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The physical accuracy of the generated structures

To validate the physical accuracy of the generated structures, we calculated the distances between
the Cα atoms of adjacent residues and compared their distribution with the expected distribution
calculated from the experimental structures (Figure S1). All structures generated by DPL on the
PDBbind test set (64 structures for each of the 207 complexes) were used for the analysis. Figure S1
shows that the distribution of distances was concentrated around the peak of the expected distribution
within a range of ±0.5 Å. This indicates that the structures generated by DPL are physically plausible,
suggesting that a reasonable result could be obtained by building an all-atom model and optimizing
its structure using physics-based methods such as Rosetta [1].
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Figure S1: Distribution of distances between Cα atoms of adjacent residues. The distribution
calculated from all structures generated by DPL is shown in blue. The expected distribution
calculated from the experimental structures is shown in orange.
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Dependence of protein structure reproducibility on training data

Figure S2 illustrates how the amount of training data with similar protein structures (TM-score > 0.5)
affects the reproducibility of protein structures. This indicates that the reproducibility increases with
the number of related training data, suggesting some overfitting to the protein structures used in the
training. However, it also shows that DPL can generalize to proteins with little or no related training
data. Extensive use of PDB-registered structures, including apo protein structures, for training would
improve the reproducibility of protein structures.
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Figure S2: Relation between the protein structure reproducibility represented by TM-score and
the number of related training data. Each point represents a complex in the PDBbind test set.

Enhancing training data through random cropping

Randomly cropping partial structures from a large complex is a common method used to enhance the
training data in protein structure prediction [2, 3]. For example, the contiguous cropping algorithm
described in AlphaFold-Multimer [3] sequentially and randomly crops contiguous residues from each
protein chain to fit within a given budget. Although this algorithm is designed for proteins and
does not consider the ligand, it can be adapted to protein-ligand complexes by preferentially keeping
protein structures in contact with the ligand. An example of such a procedure is shown in Algorithm
S1. For this adaptation, contiguous residues are chosen to maximize contact with the ligand, rather
than being chosen uniformly at random. One way to define the contact for each chain, ck ∈ {0, 1}nk ,
is to check if any atom of the residue is within 4 Å of any atom of the ligand. In addition, while the
original algorithm randomly shuffles the chains before cropping to avoid bias, it is also possible to
reorder them based on contacts with the ligand.
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Algorithm S1 Random cropping of a complex structure. Adapted from the contiguous cropping
algorithm described in AlphaFold-Multimer [3].

procedure crop complex(Set of chain lengths {nk}, Set of chain contacts {ck}, The total protein
residue budget Nres)

Initialize nadded = 0
Initialize nremaining = Nres

for k in 0, 1, . . . Nchains − 1 do
Compute nremaining = nremaining − nk

Compute crop size max = minimum(Nres − nadded, nk)
Compute crop size min = minimum(nk,maximum(0, Nres − (nadded + nremaining)))
Sample crop size ∼ uniform(crop size min, crop size max + 1)
Compute nadded = nadded + crop size
Compute crop start = argmaxs

∑crop size
i=0 cks+i

Initialize mk = 0
Compute keep = [crop start, . . . , crop start + crop size]
Compute mkkeep = 1

end for
return {mk}

end procedure
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