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1 Data

Demographic and epidemic data. Data about demographics comes from the United Nation World
Population Prospects [1]. Epidemiological data are taken from the COVID-19 Data Repository by
the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University and from official
sources [2].

Vaccination data. Data on global vaccine inequities used in the Introduction and in Fig. 1 of the main
text are taken from the United Nations Development Programme via their Global Futures Platform [3].
Vaccination data used in the simulations are taken from Our World in Data [4]. The dataset provides
the cumulative share of people partially (pt) and fully (ft) vaccinated against SARS-CoV-2 at time t.
We turn these two quantities into daily number of administered doses. Consider the cumulative fraction
of partially vaccinated individuals pt. First, we fix possible null values using a linear interpolation.
Second, we turn pt into the actual number of partially vaccinated Pt by simply multiplying it by the
total population N of the country (i.e., Pt = N × pt). Finally, we take daily increases in the cumulative
number of partially vaccinated individuals to get the number of daily first doses administered in the
country. Through analogous calculations we get the number of daily second doses administered. In
Fig. 1-A we show the percentage of individuals partially and fully vaccinated in the countries considered.

2 Epidemic model

We adopt a SEIR-like compartmental model (see Figure 2 for a schematic depiction). The susceptible
individuals are placed in the compartment S. Getting in contact with the Infectious (I) they transition
to the compartment of the Latent (L). Latent individuals are infected but become infectious only after
ϵ−1 days when they eventually pass to the compartment I. After µ−1 days, infectious subjects finally
transition to the compartment of the Recovered (R). By considering the COVID-19 characteristics we
set ϵ−1 = 4days and µ−1 = 2.5days. [5, 6]. We compute the number of deaths on daily recovered. In
particular, the individuals that exit from the I compartment, can either transition to the Recovered
compartment (R) or the Dead compartment (D). The share of individuals transitioning to the D
compartment is regulated by the age-stratified Infection Fatality Rate (IFR) from Ref. [7]. To account
for possible delays due to hospitalization and reporting between the transition I → R and actual death,
we record the number of deaths computed on the recovered of day t only after ∆ days. In other words,
D individuals transition to the compartment Do (superscript o stands for “observed”) at a rate 1/∆.
Individuals are divided into 10 age groups (0 − 9, 10 − 19, 20 − 24, 25 − 29, 30 − 39, 40 − 49, 50 − 59,
60− 69, 70− 79, 80+). The age-stratified rate of interaction are defined by the country specific contacts
matrix C from Ref. [8].

We also introduce a seasonal term to capture modulation of the force of infection regulated by changes
in factors such as temperature and humidity [9, 10]. This means that in our simulation Rt is multiplied

by a rescaling factor si(t) defined as si(t) =
1
2

[(
1− αmin

αmax

)
sin

(
2π
365 (t− tmax,i) +

π
2

)
+ 1 + αmin

αmax

]
, where

i refers to the hemisphere considered, and tmax,i is the day associated to the maximum of the rescaling
function. For the northern hemisphere it is set to January 15th and to July 15th for the southern
hemisphere, while we consider no seasonal modulation in the tropical hemisphere. If a country extends
across multiple zones, the seasonal factor is a weighted average of the different si(t) according to the
population living in the different hemispheres. We fix αmax = 1 and consider αmin as a free parameter
(more details are provided in Section 3).

In these settings, we model both vaccinations and the introduction of a second, more transmissible
virus strain. In particular, individuals who received one dose of vaccine move to the compartments
denoted with the superscript V1. We assume that all individuals except for the infectious can receive
the vaccine. Hence, susceptible, latent and recovered are vaccinated proportionally to their number. For
SV1 individuals the force of infection is reduced by a factor (1−V ES1). If these individuals get infected,
their IFR is also reduced by a factor 1−V EM1. It follows that, in our simulations, the overall efficacy of
a single dose of vaccine against death is V E1 = 1− (1− V ES1)(1− V EM1). After receiving the second
dose, individuals transition to the compartments with superscript V2. Similarly, force of infection and
IFR for them is reduced, respectively, by (1 − V ES2) and (1 − V EM2), implying an overall efficacy of
V E2 = 1 − (1 − V ES2)(1 − V EM2). We also assume that vaccinated individuals that get infected are
less infectious by a factor (1 − V EI) [11]. Since vaccine protection is not immediate, we introduce a
delay of ∆V days between administration (of both 1st and 2nd dose) and actual effect of the vaccine.
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Supplementary Figure 1: Vaccinations. A) Percentage of partially and fully vaccinated individuals
in LMIC up to 2021/10/01. B) Percentage of partially and fully vaccinated individuals in high income
settings up to 2021/10/01.
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For example, an individual who received the 1st dose on day t, will be protected with efficacy V E1 only,
on average, after ∆V days. Hence, the transitions to compartments with superscript V1 and V2 take
place at rate ∆−1

V after first and second inoculation. We set ∆V = 14days. We do not have detailed
information about the age of individuals receiving vaccines in all the countries considered. Therefore,
we assume that the rollout proceeds prioritizing the elderly. We note how this is the strategy followed
by the vast majority of governments worldwide [12–14]. This means that, in our model, vaccines are
distributed in decreasing age order until all 50+ individuals are vaccinated, after vaccines are distributed
homogeneously to the age groups 10 − 50. We inform the model with the number of daily 1st and 2nd

doses in different countries from Ref. [15]. In this work we set V E1 = 80% (V ES1 = 70%), V E2 = 90%
(V ES2 = 80%), and V EI = 40% [11].

We add specific L and I compartments to account for the introduction and emergence of a variant
of concern. Considering the period under examination and the evidence from genomic surveillance in all
countries under examination we consider the arrival and spread of the SARS-CoV-2 variant of concern
Delta. Looking at genomic sequence data from Ref. [16–18] we get a proxy date for its introduction (more
details provided below). We imagine that Delta is ψ times more transmissible than the strain circulating
previously and has a shorter latent period ϵ−1

Delta = 3days [19]. We also assume that vaccines have a
reduced efficacy against Delta VOC: V EDelta

1 = 70% (V EDelta
S1 = 30%), V EDelta

2 = 90% (V EDelta
S2 =

60%) [11]. Notice how, to avoid complicating further the model, we decided not to use a separate IFR
for the Delta variant, even tough some studies pointed out that it might be more severe than other
previously circulating strains [20]. This limitation is partly solved by the calibration step in which we
fit a country-specific IFR multiplier (more details are provided in Section 3).

The model is stochastic and transitions among compartments are simulated through chain binomial
processes. More in detail, at time step t the number of individuals in age group k and compartment X
transiting to compartment Y is sampled from PrBin(Xk(t), pXk→Yk

(t)), where pXk→Yk
(t) is the transition

probability. As an illustrative example consider the number of new infected individuals from the S
compartment. The rate for this transition is called force of infection (generally referred as λ) and may
depend on several factors, from transmissibility of the pathogen to contact rates and seasonality. In our
case, the force of infection for age group k at time t is defined as:

λk(t) = β × s(t)× r(t)×

{∑
k′

Ckk′

Nk′

[
Ik′ + (1− V EI)(I

V 1
k′ + IV 2

k′ )
]}

(1)

Where β is the transmission rate, s(t) is the seasonality factor, r(t) captures contacts reduction due
to NPIs (more details below), and the term in brackets is the probability of contacting an infectious
individual in age group k′ given the contact rates and the number of individuals per group. Notice how
infectious individuals that received a vaccine (either one or two dose) have their infectiousness reduced
by the (1 − V EI) factor. The probability of the infection transition is simply the force of infection
multiplied by the length of the simulation step ∆t (i.e., pSk→Lk

(t) = λk(t)∆t). Here, the unit of time
of the simulation is the day, therefore ∆t = 1. The number of Sk individuals getting infected at time t
is then extracted from PrBin(Sk(t), λk(t)). Given this, we can easily get the infection probability also
for susceptible individuals that received one or two vaccine doses, namely SV1 and SV2 . Indeed, since
vaccines offer a protection V ES from infection, we have that p

S
V1
k →LV 1

k

(t) = (1 − V ES1) × λk(t) and

p
S

V2
k →LV 2

k

(t) = (1− V ES2)× λk(t).

3 Model calibration

The free parameters of the model are calibrated through an Approximate Bayesian Computation based on
Sequential Monte Carlo [21, 22]. The ABC-SMC is an extension of the more simple rejection algorithm,
which works as follow. A prior distribution P (θ) is defined for the free parameters θ. At each step of the

iterative algorithm, a set of parameters θ̂ is sampled from P (θ) and an instance of the model is generated

using θ̂. Then, an output quantity of the model E′ is compared to the corresponding real quantity
E using an error metric S(E,E′): if S(E,E′) is smaller than a tolerance δ, θ̂ is accepted otherwise is
rejected. This process is repeated iteratively until P parameter sets are accepted. The main limit of this
approach is that the acceptance criterion is never updated, leading to slow convergence. Additionally, it
is often difficult to find, a priori, a reasonable value for the tolerance δ. This is particularly problematic
in a case like ours, where several models need to be calibrated. The ABC-SMC algorithm approach
used in this work solves these issues by implementing a sequence of rejection steps (generations) that are
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Supplementary Figure 2: Schematic representation of the epidemic model. For simplicity, we
represent the model for a single age group. Dashed lines indicate data-driven transitions linked to
vaccination status, solid lines indicate that simulated transitions. In the bottom of the figure we report
the rate of transitions related to both infection and and recovery/death.
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increasingly less tolerant and precise. Indeed, the prior distribution of a step is the posterior distribution
(i.e., the accepted parameters) of the previous one perturbed through a kernel function to avoid local
minima. This allows us to start from high error tolerances and wide prior distributions and explore more
and more accurately the interesting regions of the parameter phase space as we proceed.

In this work we consider weekly deaths as output quantity and the weighted mean absolute percentage
error (wMAPE) as distance metric. For each model, we consider 20 ABC-SMC generations, each with a
population size of 1000 accepted parameter sets. We also set the maximum training time for each model
to 24 hours. As already mentioned in the Methods section, the free parameters and the initial priors are:

• the transmission rate β; we explore uniformly values such that the Rt on the first simulation date
is between 0.6 and 2.0;

• the delay in deaths ∆ ∼ U(10, 35) [23];

• the seasonality parameter αmin ∼ U(0.5, 1.0) (0.5 indicates strong seasonality while 1.0 absence of
seasonality);

• the initial number of infected individuals; we explore uniformly values between 1 and 1000 times
the number of cases notified in the 7 days prior the beginning of the simulation (Infmult

start). We
divide these individuals in the infected compartments (L, I) proportionally to the time spent there
by individuals (ϵ−1 for L and µ−1 for I);

• the initial number of recovered; we explore uniformly values between 1 and 100 times the total
number of reported cases up to the start of the simulation (Recmult

start);

• the relative transmissibility advantage of the Delta VOC ψ ∼ U(1.0, 3.0);

• the date of the introduction of the Delta VOC. We consider values between 45 days before and
after the date when Delta was responsible for at least 5% of sequenced samples according to the
data from Ref. [16], more details below;

• the IFR multiplier ∼ U(0.5, 2.0); this number multiplies the IFR from Ref. [7];

• the percentage of deaths reported ∼ U(1%, 100%);

The model is calibrated separately for different countries during the period 2020/10/01 − 2021/10/01.
The ABC-SMC calibration is implemented using the Python library pyabc [24]. In Tab. 1, 2, 3, 4, 5
we report the posterior distributions (median and interquartile range) of the free parameters. We also
report the wMAPE of the posterior samples (i.e., our measure of goodness of fit) computed with respect
to the actual number of weekly deaths.

Sri Lanka El Salvador Morocco Bolivia

Rstart
t 1.75 [1.74, 1.77] 1.1 [0.99, 1.23] 1.16 [1.08, 1.26] 1.03 [1.0, 1.08]

∆ 27 [26, 29] 16 [13, 20] 15 [12, 18] 21 [19, 23]

αmin 0.73 [0.62, 0.85] 0.77 [0.65, 0.88] 0.75 [0.68, 0.83] 0.74 [0.64, 0.85]

ψ 2.72 [2.63, 2.81] 1.56 [1.46, 1.65] 2.14 [2.0, 2.29] 1.67 [1.33, 2.16]

Initial inf.per 10k 12.8 [9.0, 17.4] 126.7 [108.5, 146.0] 231.3 [197.3, 271.7] 11.3 [10.2, 12.6]

Initial rec. per 10k 72 [40, 110] 2268 [1430, 3080] 1855 [1272, 2421] 938 [628, 1330]

IFR Multiplier 0.94 [0.74, 1.23] 1.16 [0.9, 1.44] 1.03 [0.81, 1.3] 1.79 [1.69, 1.88]

% deaths reported 30.82 [23.88, 38.89] 48.5 [38.27, 60.52] 36.75 [29.14, 45.21] 89.08 [83.78, 93.58]

Date intro. VOC 04-23 [04-21, 04-24] 06-16 [06-05, 06-23] 04-24 [04-17, 05-02] 08-31 [08-19, 09-13]

wMAPE 0.36 0.20 0.21 0.17

Supplementary Table 1: Posterior distributions of free parameters obtained via ABC calibra-
tion (Sri Lanka, El Salvador, Morocco, Bolivia). We show median and interquartile range of the
different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.
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Honduras Philippines Indonesia Pakistan

Rstart
t 1.22 [1.09, 1.39] 1.02 [0.96, 1.1] 1.14 [1.12, 1.17] 0.92 [0.89, 0.95]

∆ 25 [19, 29] 25 [20, 30] 27 [22, 31] 25 [23, 28]

αmin 0.77 [0.63, 0.88] 0.74 [0.62, 0.85] 0.76 [0.62, 0.88] 0.91 [0.89, 0.93]

ψ 1.81 [1.72, 1.91] 1.26 [1.15, 1.39] 1.53 [1.42, 1.7] 1.1 [1.06, 1.16]

Initial inf.per 10k 53.4 [42.8, 65.8] 17.9 [13.3, 23.4] 7.8 [5.6, 10.2] 45.2 [39.3, 52.0]

Initial rec. per 10k 2517 [1655, 3441] 1247 [722, 1860] 578 [364, 768] 658 [405, 948]

IFR Multiplier 1.21 [0.98, 1.46] 1.58 [1.32, 1.77] 1.34 [1.08, 1.64] 1.12 [0.82, 1.55]

% deaths reported 61.81 [51.84, 75.37] 35.97 [30.76, 40.25] 65.11 [52.03, 80.15] 47.63 [35.45, 62.36]

Date intro. VOC 06-16 [06-09, 06-22] 06-26 [06-05, 07-10] 05-07 [04-21, 05-18] 05-27 [05-03, 06-19]

wMAPE 0.25 0.41 0.12 0.14

Supplementary Table 2: Posterior distributions of free parameters obtained via ABC calibra-
tion (Honduras, Philippines, Indonesia, Pakistan). We show median and interquartile range of
the different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.

Rwanda Bangladesh Kyrgyzstan Egypt

Rstart
t 1.18 [1.17, 1.2] 0.85 [0.82, 0.9] 1.28 [1.13, 1.48] 0.94 [0.92, 0.96]

∆ 13 [12, 16] 19 [15, 24] 23 [17, 30] 20 [16, 25]

αmin 0.75 [0.66, 0.85] 0.75 [0.67, 0.85] 0.65 [0.59, 0.73] 0.62 [0.6, 0.64]

ψ 1.15 [1.07, 1.29] 1.75 [1.57, 2.06] 1.62 [1.5, 1.75] 1.17 [1.1, 1.26]

Initial inf.per 10k 0.4 [0.3, 0.5] 90.4 [56.2, 127.1] 41.7 [20.6, 68.1] 8.4 [7.4, 9.5]

Initial rec. per 10k 177 [115, 251] 1246 [837, 1586] 2162 [1277, 3283] 467 [252, 689]

IFR Multiplier 1.29 [1.04, 1.57] 1.01 [0.79, 1.37] 1.28 [0.94, 1.63] 1.69 [1.45, 1.83]

% deaths reported 44.39 [31.45, 61.43] 14.6 [11.01, 18.91] 48.72 [32.85, 66.88] 33.53 [29.69, 36.77]

Date intro. VOC 04-20 [04-06, 05-30] 04-04 [03-13, 04-26] 02-24 [02-16, 03-13] 05-27 [05-06, 06-13]

wMAPE 0.37 0.34 0.31 0.23

Supplementary Table 3: Posterior distributions of free parameters obtained via ABC calibra-
tion (Rwanda, Bangladesh, Kyrgyzstan, Egypt). We show median and interquartile range of the
different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.
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Mozambique Afghanistan Angola Ghana

Rstart
t 1.35 [1.32, 1.39] 0.93 [0.89, 0.98] 1.11 [1.09, 1.12] 1.41 [1.36, 1.45]

∆ 29 [26, 32] 11 [10, 12] 29 [23, 32] 29 [25, 32]

αmin 0.71 [0.61, 0.82] 0.64 [0.58, 0.72] 0.75 [0.64, 0.88] 0.73 [0.63, 0.84]

ψ 1.26 [1.17, 1.36] 1.81 [1.73, 1.89] 2.48 [2.35, 2.64] 1.62 [1.54, 1.7]

Initial inf.per 10k 1.9 [1.5, 2.4] 16.6 [9.4, 23.6] 5.2 [4.4, 5.8] 3.8 [2.5, 5.4]

Initial rec. per 10k 152 [82, 208] 624 [374, 795] 18 [10, 28] 804 [428, 1079]

IFR Multiplier 1.05 [0.79, 1.36] 1.04 [0.8, 1.41] 1.01 [0.78, 1.36] 0.99 [0.77, 1.27]

% deaths reported 5.7 [4.54, 7.59] 23.39 [17.73, 29.91] 3.49 [2.71, 4.56] 2.18 [1.71, 2.78]

Date intro. VOC 04-07 [03-19, 05-05] 03-22 [03-19, 03-26] 06-30 [06-27, 07-03] 04-29 [04-21, 05-09]

wMAPE 0.18 0.29 0.37 0.32

Supplementary Table 4: Posterior distributions of free parameters obtained via ABC calibra-
tion (Mozambique, Afghanistan, Angola, Ghana). We show median and interquartile range of
the different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.

Zambia Côte d’Ivoire Kenya Uganda

Rstart
t 1.25 [1.21, 1.29] 1.43 [1.41, 1.45] 1.16 [1.14, 1.18] 0.9 [0.86, 0.94]

∆ 25 [20, 30] 29 [23, 34] 28 [25, 29] 25 [21, 29]

αmin 0.8 [0.7, 0.89] 0.74 [0.62, 0.86] 0.76 [0.63, 0.87] 0.76 [0.65, 0.87]

ψ 1.43 [1.31, 1.56] 2.28 [2.11, 2.48] 1.41 [1.37, 1.46] 1.72 [1.61, 1.81]

Initial inf.per 10k 11.1 [8.4, 15.1] 2.4 [1.9, 2.8] 5.4 [4.6, 6.3] 26.4 [14.5, 42.4]

Initial rec. per 10k 335 [201, 521] 115 [64, 163] 391 [221, 532] 98 [55, 136]

IFR Multiplier 1.19 [0.91, 1.49] 0.81 [0.67, 0.95] 0.97 [0.74, 1.29] 0.71 [0.61, 0.85]

% deaths reported 17.58 [13.72, 22.07] 1.67 [1.41, 1.99] 7.28 [5.44, 9.79] 28.21 [24.08, 35.19]

Date intro. VOC 03-15 [03-04, 04-04] 06-22 [06-15, 06-30] 05-14 [05-06, 05-21] 02-06 [02-01, 02-14]

wMAPE 0.26 0.41 0.29 0.50

Supplementary Table 5: Posterior distributions of free parameters obtained via ABC calibra-
tion (Zambia, Côte d’Ivoire, Kenya, Uganda). We show median and interquartile range of the
different parameters. Dates are represented with a mm− dd format and refer all to the year 2021.

4 Non-pharmaceutical interventions

We model the effects of non-pharmaceutical interventions (NPIs) on contacts using the COVID-19 Com-
munity Mobility Report By Google [25]. The dataset provides, for various countries and spatial res-
olutions, a percentage change in individuals visiting specific locations. Here, we compute an overall
mobility reduction r(t) by taking the average of the fields about workplaces, retail and recreation, and
transit stations. We convert this quantity into a contacts reduction parameters c(t) following the rela-
tion: c(t) = (1 + r(t)/100)2. Indeed, under an homogeneous assumption the number of contacts scale
with the square of the number of individuals. For example, a percentage reduction of −20% translates
into a contacts reduction factor of 0.64. In the simulations the contacts matrix C is multiplied by this
reduction parameter c(t) to account for the modulation in contacts induced by NPIs. Mobility data have
been widely and successfully used during the COVID-19 Pandemic to account for the modulating effect
of behaviour change on disease evolution in epidemic models [26–30]. The great success of such datasets
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is partly due to the wide availability across geographies and time, thus offering detailed and standard-
ised data that can be applied to different contexts. Nonetheless, we also acknowledge the limitation of
mobility data that, due to its nature, disregards the impact of NPIs not directly impacting movements,
such as face masks. Here we do not include explicitly the effect of face masks and similar NPIs, but
we calibrate the initial Rt. Therefore, although not in a time-varying manner, the attenuating effect of
these NPIs is factored into the transmission parameter.

5 Modeling the introduction of a second SARS-CoV-2 strain

We model the introduction of a second SARS-CoV-2 strain considering genomic sequencing data from Co-
Variants [16]. The data provides the fraction of processed samples by virus variant in different countries.
As clear from the plots, in the period and countries under examination we observed the introduction and
rapid growth of the Delta variant of concern. To reduce the impact of noise on seeding date estimates,
for each country, we fit a logistic curve of the type ŝ(t) = 1/(1+e−γ(t−t1/2)) to the real fractions of Delta
variant samples s(t). The fit is performed via least square using the python library scipy [31]. In Fig. 3
we show the actual Delta prevalence (i.e., fraction of samples that fall into the Delta group) to the fitted
prevalence. We also show the total number of samples processed in each week. In the case of countries
for which genomic data is not available, we perform the logistic fit on all the samples from neighbouring
countries for which data is available.

After the fit, we pick the first date on which the fitted Delta prevalence is greater or equal to 5% (i.e.,
t | ŝ(t) ≥ 0.05). When running the simulations, on that date we calculate the 5% of the daily simulated
infected individuals and we use them to initialize the compartment of the infected with the Delta variant.
We choose a 5% threshold to avoid a prevalence that is too low and therefore more affected by noise. At
the same time, we did not choose a higher prevalence threshold to avoid imposing a strong discontinuity
on the Rt on the simulations.

6 Counterfactual scenarios

6.1 Vaccination rates of high income settings

We propose scenarios in which the LMIC considered manage the same vaccines availability of three high
income contexts: United States (shown in the main text), European Union, and Israel (shown here). To
do so, we run simulations in which, instead of the factual vaccination data of the LMIC considered, we
use the daily number of first and second doses administered in the three high income settings. To account
for different population sizes among geographical regions, we rescale the number of doses available in
the counterfactual. For example, consider the case when we apply to Mozambique the vaccination
rates of Israel. If Israel administered XIsrael

t doses on day t, in the counterfactual scenario we administer

X ′Mozambique
t = XIsrael

t
NMozambique

NIsrael
. In Fig. 1-B we show the percentage of partially and fully vaccinated

in the three high income settings. Vaccinations started on 2020/12/14 in US, on 2020/12/27 in most
of European countries, and on 2020/12/19 in Israel. As of 2021/10/01, the European Union shows the
highest percentage of fully vaccinated (63%), followed by Israel (61%), and US (57%). Nonetheless, we
acknowledge differences among the three vaccination rollout especially at the beginning. Indeed, we see
that in Israel and, to a lower extent also in the US, vaccinations were much faster after the start respect
to the European Union. For example, the percentage of fully vaccinated on the 2021/03/01 was: 2.6%,
9.2%, and 37.3% in, respectively, EU, US, and Israel.

In Fig. 4, we show the percentage of deaths that are averted applying to LMIC the vaccination rates
of US, EU, and Israel with respect to simulations with factual doses. The overall picture presented in the
main text for US vaccination rates holds also with EU and Israel rates. Indeed, in both cases we observe
that additional doses of vaccine bring a huge benefit in terms of reduction of fatalities. When considering
dose availability of Israel, averted deaths in LMIC span between 60% to nearly 100%, while these figures
lie between 40% and 90% when EU rates are considered. We also note that the ordering of the countries
is almost the same when considering the three different rates. Across the LMIC considered, the greatest
decrease in deaths is achieved by Israel rates, while EU rates are the least effective at reducing the
number of deaths. A possible explanation is that, as noted previously, while EU reached a higher vaccine
coverage as of 2021/10/01, the vaccine rollout in Israel was much faster in the early months of 2021,
allowing to provide significant level of protection at the population level quicker. The results obtained
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Supplementary Figure 3: Introduction of Delta variant. We represent the actual fraction of Delta
samples and the fitted Delta prevalence (median and 90% confidence intervals). We also display the total
number of samples processed per week. For countries denoted by * data are not available, therefore in
those cases the fit is performed on all samples from neighbouring countries for which data are available.
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with US rates lie in the middle between those obtained with Israel and EU rates. The early rollout in
US was quicker than EU but slower than Israel.
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Supplementary Figure 4: Averted Deaths with High Income regions vaccination rates. Averted
deaths (median and inter-quartile range computed over 1000 independent model realizations) expressed
as a percentage with respect to the factual vaccination baseline using the vaccination rates of the United
States, European Union, and Israel.

6.2 Earlier start of factual vaccinations

As a second counterfactual analysis, we anticipate the factual vaccination campaign in the LMIC in
order to match the start of vaccine rollout in high income settings. As new starting date we choose
the 2020/12/14, when COVID-19 vaccinations started in United States. If the shift of vaccination data
causes missing data at the end of the time series of LMIC, we fill it considering the average number of
doses administered during the last 7 days. It is important to stress how this counterfactual does not
increases the number of doses nor the rate of vaccination. It is a solid shift of the starting date to an
earlier point.

6.3 NPIs increase

We consider simulations in which we modify the factual NPIs quantified with the COVID-19 Community
Mobility Report. More in detail, given the contacts reduction factor of week t c(t), in the new simulations
with X% additional NPIs the new factor will be c′(t) = c(t)(1−X/100). The increase of NPIs is modeled
as a contacts reduction factors after week 51 of 2020, a proxy date for the start of vaccinations in the
United States. Indeed, our goal is to estimate the additional amount of NPIs needed to match the
number of deaths averted when applying vaccination rates of a high income setting such as US. Finally,
the increase of NPIs is sustained for a limited number of weeks. We explore multiple scenarios with NPIs
that are increased in the range of 5% to 95% and that are sustained for a number of weeks between 4
and 40 after week 51 of 2020. We run additional simulations in which we modify the NPIs as described
and we compute the fraction of averted deaths with respect to simulations with factual NPIs and vaccine
rollout.

11



7 Estimating the impact of the factual vaccination campaigns

In Figure 1-A we have shown the evolution of the percentage of partially and fully vaccinated in the
twenty LMIC countries up to 2021/10/01. As clear from the graphs, there is a high level of heterogeneity.
We go from fractions of fully vaccinated above 50% in Sri Lanka and Morocco, to values below 10% in
Kyrgyzstan, Mozambique, Egypt, and even below 1% in Uganda. Honduras, Bolivia, Indonesia are
around the middle between these two groups with a fraction of fully vaccinated between 20% and 30%.
When interpreting the numbers it is important to recognize the differences in terms of populations.
Indonesia and Pakistan are the largest with 273M and 220M people respectively. El Salvador and
Kyrgyzstan are the smallest with around 6M residents each. Hence, the differences in terms of the
absolute number of vaccinated individuals and doses administered span several orders of magnitudes
among these countries.

In Figure 5, we show the real data of confirmed deaths (dark blue dots). In most countries, the latest
epidemic wave, caused by the Delta variant, was, unfortunately, the most deadly. Clearly in contrast
with observations across high income countries where, despite the increased transmissibility and severity,
the Delta wave was strongly limited by high vaccination rates with respect to the previous [32, 33]. This
observation is a first clear hint about the impact that vaccines could have had in these settings. In
the plots, we also report the median and confidence intervals of our fits (light green lines and shaded
areas). Across the board, the model can capture the evolution of the pandemic with accuracy. Each
plot reports also the model’s prediction of what would have happened in total absence of vaccines (red
dashed lines and shaded areas). In particular, we run the model keeping all the same fitted parameters,
NPIs, but remove all doses administered. In doing so, we provide estimates of the impact of the factual
vaccines in each country. Again, we find large heterogeneity induced by the radically different vaccination
coverage. Countries that managed to vaccinate more, such as Sri Lanka, El Salvador, and Morocco show
the largest differences between the real evolution of confirmed deaths and those in the hypothetical
scenario without vaccines (i.e., baseline). Conversely, in countries such as Kenya, and Uganda, that
have a minimal vaccination coverage, the differences are very small. Figure 6 confirms this picture but
provides a more clear estimation of the impact of vaccines. We plot the deaths averted by the factual
vaccination campaigns (median) versus the fraction of individuals fully vaccinated as of 2021/10/01
in the LMIC considered. Here, averted deaths are computed with respect to the baseline simulations
without vaccines administered. We observe a high correlation between averted deaths and vaccination
coverage (Pearson coefficient r = 0.93, pvalue < 0.001). In Sri Lanka, Morocco and El Salvador the
vaccine rollout averted more than 50% of the deaths with respect to the baseline. In Bolivia, Indonesia,
Honduras, and Philippines the numbers are lower but still significant. Finally, we observe the group of
countries where the doses administered are very limited (< 10%) but their impact is still positive and
not negligible. While interpreting the results and comparing countries it is important to stress how the
model is fitted separately to each nation. Hence, some values of the free parameters such as the effective
transmissibility of the strains circulating might be estimated as slightly different even though they refer
to the same variants. For example, the posterior distribution for the relative transmissibility advantage
of the Delta variant with respect to Alpha peaks at 1.6 in El Salvador while at 2.7 in Sri Lanka. These
are effective parameters selected based on the available data. As such, they factor in many behavioral
factors that are not explicitly modeled. Examples are the relations among mobility reduction, contact
rates modifications, and infections. These might differ in different contexts/environments and affect the
scenarios modelled here.
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Supplementary Figure 5: Calibration results and impact of factual vaccinations in LMIC. We
show the actual number of weekly deaths (blue dots) and the simulated weekly deaths via the calibrated
model (median and 90% confidence intervals). We also show the estimated number of weekly deaths in
absence of vaccines (red dashed line).
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8 Model with time-varying reporting of deaths

We extend the model setup presented above to account for time-varying ability of countries to detect
deaths. Indeed, despite the period considered is relatively short and does not include the first uncertain
months of the Pandemic, we acknowledge possible changes in deaths reporting rates. Indeed, countries
may have improved in time their COVID-19 surveillance, or, on the other hand, reporting may have
degraded during the chaos brought by the Delta wave. To assess how this may affect our findings, here
we present a model that, instead of a single one, features two deaths reporting parameter: one for the first
and one for the second half of the period. In principle, one may add more than two reporting parameters
related to smaller fraction of the simulation, but that would significantly increase model’s complexity.
We repeat the calibration step for each country using as a prior distribution of the first deaths reporting
parameter the 95% confidence interval of the posterior distribution of the single reporting parameter of
the model presented in the main text. The second reporting parameter can instead vary in a range of
+/- 20 percentage points with respect to the first one (this percentage deviation is a new parameter
that is calibrated in the ABC-SMC process). As we can see from Tab. 6, where we show the posterior
distribution (median and IQR) for the two parameters, the model captures, in general, an improvement in
the ability of countries to detect deaths. Nonetheless, this has little impact on our main findings. Tab. 7
and Tab. 8 show, the estimated averted deaths in the scenario with US-equivalent vaccine availability
and with US-equivalent vaccine rollout start date respectively. We see that, the estimates from the
2-factors model always fall in the IQR range estimated with the single factor model, with the exceptions
of Philippines, Bangladesh, and Ghana. Nonetheless, in these cases the new estimates fall into the 90%
confidence intervals. We conclude that this change in modeling setup do not significantly impact the
findings presented in the main text.

Country Deaths Reported (%) - 1st Deaths Reported (%) - 2nd

Sri Lanka 33.54 [27.36, 26.35] 33.11 [26.35, 40.32]

El Salvador 50.23 [41.42, 43.13] 51.99 [43.13, 62.84]

Morocco 37.3 [30.27, 33.85] 42.05 [33.85, 50.17]

Bolivia 89.86 [84.84, 83.81] 91.14 [83.81, 99.0]

Honduras 63.47 [53.64, 58.49] 67.42 [58.49, 77.61]

Philippines 33.24 [29.49, 42.8] 46.98 [42.8, 51.7]

Indonesia 67.58 [57.42, 58.96] 70.53 [58.96, 82.59]

Pakistan 53.8 [43.22, 47.88] 58.29 [47.88, 71.51]

Rwanda 46.44 [35.61, 40.42] 51.35 [40.42, 64.21]

Bangladesh 14.4 [11.12, 18.46] 23.16 [18.46, 28.15]

Kyrgyzstan 47.5 [35.01, 41.9] 53.66 [41.9, 66.96]

Egypt 34.68 [31.93, 35.3] 39.44 [35.3, 43.6]

Mozambique 7.08 [5.85, 4.15] 5.22 [4.15, 6.45]

Afghanistan 24.85 [19.41, 20.41] 26.52 [20.41, 32.62]

Angola 3.96 [3.22, 3.16] 3.93 [3.16, 4.76]

Ghana 1.62 [1.48, 1.0] 1.0 [1.0, 1.0]

Zambia 22.44 [17.81, 16.53] 21.06 [16.53, 26.46]

Côte d’Ivoire 1.59 [1.3, 1.62] 2.2 [1.62, 2.82]

Kenya 7.85 [6.32, 7.84] 9.5 [7.84, 11.16]

Uganda 13.72 [10.32, 17.81] 23.65 [18.82, 28.19]

Supplementary Table 6: Posterior distributions (median and IQR) of percentage of deaths reported in
the 1st and 2nd half of the simulations obtained with the two deaths-reporting parameters model.
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Averted Deaths (Raw Number) Averted Deaths (%)

Country 1-Factor Model 2-Factors Model 1-Factor Model 2-Factors Model

Sri Lanka 19.1K [15.2K, 25.0K] 18.4K [14.9K, 22.4K] 62.61 [58.77, 67.05] 62.8 [59.2, 66.46]

El Salvador 2.2K [1.7K, 2.7K] 2.2K [1.8K, 2.6K] 59.31 [55.94, 63.02] 59.37 [56.3, 62.31]

Morocco 12.1K [9.7K, 15.5K] 10.7K [8.8K, 12.9K] 67.65 [63.59, 71.62] 65.66 [60.8, 70.56]

Bolivia 7.8K [7.2K, 8.3K] 7.6K [7.1K, 8.1K] 70.76 [68.86, 72.59] 70.37 [68.26, 72.39]

Honduras 5.8K [4.8K, 7.1K] 5.4K [4.7K, 6.3K] 60.91 [55.68, 66.17] 61.13 [56.23, 66.61]

Philippines 51.7K [43.2K, 61.3K] 42.5K [38.0K, 47.6K] 79.61 [76.48, 82.61] 75.11 [73.68, 76.76]

Indonesia 149.3K [122.5K, 182.7K] 137.5K [118.7K, 163.0K] 81.97 [78.91, 84.36] 81.51 [78.86, 83.71]

Pakistan 28.3K [21.1K, 38.2K] 22.6K [18.3K, 27.9K] 71.8 [69.93, 73.68] 70.79 [68.8, 72.48]

Rwanda 1.7K [1.1K, 2.6K] 1.4K [1.0K, 1.9K] 82.03 [77.39, 85.88] 80.36 [76.18, 84.08]

Bangladesh 93.2K [71.0K, 122.9K] 66.6K [54.5K, 82.7K] 86.12 [82.55, 89.27] 83.68 [80.34, 86.81]

Kyrgyzstan 1.7K [1.2K, 2.5K] 1.6K [1.2K, 2.1K] 80.39 [75.36, 85.0] 78.28 [73.42, 82.56]

Egypt 16.6K [14.5K, 18.8K] 14.5K [13.1K, 16.2K] 58.21 [56.08, 60.27] 55.98 [54.28, 57.95]

Mozambique 20.6K [15.4K, 26.8K] 21.3K [18.0K, 27.1K] 68.25 [64.86, 71.45] 70.05 [67.3, 72.72]

Afghanistan 18.5K [14.3K, 24.1K] 16.2K [13.4K, 20.3K] 93.67 [91.64, 95.54] 93.39 [91.22, 95.32]

Angola 15.4K [12.0K, 20.9K] 12.4K [10.3K, 15.8K] 53.82 [53.02, 54.9] 55.2 [54.71, 55.75]

Ghana 20.0K [15.6K, 26.0K] 35.7K [33.1K, 38.6K] 59.34 [56.64, 61.93] 63.36 [61.36, 65.24]

Zambia 12.9K [10.0K, 15.5K] 11.1K [8.8K, 13.8K] 71.69 [66.61, 77.53] 73.94 [69.8, 77.9]

Côte d’Ivoire 15.3K [12.5K, 18.0K] 13.5K [11.3K, 18.6K] 66.03 [61.75, 68.99] 66.81 [63.64, 69.17]

Kenya 30.8K [23.4K, 41.1K] 24.4K [21.0K, 28.7K] 70.74 [68.59, 72.89] 71.1 [69.39, 73.38]

Uganda 4.5K [3.3K, 5.9K] 4.9K [3.4K, 7.0K] 90.01 [86.85, 93.58] 87.35 [82.3, 91.24]

Supplementary Table 7: Averted deaths - expressed both as raw number and as percentage - estimated
by the model with single deaths reporting parameter (presented in the main text) and by the model with
two parameters in a US-equivalent vaccine availability scenario.
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Averted Deaths (Raw Number) Averted Deaths (%)

Country 1-Factor Model 2-Factors Model 1-Factor Model 2-Factors Model

Sri Lanka 13.5K [10.7K, 17.7K] 13.0K [10.5K, 16.0K] 44.29 [42.44, 46.39] 44.4 [42.96, 46.11]

El Salvador 1.7K [1.4K, 2.2K] 1.7K [1.4K, 2.0K] 46.86 [43.62, 50.54] 46.78 [44.22, 49.49]

Morocco 9.0K [7.1K, 11.6K] 7.7K [6.4K, 9.4K] 50.25 [45.17, 55.55] 48.05 [42.77, 53.7]

Bolivia 3.8K [3.5K, 4.0K] 3.7K [3.4K, 3.9K] 34.14 [32.81, 35.48] 33.88 [32.55, 35.19]

Honduras 3.1K [2.5K, 3.7K] 2.8K [2.5K, 3.2K] 31.94 [30.37, 33.57] 31.72 [30.04, 33.5]

Philippines 29.4K [24.9K, 34.1K] 24.0K [21.5K, 26.8K] 45.02 [41.61, 48.56] 42.5 [40.8, 44.24]

Indonesia 38.0K [31.5K, 45.7K] 35.3K [30.6K, 41.4K] 20.61 [19.69, 21.73] 20.67 [19.88, 21.54]

Pakistan 9.2K [6.8K, 12.1K] 7.3K [5.9K, 8.9K] 23.08 [21.63, 24.51] 22.71 [21.24, 24.07]

Rwanda 0.9K [0.5K, 1.4K] 0.7K [0.5K, 1.1K] 42.45 [33.25, 51.13] 42.13 [32.78, 51.04]

Bangladesh 22.0K [15.3K, 31.3K] 14.5K [11.5K, 18.5K] 20.87 [16.79, 23.74] 18.15 [15.8, 20.68]

Kyrgyzstan 0.8K [0.6K, 1.2K] 0.8K [0.6K, 1.0K] 37.83 [33.75, 42.75] 36.71 [32.87, 40.98]

Egypt 1.8K [1.5K, 2.2K] 1.5K [1.2K, 1.9K] 6.25 [5.19, 7.24] 5.84 [4.83, 6.81]

Mozambique 8.5K [6.4K, 11.0K] 9.0K [7.5K, 11.5K] 28.26 [27.08, 29.51] 29.23 [28.3, 30.14]

Afghanistan 2.9K [2.3K, 3.9K] 2.5K [2.0K, 3.2K] 14.73 [13.64, 16.05] 14.34 [13.2, 15.53]

Angola 6.4K [5.0K, 8.6K] 4.9K [4.0K, 6.2K] 22.38 [21.84, 22.83] 21.63 [21.1, 22.15]

Ghana 4.9K [3.8K, 6.3K] 8.0K [7.2K, 8.8K] 14.41 [13.27, 15.59] 14.32 [13.34, 15.05]

Zambia 4.0K [3.1K, 4.8K] 3.3K [2.7K, 4.2K] 22.08 [20.86, 23.49] 22.38 [21.22, 23.47]

Côte d’Ivoire 3.8K [3.1K, 4.4K] 3.4K [2.8K, 4.6K] 16.29 [15.52, 17.05] 16.51 [15.85, 17.21]

Kenya 8.4K [6.4K, 11.3K] 6.6K [5.6K, 7.9K] 19.36 [18.87, 19.84] 19.23 [18.74, 19.74]

Uganda 0.9K [0.5K, 1.2K] 0.9K [-0.4K, 2.3K] 18.51 [12.62, 23.98] 16.93 [-8.57, 35.21]

Supplementary Table 8: Averted deaths - expressed both as raw number and as percentage - estimated
by the model with single deaths reporting parameter (presented in the main text) and by the model with
two parameters in a scenario with US-equivalent start of vaccine rollout.
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9 Countries demographic

To better characterize the 20 countries selected, in Fig. 7 we show the share of population in different
age brackets (from 0 − 10 to 80+). The figure also shows the estimated average age for all countries.
The average age in the select countries is 26, with some dispersion around this value. Uganda is the
youngest country with an average age of 20.6, while the oldest among those considered is Sri Lanka, with
an average age of 34.8. In Fig. 8 we show for each country the overall contact matrices that we use to
inform the epidemic model taken from Ref. [8]. Qualitatively, we do not notice dramatic differences in
terms of contact rates. Indeed, among the countries considered contact intensities is significantly higher
in younger age groups. These small differences are also confirmed by Fig. 9 where we show the spectral
radius (i.e., absolute value of the largest eigenvalue) of the normalized contact matrix, whose element
c′ij is defined as c′ij =

Ni

Nj
cij , where Ni (Nj) is the number of individuals i age group i (j) and cij is the

i, j element of the original contact matrix. The basic reproductive number R0 of a SEIR-like model is
proportional to the spectral radius of such matrices. Hence, this quantity act as the effective strength of
contacts relevant for epidemic spreading. In the countries considered, the spectral radius is on average
13.41, spanning from a maximum of 14.07 in Sri Lanka, to a minimum 12.95 in Angola (marking a
maximum-minimum difference of only 8.3% respect to the average).
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Supplementary Figure 7: Age group distribution. We show for the 20 selected countries the popula-
tion share in each age group, from 0 − 10 to 80+. In the figure we also report the average age of each
country. Country are ordered from youngest to oldest one.
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Supplementary Figure 8: Contact Matrices We show the overall contact matrix for each country.
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