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Appendix Figure S1. Deletion of SEF1 affects fitness and the potential trajectories of



adaptive evolution.

(A) Growth curves of the seflA mutant in YPD at 28°C. (B) Growth curves of the sef1A mutant
in YPGly at 28°C. (C) Schematic representation of the maximal slope growth rate calculation
for the post-diauxic shift growth phase in YPD and log-phase growth in YPGly. (D) Schematic
representation of possible pre-existing genetic variations in the genomes of different
individuals in founder colonies. (E) Schematic representation of suppressor formation by
selection on pre-existing variations of a quasispecies founder (a population with

heterogeneous genomes) or new (de novo) adaptive mutations.



W N\
Lab strain JYL1897 (MATa, ura3’) \

I .
SEF1 deletion
v

SkSeftKA1 (MATa, ura3 , sefiA::KanMX8)

I_l CHS3 deletion (for future tetrad dissection)

SkSef1KChs3HA2 (MATa, ura3, sef1A::KanMX86, chs3A::HphMX4)

I_l Mating-type switch

SkSefIKChs3Ha1 (mataA::MAT~FRT, ura3-, sef1A::KanMX8, chs3A::HphMX4)

\_ Strain name ) \ Genotype /

Single short-streaked on YPD+HGB plates

(B)

v

sefiA::KanMX6 chs3A::HphMX4 ura3-
MATa or mataA:MAT«-FRT
A 4
l | 28,37,38,39°C 28°C, 2~3 days [}
' 8 days c
Ovemight pre-culture 4( W
28C Inoculated into YPD+G418 medium
Pick outcompeting :
colonies 1 ml/well, 96-deep well plate
\ A
Plating ~108 cells J’ l
(~5 OD cells)/plate Re-streaked on .
on YPGly YPGly plates 30 Cl24 n
28‘357 ‘38‘39 ¢ -80°C frozen storage
jVs B (+30% glycerol)
Pick big Q
single-colonies Genotyping & phenotyping
(©) . -
A B | 39°C-suppressor C | 39°C-suppressors
L 8¢ 37°C 38°C C | RO YPD+HGB, 28°C
YPGly YPGly, 39°C

Appendix Figure S2. Workflow of sef1A suppressor development.

(A) Construction of the seflA founder strain. (B) Procedures for seflA suppressor



development and selection. (C) Examples of suppressor clone picking and purification steps.
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Appendix Figure S3. Summary of 240 seflA suppressors.

(A) Descriptions of all suppressors. (B) Criteria for simple fithess scoring and color-specified



categories of seflA suppressors. (C) Examples of growth phenotypes and simple fitness
scores. (D) Mean simple fitness score of all 28°C-Evo seflA suppressors. (E) Mean simple
fitness score of all 37°C-, 38°C-, or 39°C-Evo seflA suppressors. (F) Frequency of
phenotypically inconsistent suppressor clones. Any clone with a simple fitness score higher
than the mean score of the same group +1 or lower than the mean score of the same group

-1 is defined as an inconsistent clone.
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Appendix Figure S4. Phenotypic verification of seflA suppressors with consistent



phenotypes.
(A) The suppressive growth phenotypes of re-purified seflA suppressor clones (28°C-Evo
and 39°C-Evo, MATa line). (B) The suppressive growth phenotypes of other randomly

selected seflA suppressor clones (37°C-Evo and 38°C-Evo, both MATa and MATa lines).
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Appendix Figure S5. Genetic dissection of candidate causal mutations in MATa 28°C-




Evo seflA suppressors.

Three clones (A) 28°C-Evo-N1, (B) 28°C-Evo-N2, and (C) 28°C-Evo-N4 were dissected. The
fitness of spores from each tetrad was examined using spot assays and shown in the left
panels. The genotypes of spores from each tetrad were checked by Sanger sequencing and
are shown in the right panels. All mutations here are recessive by checking in heterozygous

diploid strain (data not shown). Mut — mutant.
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Appendix Figure S6. Genetic dissection of candidate causal mutations in MATa 39°C-
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Evo seflA suppressors.

Three clones (A) 39°C-Evo-N1, (B) 39°C-Evo-N3, and (C) 39°C-Evo-N4 were dissected. The
fitness of spores from each tetrad was examined using spot assays and shown in the left
panels. The genotypes of spores from each tetrad were checked by Sanger sequencing and
are shown in the right panels. All mutations here are recessive by checking in heterozygous

diploid strain (data not shown). Mut — mutant.
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Appendix Figure S7. Differential gene expression in

response to azflA and seflA



mutations.

(A) Heat stress (39°C) slightly reduces the transcriptional activation capability of Azf1, which
was measured by one-hybrid assays. LacZ activity was measured by liquid-galactosidase
assay and results are displayed as average Miller units + SD from at least three technical
repeats. (B) Azfl protein abundance is reduced by heat stress (39°C). (C to G) Summaries
of numbers of differentially expressed genes in sefIA/WT (C), azflA/WT (D), seflAazflA/WT
(E), seflAazflA/seflA (F), and seflAazflA/azflA (G). Numbers in rectangles are the total
numbers of differentially expressed genes under a specific condition. Up or Down: the
numbers of upregulated or downregulated genes, respectively. Venn diagrams display

numbers of overlapping genes between the two conditions.
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Appendix Figure S8. Dissection of downregulated carbohydrate metabolic process
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genes in response to azf1A mutation under the YPD condition.

The heatmap was generated using the mean TPM ratio from RNA-seq data relative to the
wild-type under each condition. The yellow blocks highlight the sub-GO groups to which each
gene belongs. Total gene numbers for each GO group are specified in parentheses. The high-

resolution source table of the heatmap is provided in Dataset EV17.
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Appendix Figure S9. The fitness of azf1A cells in response to 2-deoxyglucose under
the YPD condition.

(A) Max slope growth rate and relative fitness of the azflA mutants at 28°C. (B) Max slope
growth rate and relative fitness of the azflA mutants at 37°C. For (A) and (B), results are

displayed as average max slopes = SD from three technical repeats. (C) Synthetic growth

defect of azflAiralA in the seflA background under heat-stressed conditions.
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Appendix Figure S10. Synthetic effects of the iral mutation from 28°C-Evo

suppressors and the azfl mutation from 39°C-Evo seflA suppressors.

seflA

(A) Tetrad dissection and Sanger sequencing of 28°C-Evo-N1 MATa and 39°C-Evo-N4 MATa

mating products. (B) Tetrad dissection and Sanger sequencing of 39°C-Evo-N1 MATa and

28°C-Evo-N3 MATa mating products. The fitness of all four spores from each tetrad was

phenotyped using the spot assay and shown in the left panels. The genotypes of spores from

20



each tetrad were checked by Sanger sequencing and are shown in the right panels. The IRA1
and AZF1 loci were sequenced.
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Appendix Figure S11. Dissection of downregulated alpha-amino acid metabolic
process genes in response to azf1A mutation under the YPD condition.

(A) The heatmap was generated using the mean TPM ratio from RNA-seq data relative to the
wild-type under each condition. The yellow blocks highlight the sub-GO groups to which each
gene belongs. Total gene numbers in each GO group are specified in parentheses. The high-
resolution source table of the heatmap is provided in Dataset EV17. (B) The effect of pre-
amino acid starvation (23-h starvation in SM+2X uracil medium) on the growth of the azf1A
mutants at indicated temperatures. “YPD—YPD” is the control growth curve without pre-
amino acid starvation. “SM—YPD” is the growth curve with pre-amino acid starvation. The
jagged curves reflect cellular aggregation or the presence of dead cells mixed with live cells
under harsher culture environments. The near-concave curves (39°C, SM to YPD curves)

were caused by severe cell death.
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Appendix Figure S12. Dissection of upregulated stress response genes in response
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to azf1A mutation under the YPGIly condition.

(A) The heatmap was generated using the mean TPM ratio from RNA-seq data relative to the
wild-type under each condition. The yellow blocks highlight the sub-GO groups to which each
gene belongs. Total gene numbers in each GO group are specified in parentheses. The high-
resolution source table of the heatmap is provided in Dataset EV17. (B) Expression of HSP26
and HSP104 in response to hypomorphic hsfl mutation (a truncated hsfl with the C-terminal
460-557 amino acids removed) under the YPGIy condition. The relative fold-change of each
gene is shown as 2722€T ysing CDC34 (SAKL0OD02530g) as the endogenous control and the
AC+ value from the wild-type sample as the corresponding calibration value. Expression

levels are displayed as mean fold-changes + SD from three technical repeats.
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Appendix Figure S13. Dissection of the downregulated ribosome- and tRNA-related
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genes in response to azf1A mutation under the YPGIly condition.

The heatmap was generated using the mean TPM ratio from RNA-seq data relative to the
wild-type under each condition. The yellow blocks highlight the sub-GO groups to which each
gene belongs. Total gene numbers in each GO group are specified in parentheses. The high-

resolution source table of the heatmap is provided in Dataset EV17.
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Appendix Figure S14. Glycerol and acetate, but not ethanol, are required for the
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enhanced fitness of azf1A mutants under heat-stressed conditions.

(A) The azflA mutants maintain relatively higher TTC reduction activity under the YPGly
condition compared to seflA strains. The formation of red products in the cell colonies
indicates that the cells have competent TTC reduction activity. The whiter spots indicate
defects in cellular respiration. (B) Acetate, but not ethanol, endows weaker heat resistance
on the azflA mutants. YPEtOH (YP + ethanol); YPKAc (YP + potassium acetate).
Concentrations of ethanol and acetate are shown in parentheses. (C) Remodeled glycerol
utilization in azflA cells. Gly-3-P: glycerol-3-phosphate; DHA: dihydroxyacetone; DHAP:
dihydroxyacetone phosphate; GA3P: glyceraldehyde-3-phosphate; Glc-6-P: glucose-6-
phosphate; Fru-6-P: fructose-6-phosphate; Fru-1,6-bisP: fructose-1,6-bisphosphate; PPP:
pentose phosphate pathway; PEP: phosphoenolpyruvate; Ac-CoA; acetyl coenzyme A; PDC.:
pyruvate decarboxylase complex; PDH: pyruvate dehydrogenase complex; ALD: aldehyde
dehydrogenase; ADH: alcohol dehydrogenase; OAA: oxaloacetate; CIT: citrate; 2-KG; 2-
oxoglutarate; SUC: succinate; MAL: malate. Mito: mitochondrion. Red arrow: upregulated
gene; green arrow: downregulated gene. The thickness of the arrows reflects the relative
RNA abundance according to the heatmap presented in Figure 5D. (D) Proposed glycerol-
driven metabolic remodeling at the pyruvate node in azflA cells. In this model, glycerol
accumulates intracellularly due to enhanced uptake, but it is converted to pyruvate at a low
rate to maintain a limited pyruvate pool. Consequently, high-affinity mitochondrial pyruvate
carriers plus PDH complex compete for the limited pyruvate with the low-affinity PDC complex,
thereby fueling respiration rather than fermentation. Accordingly, azf1A cells benefit from the

mitochondrial activity, supporting survival upon encountering heat stress.
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response to increasing initial inoculum densities and temperature.

Representative source data for Figure 6A.
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Appendix Figure S16. Cooperative growth assays on the AZF1 and azflA strains.

(A) Nlustrative workflow of the cooperative growth assay on the AZF1 and azflA strains in



YPD liquid broth at 39°C. Growth in a 96-well plate was measured on a Tecan plate reader
with intermittent shaking. Colony-forming units (CFUs) were counted by plating on YPD (total)
and then replicated to a YPD+HGB plate to distinguish HGB-resistant azf1A strains and HGB-
sensitive AZF1 strains. (B) Source growth curves of Figure 6B and 6C. (C) lllustrative
workflow of the cooperative growth assay on AZF1 and azf1A strains on a YPD plate at 39°C.
(D) The azflA cells proved more persistent when co-grown with wild-type cells on an agar
plate under the “Dex-trade-off” condition. (E) The seflAazflA cells proved more persistent
when co-grown with azflA cells on an agar plate under the “Dex-trade-off” condition. For (D)
and (E), results are displayed as average HGBR/Total + SD from five technical repeats.

Statistical significance tests were carried out using unpaired Student’s t-tests.
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Appendix Figure S17. Effects of putative Azfl binding motif on the activity of the L.
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kluyveri IDH2 promoter.

(A) The orthologous binding motif of S. cerevisiae Azfl identified using MEME based on ChlIP-
exo data in YPD conditions. (B) The L. kluyveri IDH2 promoter (-437 to -1 from ATG)
composed of the entire intergenic sequence and a part of the upstream gene ORF. There are
one Sefl binding motif (-205 to -1191 from ATG) discovered by ChIP-seq and FIMO scanning
and one putative Azfl motif (-227 to -212 from ATG) predicted by FIMO scanning using the
orthologous binding motif of S. cerevisiae Azfl. (C) The removal of the putative Azf1 binding
motif did not reproduce the restoration of IDH2 expression similar to the effect of azf1A under
the YPGIy condition. The IDH2 expression was measured by the plasmid-based LacZ
reporter assays in L. kluyveri. LacZ activity was measured by liquid-galactosidase assay and
results are displayed as average Miller units =+ SD from three technical repeats. (D) The
transcriptional repressors downregulated in response to azflA and seflAazflA under the
YPGIly condition. They are the candidates to cause the restored expression of TCA cycle
genes. These candidates were extracted from the total list of downregulated transcriptional
regulators in response to azf1A and seflAazflA under the YPGIly condition (Dataset EV15).

The expression data were extracted from the DESeq2 dataset (Dataset EV6 and EV8).

34



Conditions | YPGly, 39°C
MSS Maximum Likelihood Method (MSS-MLE)
Genotype . 95% Cl range 95% Cl median -/+
Mutation Rate 1046
utation Rate (per ) Upper Bound|Lower Bound|Upper Difference|Lower Difference|
WT 2.4994 2.7037 2.301 0.2043 0.1983
seft A 2.1854 2.3655 2.0107 0.1801 0.1747
Lea-Coulson Method of the Median Method (LC Method)
Genotype . . 95% Cl range 95% Cl median -/+
Mutation Rate Med 106
utation Rate Medians (per ) Upper Bound|Lower Bound|Upper Difference|Lower Differenc
WT 2.4606 2.673 2182 0.2124 0.2686
seff A 2.1854 2.4236 1.8891 0.2382 0.2963
(B)
Conditions | YPGly, 28°C
MSS Maximum Likelihood Method (MSS-MLE)
Genotype . 95% Cl range 95% C| median -/+
Mutation Rate 1046
utation Rate (per ) Upper Bound |Lower Bound|Upper Difference|Lower Differenc
WT 0.9397 1.0447 0.8388 0.1051 0.1009
seft A 0.8322 0.9255 0.7425 0.0934 0.0897
Lea-Coulson Method of the Median Method (LC Method)
Genotype . . 95% Cl range 95% Cl median -/+
Mutation Rate Med 1076
utation Rate Medians (per ) Upper Bound|Lower Bound|Upper Difference|Lower Difference|
WT 0.9397 1.4121 0.6247 0.4724 0.315
seff A 0.8322 1.0423 06118 0.2101 0.2204

Appendix Figure S18. The estimation of suppression rates.

The suppression rates of the wild-type and seflA backgrounds under the YPGIly condition at
(A) 39°C and (B) 28°C. The seflA did not result in higher suppression rates than the wild
type did, but heat stress (39°C) generally leads to higher suppression rates than at 28°C.
Suppression rates (mutation rates) were estimated by using fluctuation analyses from 32
biological repeats. “CI” means confidence interval. The Maximal Likelihood method (the
upper panel of each table) and LC method (the bottom panel of each table) generated

consistent mutation rates.
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Appendix Figure S19. Effects of mixed glucose and glycerol on growth of azf1A cells.
Increasing the glycerol concentration in YPD did not drastically ameliorate the “Dex-trade-off”
effect. The azf1lA mutants grew slightly better in YPD+4%Gly than in YPD, but still clearly
worse than in YPGIy. This outcome is possibly due to the protective effect of the elevated

osmolarity generated by 4% glycerol.
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