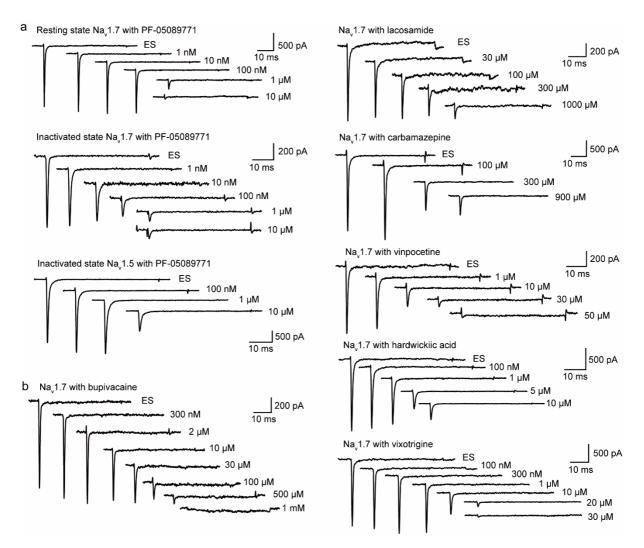
Supplementary information Structural mapping of Na_v1.7 antagonists

Qiurong Wu^{1,7}, Jian Huang^{2,7,8}, Xiao Fan^{2,7,8}, Kan Wang^{3,7}, Xueqin Jin^{1,7}, Gaoxingyu Huang^{4,5}, Jiaao Li¹, Xiaojing Pan^{1,8}, and Nieng Yan^{1,2,6,8}

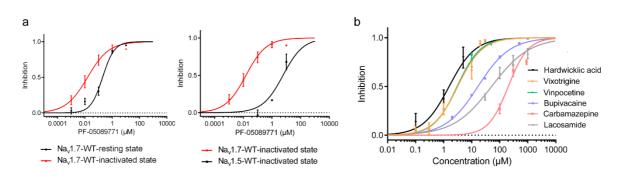
¹Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China

²Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA

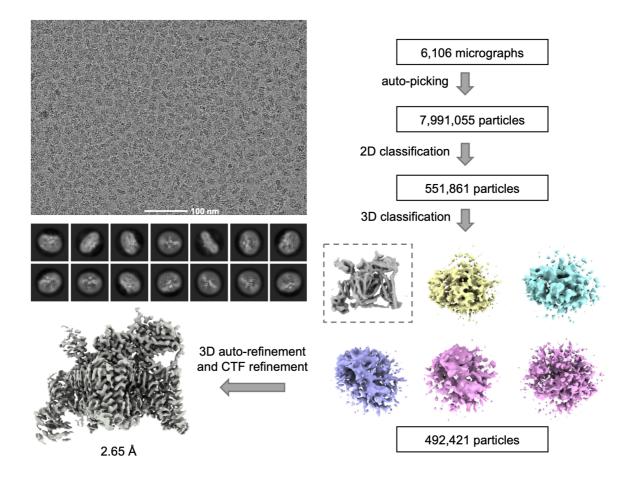
³Department of Anesthesiology, China-Japan Friendship Hospital, Beijing 100029, China

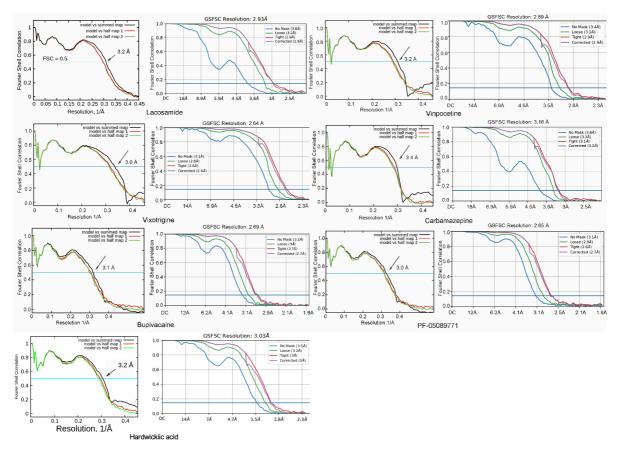

⁴Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China

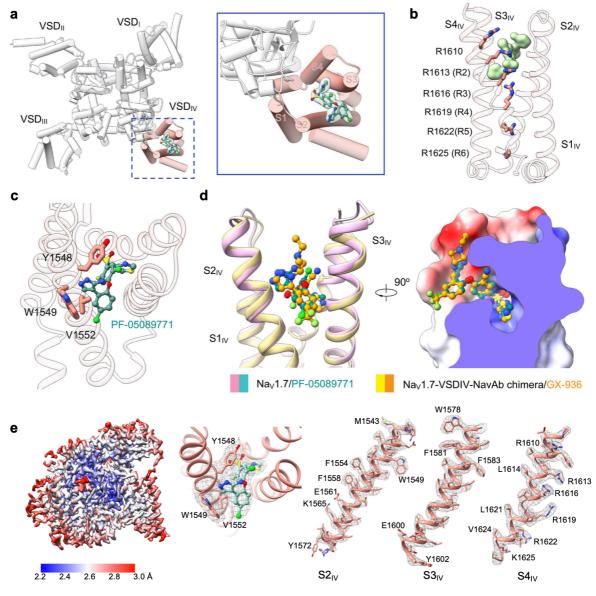
⁵Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China


⁶Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen 518107, Guangdong Province, China

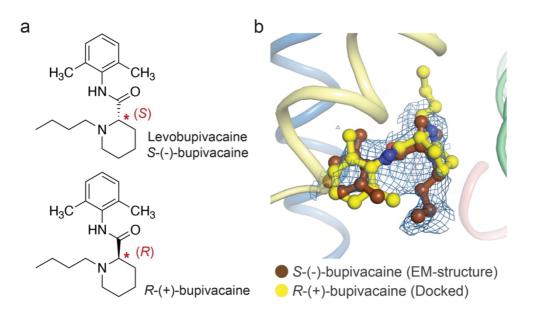
⁷These authors contributed equally to this work.


⁸To whom correspondence should be addressed: Nieng Yan (<u>nyan@tsinghua.edu.cn</u>); Xiaojing Pan (<u>panxj@tsinghua.edu.cn</u>); Jian Huang (<u>jh6493@princeton.edu</u>); Xiao Fan (<u>xiaof@princeton.edu</u>).


Supplementary Fig. 1 | Blockage of Nav1.7 by PF-05089771 and indicated drugs. a,
Representative traces for blocking Nav1.7 and Nav1.5 by PF-05089771 at indicated
concentrations with resting or inactivated protocols. b, Representative traces for blocking of Nav1.7 by bupivacaine, lacosamide, carbamazepine, vinpocetine, hardwickiic acid, and
vixotrigine at indicated concentrations. Experimental details are presented in Supplementary
Table 1 and Methods.


Supplementary Fig. 2 | Electrophysiological characterization of Na_v1.7 inhibition by PF-05089771 and various drugs. a, PF-05089771 specifically inhibits Na_v1.7. *Left*: Inhibition of Na_v1.7 by PF-05089771 with different recording protocols. Peak currents of Na_v1.7 with PF-05089771 applied at different concentrations were recorded with resting and inactivated protocols. *Right*: PF-05089771 is a Na_v1.7 subtype-selective inhibitor. Selectivity was assessed between Na_v1.5 and Na_v1.7 at their unique half-inactivation voltage for each channel. Na_v1.7-WT resting state, n = 4, 5, 8, 11,7. Na_v1.7-WT inactivated state, n = 10, 7, 6, 5, 2. Na_v1.5-WT inactivated state, n = 2, 2, 2. **b**, Inhibition of Na_v1.7 by indicated drugs. Peak currents of Na_v1.7 treated with indicated drugs applied at different concentrations were recorded with the resting protocols. Bupivacaine, n = 5, 5, 5, 5, 5, 5, 4. Lacosamine, n = 4, 4, 4, 4. Carbamazepine, n = 5, 5, 2. Vinpocetine, n = 3, 3, 1, 1. Hardwickiic acid, n = 1, 3, 2, 1. Vixotrigine, n = 3, 3, 3, 2, 3. Data represent mean \pm SEM. n biological independent cells. Experimental details are presented in Supplementary Table 1 and Methods.

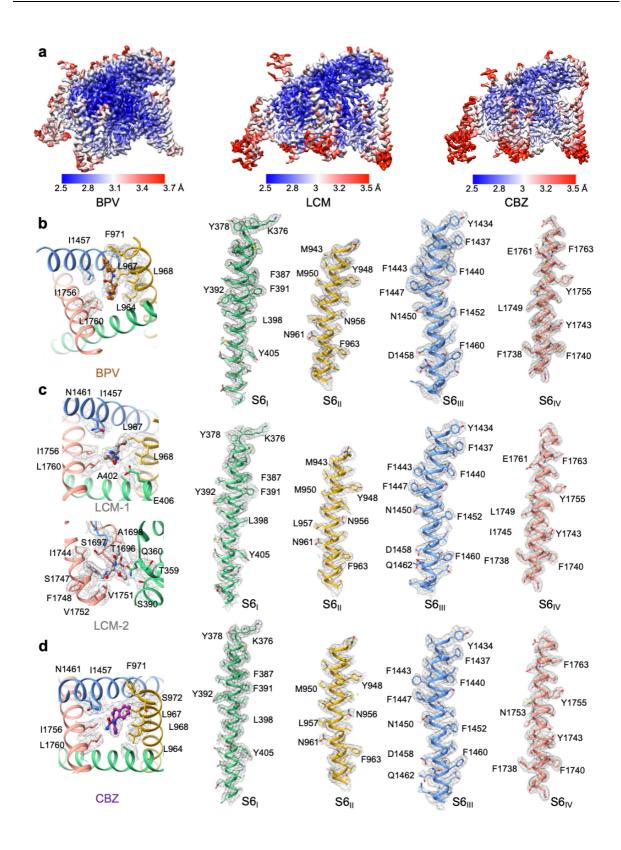
Supplementary Fig. 3 | Flowchart for EM data processing of $Na_v 1.7-\beta 1-\beta 2$ treated with **PF-05089771.** Details can be found in Materials and Methods. Other datasets were processed following a similar protocol.



Supplementary Fig. 4 | **Cryo-EM analysis of human Nav1.7 with different drugs.** For each indicated drug, left: FSC curves of the refined models against overall maps (black), of the respective model refined in the first of the two independent maps used for the gold standard FSC versus the same map (red), and of the model refined in the first of the two independent maps versus the second independent map (green). The small difference between the red and green curves indicates that the refinement did not suffer from overfitting. right: Gold standard FSC curves for the 3D reconstructions calculated in cryoSPARC.

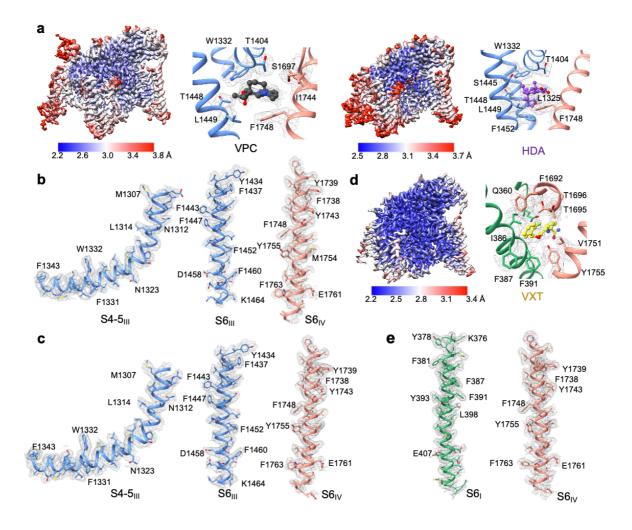
Supplementary Fig. 5 | PF-05089771 binds to Na_v1.7 VSD_{IV}. a, PF-05089771 resides in an extracellular cavity in Na_v1.7-VSD_{IV}. An extracellular view is shown with a close-up view in the inset. The density of PF-05089771, shown as green ball-and-sticks, is contoured in ChimeraX and presented as semi-transparent surface colored pale green. b, PF-05089771 inserts deeply in the VSD_{IV} pocket. The gating charge residues on S4_{IV} are shown as sticks. c, Coordination of PF-05089771. The ligand is shown as green ball-and- sticks, and the coordinating residues are shown as salmon sticks. d, The binding pose of PF-05089771 in Na_v1.7-VSD_{IV} is nearly identical to that in Na_v1.7-VSD_{IV}-Na_vAb chimera/GX-936. The structure of Na_v1.7-VSD_{IV}-Na_vAb chimera/GX-936 (PDB code: 5EK0) is superimposed with that of Na_v1.7-VSD_{IV}. (Right) A cut-open view of the electrostatic surface of Na_v1.7-VSD_{IV}

is shown to highlight the pocket for PF-05089771. **e**, *Left:* local resolution distribution of the final reconstruction for the Nav1.7-PF-05089771-complex, estimated by cryoSPARC. *Middle and right:* EM density map of representative helices and residues involved in PF-05089771 binding.

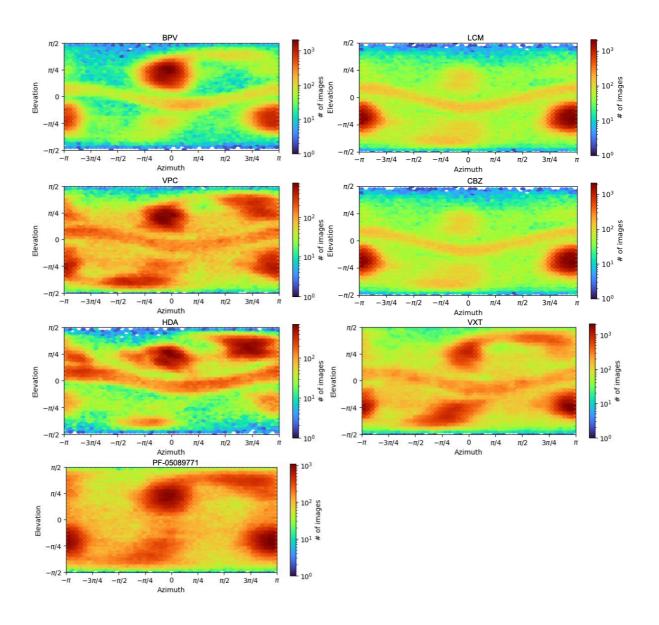


Supplementary Fig. 6 | **Molecular docking simulation of bupivacaine isomers. a**, Chemical structures of bupivacaine with different chirality. **b**, Molecular docking of bupivacaine isomers. Bupivacaine was docked against the structure of detergent-removed Na_v1.7 within Schrödinger Suite 2017-4¹. The structures of the protein and the compound were prepared by default setting using Protein Preparation Wizard and Ligprep program ^{2,3}. Molecular docking was subsequently performed using the Glide program with the extraprecision docking (Glide XP) method ⁴. The top-scored pose of the ligand was chosen for further analysis.

	-(S6	<u>()</u>		_
hNa _v 1.1	GKTYMIFFVLVIFLGSFYLINLILAVVAMAYEEQNQATLEEAEQKI	A 442	-OAMCLTVFMMVMVIGNLVVLNLFLALLLSSFS	A 997
hNav1.2	GKTYMIFFVLVIFLGSFYLINLILAVVAMAYEEQNQATLEEAEQKI		-QTMCLTVFMMVMVIGNLVVLNLFLALLLSSFS	<mark>5</mark> 988
hNa _v 1.3	GKTYMIFFVLVIFLGSFYLVNLILAVVAMAYEEQNQATLEEAEQKI	A 443	-QTMCLIVFMLVMVIGNLVVLNLFLALLLSSFS	<mark>5</mark> 989
hNa _v 1.4	GKTYMIFFVVIIFLGSFYLINLILAVVAMAYAEQNEATLAEDKEKI	E 466	-QAMCLTVFLMVMVIGNLVVLNLFLALLLSSFS	A 807
hNa _v 1.5	GKIYMIFFMLVIFLGSFYLVNLILAVVAMAYEEQNQATIAETEEKI	K 432	GQSLCLLVFLLVMVIGNLVVLNLFLALLLSSFS	A 944
hNa _v 1.6	GKTYMIFFVLVIFVGSFYLVNLILAVVAMAYEEQNQATLEEAEQK	A 430	-QAMCLIVFMMVMVIGNLVVLNLFLALLLSSFS	A 982
hNav1.7	GKTYMIFFVVVIFLGSFYLINLILAVVAMAYEEQNQANIEEAKQK	L 421	-QAMCLIVYMMVMVIGNLVVLNLFLALLLSSFS	<mark>5</mark> 973
hNa _v 1.8	GKIYMIFFVLVIFLGSFYLVNLILAVVTMAYEEQNQATTDEIEAK	K 416	QKSICLILFLTVMVLGNLVVLNLFIALLLNSFS.	A 895
hNa _v 1.9	GLYSVFFFIVVIFLGSFYLINLTLAVVTMAYEQNKNVAAEIEAK	K 419	SSSLCVIVFILITVIGKLVVLNLFIALLINSFS	N 816
Na₀PaS	GPWHILFFIIVVFYGTFCFLNFILAVVVMSYTHMVKRADEE-KAAN	R 434	-DWSCIPFFVAVFFVGNLVILNLLIALLINNYG	<mark>S</mark> 746
			0 00	
	-(S6iii ()	-	S6IV ()	
hNa _v 1.1		-C	S6IV	1803
hNa√1.1 hNav1.2	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1495		0	
		SVGIF	FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEI	1793
hNa _v 1.2	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1485	SVGIF: SVGIF	FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEL FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEL	1793 1788
hNa _v 1.2 hNa _v 1.3	YMYLYFVIFIIFGSFFTINLFIGVIIDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTINLFIGVIIDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTINLFIGVIIDNFNQQKKKFGG- 1480	SVGIF SVGIF SIGIC	FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI	1793 1788 1615
hNav1.2 hNav1.3 hNav1.4	YMYLYFVIFIIFGSFFTLNLFIGVILDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTLNLFIGVILDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTLNLFIGVILDNFNQQKKKFGG- 1480 YMYLYFVIFIIFGSFFTLNLFIGVILDNFNQQKKKLGG- 1307	SVGIF SVGIF SIGIC AVGIL	FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFCSYIIISFLVVNMYIAVILENFNVATEESSEPLGEI	1793 1788 1615 1789
hNav1.2 hNav1.3 hNav1.4 hNav1.5	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1480 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1307 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1482	SVGIF SVGIF SIGIC AVGIL SVGIF	FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEI FFCSYIIISFLVVNMYIAIILENFNVATEESSEPLGEI FFTTYIIISFLIVVNMYIAIILENFSVATEESTEPLSEI	1793 1788 1615 1789 1783
hNav1.2 hNav1.3 hNav1.4 hNav1.5 hNav1.5	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1480 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1307 YMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1482 YMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1476	SVGIF SVGIF SIGIC AVGIL SVGIF SVGIF	FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFCSYIIISFLVVVNYIAIILENFSVATEESSEPLGEL FFTTYIIISFLIVVNYIAIILENFSVATEESTEPLSEL FFVSYIIISFLIVVNYIAIILENFSVATEESADPLSEL	1793 1788 1615 1789 1783 1777
hNav1.2 hNav1.3 hNav1.4 hNav1.5 hNav1.6 hNav1.7	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1495 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1480 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1307 YMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1482 YMYIYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1476 YMYIYFVVFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1469	SVGIF SVGIF SIGIC AVGIL SVGIF SVGIF	FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFVSYIIISFLVVVNYIAVILENFSVATEESAEPLSEL FFCSYIIISFLVVNMYIAIILENFVATEESSEPLGEL FFTTYIIISFLIVVNMYIAIILENFSVATEESTEPLSEL FFVSYIIISFLVVNMYIAIILENFSVATEESADPLSEL YFVSYIIISFLVVVNMYIAVILENFSVATEESTEPLSEL	1793 1788 1615 1789 1783 1777 1739
hNav1.2 hNav1.3 hNav1.4 hNav1.5 hNav1.6 hNav1.7 hNav1.8	YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKFGG- 1485 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKGG- 1307 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1482 YMYLYFVIFIIFGSFFTLNLFIGVIIDNFNQQKKKLGG- YMYLYFVIFIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1469 YMYLYFVIFIFGSFFTLNLFIGVIIDNFNQQKKKLGG- 1430	SVGIF SVGIF SIGIC AVGIL SVGIF SVGIF AVGII GIATS	FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEI FFVSYIIISFLVVVNMYIAVILENFSVATEESAEPLSEI FFCSYIIISFLIVVNMYIAIILENFSVATEESEPLGEI FFTTYIIISFLIVVNMYIAIILENFSVATEESAPLSEI YFVSYIIISFLIVVNMYIAVILENFSVATEESTEPLSEI FFTTYIIISFLIMVNMYIAVILENFNVATEESTEPLSEI	1793 1788 1615 1789 1783 1777 1739 1621


Supplementary Fig. 7 | **Sequence alignment of the S6 segments in the four repeats of human Nav channels.** Primary sequences are of the indicated Nav channels were aligned using Clustal Omega. Secondary structural elements are indicated above the sequences and color-coded for the four repeats. The residues involved in binding to bupivacaine (brown), lacosamide (grey), carbamazepine (cyan), vinpocetine (black), vixotrigine (yellow) and hardwickiic acid (pink) are indicated with spheres below the sequence alignment. The Uniprot IDs for the aligned human Nav sequences are: Nav1.1: P35498; Nav1.2: Q99250; Nav1.3: Q9NY46; Nav1.4: P35499; Nav1.5: Q14524; Nav1.6: Q9UQD0; Nav1.7: Q15858; Nav1.8: Q9Y5Y9; Nav1.9: Q9UI33.

9



Supplementary Fig. 8 | Local resolution and EM density maps of representative segments involved in antagonists binding at site BIG. a, Local resolution distribution of the final reconstruction for Nav1.7 in complex with BPV, LCM and CBZ, estimated by

cryoSPARC. **b**, Representative densities of the Na_v1.7-BPV complex. All densities shown here are contoured at 4 σ . **c**, Representative densities of Na_v1.7 in complex with LCM, and two binding sites densities are both exhibited. The densities of LCM-1 are contoured at 4 σ , while of LCM-2 are contoured at 5 σ . **d**, Representative EM densities of Na_v1.7 treated with CBZ. The densities shown here are contoured at 4.5 σ .

Supplementary Fig. 9 | Local resolution and EM density maps of representative segments that involved in antagonists binding at site F. a, Local resolution distribution and EM densities of the residues that involved in binding with VPC and HDA. The local resolution is estimated by cryoSPARC. b, Representative densities of the Na_v1.7-VPC complex. c, Representative densities of Na_v1.7 in complex with HDA. d, Local resolution and representative EM densities of Na_v1.7 treated with VXT. e, The EM density of representative segments which can interact with VXT.

Supplementary Fig. 10 | Angular distribution of $Na_v 1.7$ bound by different molecules. Angular distribution of the final reconstruction of $Na_v 1.7$ with seven different small molecules. All the figures are obtained from cryoSPARC.

		PF-050897711 (Resting state, Na _v 1.7)	PF-050897711 (Inactivated state, Na _v 1.7)	PF-050897711 (Inactivated state, Na _v 1.5)		
IC ₅₀ (nM)		$196.70 \pm 24.80^{****}$	15.63 ± 3.96	4873 ± 1272.96****		
	Р	< 0.0001	/	< 0.0001		
	Slope	1.01 ± 0.12*	0.55 ± 0.10	1.07 ± 0.26		
	Р	0.0129	/	0.1402		
	l nM	4	10	/		
	10 nM	5	7	/		
n	100 nM 8		6	2		
	1000 nM	11	5	2		
	10000 nM 7		2	2		

Supplementary Table 1 | Concentration-response curves of PF-050897711 on Nav1.7 and Nav1.5 in HEK293T cells.

* P < 0.05 versus inactivated state Na_v1.7, **** P < 0.0001 versus inactivated state Na_v1.7. Each data point represents mean \pm s.e.m (standard deviation of mean) and n is the number of experimental cells from which recordings were obtained. The extra sum-of-squares F test was used to compare the IC₅₀ and slope factor of concentration-response curves. P values for IC₅₀ comparatation: < 0.0001, Na_v1.7-WT resting sate v.s. Na_v1.7-WT inactivates sate; < 0.0001, Na_v1.5-WT inactivated sate v.s. Na_v1.7-WT inactivates sate. P values for slope computation: 0.0129, Na_v1.7-WT resting state v.s. Na_v1.7-WT inactivates sate; 0.1402, Na_v1.5-WT inactivated state v.s. Na_v1.7-WT inactivates sate.

		BPV	LCM	CBZ	VPC	HDA	VXT	
IC ₅₀ (µM)		16.71 ± 0.63	51.31 ± 9.65	202.1 ± 28.21	3.03 ± 0.49	1.57 ± 0.40	3.16 ± 0.55	
Slope		0.76 ± 0.02	0.64 ± 0.11	1.23 ± 0.28	1.04 ± 0.13	0.93 ± 0.27	1.00 ± 0.13	
	100 nM	/	/		/	1	3	
	300 nM	5	/	-	/	/	3	
	1 µM	/	/		3	3	3	
	2 μΜ	5	/	/	/	/	/	
	5 μΜ	/	/		/	2	/	
	10 µM	5	/		3	1	3	
n	20 µM	/	/		/		2	
	30 µM	5	4		1		3	
	50 µM	/	/		1		/	
	100 µM	5	4	5	/	/		
	300 µM	/	4	5				
	500 µM	5	/	/				
	900 µM	/	/	2				
	1 mM	4	4	/				

Supplementary Table 2 | Concentration-response curves of different small molecule drugs on Nav1.7.

Each data point represents mean \pm s.e.m and n is the number of experimental cells from which

recordings were obtained.

Supplementary Table 3 | Statistics for data collection and model refinement.

Drugs	LCM	CBZ	BPV	PF	VXT	VPC	HDA
Data collection		I		I	I		
EM equipment	FEI Titan Krios						
Voltage (kV)	300						
Detector	Gatan K	atan K2 Summit Gatan K3 Summit					
Pixel size (Å)	1.	114	0.865		1.0	1.0825 1.097	
Electron dose	50						
$(e^{-}/Å^2)$							
Defocus range	-1.4	~ -1.2	1.2 -1.8 ~ -1.5				
Number of	4,268	4,254	7,361	6,106	5,280	4,534	6,389
collected stacks							
Reconstruction							
Software	RELION 3.1/cryoSPARC						
Symmetry		Cl					
Initial particles	2,771,449	3,467,720	9,086,591	7,991,055	9,224,142	7,862,450	17,556,212
Final particles	300,001	287,917	297,950	492,421	535,763	304,324	220,477
Resolution (Å)	2.9	3.2	2.7	2.7	2.6	2.9	3.1
Map sharpening	-117.7	-128.9	-96.3	-104.3	-94.5	-98.1	-109.1
B-factor (Å ²)							
Refinement							
Software	Phenix						
Cell dimensions							
a=b=c (Å)	356.48	356.48	249.12	249.12	277.12	277.12	281.06
α=β=γ (°)				90			
Model		T	1	T	T	1	1
Non-hydrogen	13,409	13,534	13,448	13,839	13,640	13,590	12,419
Protein	1,565	1,565	1,564	1,705	1,565	1,565	1,448
Ligand	2	1	1	1	1	1	1
R.m.s deviations							
Bonds length	0.006	0.006	0.003	0.005	0.003	0.004	0.004
Bonds Angle	0.772	0.756	0.602	0.715	0.572	0.707	0.671
Ramachandran							
plot statistics (%)							
Preferred	94.45	94.84	96.51	96.68	98.32	98.19	98.04
Allowed	5.55	5.16	3.49	3.32	1.68	1.81	1.96
Outlier	0.00	0.00	0.00	0.00	0.06	0.00	0.00

Supplementary Table 5. Chemical Structures of NaV-binding small molecules

Bold font is used to indicate the molecules tested in this work, including the small molecules that have resolved high-resolution structures and the ones we tried but found no density or corresponding resolution too poor to define.

Supplementary References:

- 1. Schrödinger Release 2017-4, (Schrödinger, LLC., 2017).
- 2. Sastry, G.M., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. *J Comput Aided Mol Des* **27**, 221-34 (2013).
- 3. Harder, E. et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. *J Chem Theory Comput* **12**, 281-96 (2016).
- 4. Friesner, R.A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. *J Med Chem* **49**, 6177-96 (2006).