CI95% 29.1—31.8 40.4—45.4 35.9—40.3 52.9—57.1

Temp, °C (mean) 36.7 38.2 37.3 37.3

—CI95% 36.6—36.8 38.0—38.5 37.1—37.5 37.1—37.4

SpO2 (mean) 98.6 95.5 95.0 95.5

—CI95% 98.4—98.8 94.9.0—96.1 94.4—95.6 94.7—96.2

Cough (%) 0.6 94.7 96.2 89.2

Supplementary Table 3. Hyper-parameters of Baseline models. These
hyper-parameters led to the best average AUROCs on the validation sets of the nested
cross-validation following a grid search. All models use L2 regularization. C is the
inverse of the regularization parameter as defined in Sklearn’s version 0.24.1 [2]. Solver
is the optimization method. The optimization methods’ names are the ones used in
Sklearn.

Binary Model C Solver
Control 0.1 newton-cg
Pneumonia 0.1 sag
Wheezing disorder 10.0 liblinear
Bronchiolitis 1.0 newton-cg
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Supplementary Table 4. Sensitivity breakdown of binary models. Each binary
model (first column) classifies their Target (highlighted in bold) vs the other classes.
Here, we stratify the rest of the classes to show the sensitivity of that model for
correctly classifying the other classes as ‘other’. Results are for the external test set.

Sensitivity per target
Binary Model Control Pneumonia Wheezing disorder Bronchiolitis

Control 0.770 0.776 0.818 1.000
Pneumonia 0.852 0.469 0.848 0.792

Wheezing disorder 0.639 0.653 0.636 0.958
Bronchiolitis 0.984 0.857 0.909 0.500
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