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SUMMARY
Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in hu-
mans, and results in a more effective response of innate immune cells upon stimulation with heterologous
stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells
collected from 156 samples.We observe that bothmonocytes andCD8+ T cells show heterologous transcrip-
tional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore,
the interferon-g pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders.
Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription fac-
tors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-
related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide
comprehensive insights into the importance of monocyte heterogeneity during TI in humans.
INTRODUCTION

In 1921, the live-attenuated Bacillus Calmette-Guérin (BCG) vac-

cine was introduced against tuberculosis. Interestingly, epidemi-

ological studies have shown that BCG may also provide protec-

tion against all-cause mortality in children. These effects were

due to an increased resistance against heterologous infections,

including neonatal sepsis and respiratory tract infections.1 These

non-specific protective effects of BCG have been later validated

in many independent studies, showing non-specific protection

by BCG in experimental models of bacterial, viral, fungal, and

parasitic infections.2 For instance, a recent murine model study

reported that intravenous BCG delivery causes enhanced pro-

duction of cytokines such as interleukin-6 (IL-6), IL-1b, and tumor

necrosis factor (TNF) by both splenocytes and peritoneal macro-

phages upon ex vivo restimulation with numerous heterologous

pathogens.3 The capacity of BCG (and other vaccines or mi-

crobes) to increase non-specific resistance to heterologous

pathogens is at least partly due to epigenetic and metabolic re-
This is an open access article under the CC BY-N
programming leading to increased antimicrobial properties of

innate immune cells, a process called trained immunity (TI).4

BCG vaccination is also known to induce TI in human innate

immune cell populations such as myeloid cells. For weeks and

even months after BCG vaccination, monocytes increase their

production of proinflammatory cytokines upon reinfection with

the same or different pathogen,5,6 while neutrophils display

enhanced antimicrobial killing capacities.7 In addition, metabolic

remodeling of monocytes by a first stimulation (such as a vacci-

nation) can lead to a faster and stronger activation of gene tran-

scription upon reinfection.8,9 To determine whether monocytes

respond heterogeneously after being trained, recently our group

performed an in vitro study with an experimental model of TI and

observed three distinct TI-associated monocyte subpopula-

tions: one population that did not respond better after BCG

vaccination (non-trainable), one of monocytes that produced

more chemokines (MC, which produces CXCL9/10/11), and

one that improved its capacity to produce both chemokines

and proinflammatory cytokines (MCI, which induces also more
Cell Reports 42, 112487, May 30, 2023 ª 2023 The Author(s). 1
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Figure 1. Overview of scRNA-seq dataset

(A) Experimental design of scRNA-seq. Peripheral blood mononuclear cells (PBMCs) were collected before (T0) and 3 months after (T3m) BCG vaccination. At

each time point, cells were stimulated with LPS (or RPMI as a control). Since IL-1b enhanced response is one of the major features to characterize TI, we

measured the production of IL-1b and calculated the FC between T3m and T0, stimulated by S. aureus after 24 h. Thirty-nine individuals were selected with

diverse responses to TI and divided into high (FC R 2; 19 individuals) and low (FC < 2; 20 individuals) responders. See also Figure S1A.

(legend continued on next page)
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TNF, IL-1b, and IL-6).10While this study sheds light on themono-

cyte heterogeneity in relation to transcriptional programs under-

lying TI, it remains elusive how the monocytes function and

interact as well as how the genes are regulated in an in vivo envi-

ronment, which is crucial for understanding clinical conditions.

In the present study, we studied in vivo BCG-induced TI and

generated single-cell RNA sequencing (scRNA-seq) data before

and 3 months after BCG vaccination from peripheral blood

mononuclear cells (PBMCs) of 39 healthy individuals having

either a strong (high responders, 19 individuals) or poor (low re-

sponders, 20 individuals) TI response to BCG. At both time

points, cells were stimulated with lipopolysaccharide (LPS) to

mimic a secondary infection or left unstimulated as a control.

We identified monocytes and CD8+ T cells to have the largest

sets of trained immunity response genes (TIGs), and we reported

on their dense crosstalk. Four distinct monocyte subpopulations

were found with distinct functions in relation to their post-BCG TI

responses. Notably, interferon-g (IFN-g)-related pathways were

upregulated in high responders, especially in the monocyte sub-

population with gene transcriptional responses enriched for IFN-

relatedmarker genesCALHM6,HES4,CXCL10, TNF,CD69, and

IFIT2. The opposite result was shown in low responders. Further-

more, to reach a better understanding of each monocyte sub-

population, a method combining data-driven results and a refer-

ence database was employed to find the enriched transcription

factors (TFs) for the various TIGs. Interestingly, STAT1 overlap-

ped across all subpopulations, and functional experiments vali-

dated its function in BCG-induced TI.

RESULTS

Single-cell transcriptome profiling of PBMCs trained by
in vivo BCG vaccination
A total of 325 healthy volunteers were included in the 300BCG

vaccination cohort.11 PBMCs were isolated at day 0 (T0, before

BCG vaccination) and 3months after BCG vaccination (T3m), af-

ter which the cells were stimulated with or without LPS. Since TI

is characterized by enhanced responses of proinflammatory

cytokines upon restimulation as compared with untrained cells,

the IL-1b concentration after stimulation with Staphylococcus

aureus of samples at T0 and T3m was also measured. The fold

change (FC) of IL-1b between T3m and T0 was used as a mea-

sure for BCG-induced TI. Subsequently, we selected 39 individ-

uals at the extremes of this TI spectrum: high (FC R 2 of S.

aureus-induced IL-1b production; N = 19) and low (FC < 2;

N = 20) responders (Figures 1A and S1A). To validate whether

the differences in monocyte cell counts at baseline would influ-
(B) UMAP visualization of cell types in PBMCs based on known marker genes

monocytes, CD4+ T cells, CD8+ T cells, natural killer (NK) cells, B cells, platelets, p

Figures S1B–S1D.

(C) Expression level of markers identified in main PBMC types.

(D) Cell proportion comparison between T0 and T3m in each cell type. Analysis

respectively.

(E) The number of up- and downregulated TI response genes (TIGs) using all 39 i

into high and low responders (right). Red bars represent the number of genes u

downregulated. Bars with a yellow icon below the x axis correspond to high respo

Figures S2A and S2B.
ence the definition of high and low responders, we calculated

the correlation between TI response markers, IL-1b production

capacity, and monocyte cell counts measured by fluores-

cence-activated cell sorting. Our results did not reveal a signifi-

cant correlation between these parameters (p = 0.1). PBMCs

from these selected 39 individuals were processed for scRNA-

seq using the 10x Genomics protocol. In total, we profiled

�200,000 PBMCs after filtering doublets, followed by quality

control. To investigate the transcriptome profiles of trained cells,

97,022 cells from LPS stimulation before BCG (T0_LPS) and LPS

stimulation 3months after BCG (T3m_LPS) were considered and

analyzed. Based on known marker genes and reference data-

base, the uniform manifold approximation and projection

(UMAP) plot revealed eight major immune cell types, namely

monocytes, CD4+ T cells, CD8+ T cells, natural killer (NK) cells,

B cells, platelets, plasmacytoid dendritic cells, and myeloid den-

dritic cells (Figure 1B). The expression of top marker genes of

each identified cell type are displayed in Figure 1C. All cell clus-

ters were uniformly distributed among individuals, batches, and

sexes, which in turn suggested minimal effect of technical batch

or donors (Figures S1B–S1D).

We then systematically compared the cell proportion of each

major cell type between T0 (before training by BCG) and T3m (af-

ter training by BCG) using Dirichlet regression analysis12 and

observed no significant differences (Figure 1D). After stratifying

individuals into high and low responders, no significant cell pro-

portion changes were observed in either of them. However, an

interesting pattern was observed in high responders after being

trained (T3m_LPS), i.e., the proportion of monocytes increased,

while the opposite was observed in low responders (Figure 1D).

To detect whether the changes in monocyte proportion between

high and low responders was significant, we performed Fisher’s

exact test and observed a significantly increased (two-sided,

p <2.2 3 10�16) monocyte proportion after being trained in

high responders. This supports the notion that monocytes are

one of the key factors for individual response variation to TI.

Further, to gain an overview of transcriptome characteristics of

the in vivo induced TI effect, we calculated differentially expressed

genes (DEGs) by comparing T0_LPS and T3m_LPS, which were

defined as trained immunity response genes (TIGs) (Table S1).

In line with the role of monocytes in heterologous BCG effects,

we observed a large number of TIGs in monocytes (Figure 1E).

Interestingly, we also identified abundant TIGs in CD8+ T cells.

Subsequently, a stratified analysis in high and low responders

separately revealed that in monocytes, although the number of

downregulated TIGs in high (n = 79) and low responders (n = 76)

was approximately equal, more TIGs were upregulated in high
and reference database. Among them, eight major cell types were identified:

lasmacytoid dendritic cells (pDC), and myeloid dendritic cells (mDC). See also

was conducted using all 39 individuals, high responders, and low responders,

ndividuals(left) and the same analysis were followed by dividing the individuals

pregulated after being trained and blue bars represent the number of genes

nders, and bars with a dark-blue icon correspond to low responders. See also
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responders (n = 128) than in low responders (n = 11). Thus, more

upregulated TIGs in monocytes of high responders indicated that

the difference in monocytes’ response to TI might be one of the

key reasons to explain the differences between high and low re-

sponders. In contrast, in CD8+ T cells, we detected an almost

similar number of upregulated TIGs in high (n = 54) and low

(n = 74) responders, and more downregulated TIGs in low re-

sponders (n = 112) than in high responders (n = 20).

In parallel, we noticed that the number of DEGs responding to

BCG vaccination, which was calculated by comparing cells be-

tween T3m_RPMI and T0_RPMI (Figures S2A and S2B) in mono-

cytes and CD8+ T cells, separately, was not significantly different

between high and low responders. This contrastedwith the num-

ber of TIGs in high and low responders (two-sided Fisher’s exact

test, p < 0.01). This suggests that transcriptomic responses to

BCG vaccination show a modest association with TI response.

Interferon-g-related pathways contribute to
heterogeneity of TI response
Subsequently, pathway analysis was performed to investigate

the biological functions of TIGs associated with BCG-induced

TI in monocytes. In total, 225 and 87 TIGs were identified within

the monocytes of the high and low responders, respectively. The

type I IFN signaling pathwaywas significantly upregulated in high

responders but not in low responders (Figure 2A). Notably, type I

IFNs activate the immune response after infection.13 Similarly,

the type II IFN pathwaywas upregulated in high responders while

being downregulated in low responders (Figures 2A and S2C–

S2J). The opposite direction of type II IFN pathway regulation af-

ter BCG vaccination in low and high responders suggests an

important role of IFN-g in BCG-induced TI, as supported by

several recent studies.14,15

A comparison of effect size of TIGs between high and low re-

sponders (Figure 2B) showed that 179 out of 274 TIGs (65.32%)

had the same direction (both either upregulated or downregu-

lated in high and low responders), demonstrating a shared

response pattern between high and low responders. However,

there were 194 and 56 TIGs (Bonferroni corrected p value

<0.05) that were specifically significant in either high or low re-

sponders, respectively. Among 31 TIGs that showed significant

differential expression in both groups, 14 genes (45.16%), i.e.,

GBP5, LAP3, GBP1, WARS, ACOD1, PSMB9, IRF1, CREM,

APOL2, CDC42SE2, LRRC75A, APOL1, HAPLN3, and FBXO6,

were upregulated in high responders but downregulated in low

responders. These genes were enriched in IFN-g pathways

(Benjamini-Hochberg [BH]) corrected p value <0.05) (Figure 2C).

Additionally, there were 70 significant TIGs in either high or low

responders but with opposite effect (i.e., upregulated in high re-

sponders and downregulated in low responders, fourth quadrant

of Figure 2B). Those genes also showed an enrichment in IFN-

g-related pathways (BH corrected p value <0.05, Figure S3A).

These findings are consistent with the hypothesis that IFN-g

pathways play a key role during induction of TI.

Crosstalk betweenmonocyte andCD8+ T cells in trained
immunity
Since a large number of TIGs were also detected in CD8+ T cells

(Figure 1E), we further investigated the biological functions asso-
4 Cell Reports 42, 112487, May 30, 2023
ciatedwith upregulated (n = 135) and downregulated (n = 79) TIGs

in CD8+ T cells. Many of the enriched Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways among the upregulated

TIGs in CD8+ T cells were the same as in upregulated TIGs of

monocytes, including NK cell-mediated cytotoxicity, suggesting

a possible interaction between monocytes and CD8+ T cells in

TI (Figures S3B–S3E). To investigate the putative crosstalk be-

tween monocytes and CD8+ T cells during TI, NicheNet16 was

used to estimate the ligands-targets pairs based on gene expres-

sion and reference database. When monocytes were set as

senders, we found that monocytes likely interact directly with

CD8+ T cells via several ligands, including IL27 and CRLF2 (Fig-

ure 2D). Previous studies have shown that IL27, together with

IL12, is regulated in humanmacrophages that interact withMyco-

bacterium tuberculosis, with an important role in T cell activa-

tion.17 In addition, theCRLF2 gene interacts with IL7R and subse-

quently thymic stromal lymphopoietin to activate downstream

lymphopoiesis pathways.18 Althoughwe detected a large number

of ligands-targets connections while setting CD8+ T cells as

senders, the lymphocyte products IFNG19 and TGFB1 seemed

to play key roles during interaction with monocytes (Figure 2E).

Our data suggested thatmonocytes andCD8+ T cellsmay interact

with each other in intensive interactions during induction of TI. The

TIGs frommonocytes influenced the reaction of CD8+ T cells, and

the changes in CD8+ T cells may assist monocytes to respond to

BCG-induced training. Therefore, CD8+ T cells is likely to be an

important source of IFN-g that amplifies the TI responses after

BCG vaccination. These data suggest that CD8+ T cells may be

an important source of IFN-g, amplifying the TI responses after

BCG vaccination.

Four heterogeneous monocyte subpopulations are
identified upon in vivo BCG training
To systematically study the heterogeneity of in vivo BCG-

induced TI effects in monocytes in an unbiased manner, we

analyzed 12,703 TI-associated monocytes from T3m_LPS and

T0_LPS from all the individuals in our data. The workflow of

this analysis was as follows: (1) we performed unsupervised

clustering based on the changes ofmost variable genes between

T3m_LPS and T0_LPS; (2) we calculated the TIGs (specifically

between T3m_LPS and T0_LPS) for each identified subpopula-

tion from step 1; (3) we performed enrichment analysis based

on the identified TIGs from step 2 to detect further biological het-

erogeneity. In detail, initially we selected the top 50most variable

genes from the monocytes and performed unsupervised clus-

tering based on the expression difference between T3m_LPS

and T0_LPS: this methodology identified four subpopulations

(Figure 3A). Subsequently, for visualizing the distribution of four

identified monocyte subpopulations, we extracted monocytes

at T3m_LPS and mapped corresponding cells in each subpopu-

lation to UMAP directly, demonstrating the transcriptional het-

erogeneity of the TI effect induced by BCG vaccination (Fig-

ure 3B). Additionally, the robustness of clustering results was

confirmed by the same analysis using either the top 100 or top

300 (Figures S4A and S4B) most variable genes.

To characterize the four monocyte subpopulations, we as-

sessed themain genes changing transcriptionally in each subpop-

ulation. Based on these characteristics we could loosely define
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Figure 2. scRNA-seq analysis of TI characteristics

(A) Pathway enrichment analysis using up- and downregulated TIGs in high and low responders in monocytes separately. Pink area means pathways were

upregulated, while the blue area means pathways were downregulated. Different patterns were shown between high and low responders. Specifically, IFN-g

pathways were upregulated in high responders but downregulated in low responders. See also Figures S2C–S2J.

(B) Effect size (log2FC) comparison of TIGs identified in monocytes. Values on the x axis were log2FC in high responders, while values on the y axis were from low

responders. Yellow dots represent those TIGs only significant in high responders while dark-blue ones were only significant in low responders. Gray dots

represent TIGs that were significant in both groups.

(C) Enriched pathways using TIGs that were significantly upregulated in high responders but downregulated in low responders. See also Figure S3A.

(D and E) Cell-cell interaction between monocytes and CD8+ T cells. Ligands were highly variable genes in senders, and targets were TIGs in receivers. In (D),

monocytes were set as sender, while in (E) CD8+ T cells were set as sender. See also Figures S3B–S3E.
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Figure 3. Subclustering of monocytes based on TI responses, which are changes between T3m_LPS and T0_LPS

(A) Unsupervised clustering using the top 50most variable genes inmonocytes. For each gene in each cell, the value was calculated by the difference in T3m_LPS

and the mean value of the corresponding gene in the corresponding individual in T0_LPS. Spearman correlation was calculated between cells, and k-means was

used to cluster cells. In total, four distinct monocytes were identified. See also Figures S4A and S4B.

(B) UMAP visualization of identifiedmonocyte subpopulations. Monocytes were extracted from the UMAP of PBMC in T3m_LPS, and cells in each subpopulation

were mapped to UMAP directly. Four subpopulations were independently distributed, which may demonstrate their heterogeneous functions in TI.

(C) Expression level of markers in four definedmonocyte subpopulations. Based on themarkers, four subpopulations were defined: type I IFN-relatedmonocytes

(TM1); proinflammatory cytokine monocytes (mainly IL-1 pathway) (TM2); proinflammatory monocytes (combination of chemokines and IFNs) (TM3); and

neutrophil-related monocytes (TM4).

(D) Comparative analysis of four monocyte subpopulations and previously reported monocyte subpopulations (i.e., MCI and MC) using an in vitro dataset.

Markers of MCI and MC were selected from Zhang et al.10 The expression pattern indicated that TM1–TM3 were subtypes of MCI while TM4 tended to have

characteristics similar to those of MC.
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subpopulations of trained monocytes as: TM1 (characterized by

CALHM6, HES4, CXCL10, TNF, CD69, and IFIT2) enriched in

type I IFN-related pathways; TM2 (characterized by CXCL1-

CXCL3, THBS1, SLC7A11, CCL20, F3, and CSF3) as mainly en-

riched in proinflammatory cytokine genes (mainly IL-1 pathway);

TM3 (characterized by CCL2, IFI6, IFI44L, and CCL7) as enriched

in a combination of chemokines and IFNs; and TM4 (characterized

by ZEB2, ACTG1, PFN1, LYZ, S100A9, OLR1, S100A8, and

ZFAS1) as enriched in neutrophil-related genes (Figure 3C). We

used the known markers of classical monocytes (CD14), non-

classical monocytes (FCGR3A), M1 (CD80, CD86), and M2

(CD163, CD68) to check whether the four identified heteroge-

neous subpopulations were overlapped with one of these classi-

cally divided monocyte subsets. First, we did not observe the

expression of CD14 and FCGR3A in our dataset. Second, we as-

sessed CD80, CD86, CD163, and CD68 expression and found

that TM1 showed overlap with M1 while TM2–TM4 overlapped

with subsets of M2 (Figures S4C and S4D).
6 Cell Reports 42, 112487, May 30, 2023
Next, we compared the four identified monocyte subpopula-

tions with the three previously reported trained monocyte sub-

populations after in vitro TI induction, i.e., MCI, MC, and non-

trained subsets.10 We observed that MC signature genes were

highly expressed in TM4, whereas MCI signatures were highly

expressed in TM1, TM2, and TM3. For example, IL1B, TNF,

and IL6, which were markers of MCI, were expressed higher in

TM1–TM3 than in TM4. This result suggested that TM4was com-

parable with MC whereas MCI can be further subclassified into

TM1–TM3 (Figure 3D). The TM3 population has the lowest num-

ber of DEGs after BCG vaccination, and is therefore most closely

related to the in vitro non-trained monocyte subset.

The trained immunity monocyte subpopulations have
distinct functions
To understand the functions of these four distinct monocyte sub-

populations, we identified TIGs in each monocyte subpopulation

(Figure 4A) followed by pathway enrichment analysis. The number
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Figure 4. TI characteristics of four monocyte subpopulations

(A and B) The number of up- and downregulated TIGs in each subpopulation. The results of pathway enrichment analysis using up- and downregulated TIGs

identified in (A), separately, are summarized in (B). See also Figures S4C–S4F. Pathways in the pink area were upregulated and in the blue area downregulated.

IFN-g pathways were upregulated in TM1 but downregulated in TM2.

(C and D) Comparisons of the number of shared and unique TIGs in high and low responders in each population. The results of enrichment analysis (C) using

specific up- and downregulated TIGs in high and low responders, separately, are summarized in (D). Pathways in the pink area were upregulated and in the blue

(legend continued on next page)
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of TIGs in TM1was the largest comparedwith the other three sub-

populations. TM3 showed the least number of TIGs. A different

patternwas observed in TM2, inwhich 89%TIGswere downregu-

lated. In TM4, most of the TIGs (90%) were upregulated.

Pathwayenrichment analysis revealed that upregulatedTIGs in

TM1 and TM4 were enriched in IFN-g-related pathways. On the

contrary, IFN-g and type I IFN-related pathwayswere downregu-

lated in TM2 (Figure 4B). Gene ontology enrichment analysis re-

vealed that theupregulatedTIGs in themonocyte subpopulations

were associatedwith several immune-related pathways, e.g., the

nuclear factor (NF)-kB signaling pathway in TM1 and TM4, the

IL-1 receptor binding pathway in TM2, and the response to IL-1

in TM3 (Figure S4E). Downregulated TIGs were enriched for IL-

12-related pathways in TM1 and type I IFN in TM2, while IL-1-

related pathways were lowered by BCG vaccination in TM4 (Fig-

ure S4F). In the KEGG enrichment analysis, although the number

of TIGs in these four subpopulations was different, some path-

ways were shared between them (Figures S4G and S4H). For

example, for upregulated TIGs Toll-like receptor signaling

pathway, NOD-like receptor signaling pathway, RIG-1-like re-

ceptor signaling pathway, and TNF signaling pathwaywere upre-

gulated in TM1, TM2, and TM3 but downregulated in TM4 (Fig-

ure 4B). This was also consistent with what we have observed

above (Figure 3D), i.e., the expression level of TNF is lower in

TM4 compared with other subpopulations. The IL-17 signaling

pathway was enriched for upregulated genes in TM2 and TM3

but was downregulated in TM1 and TM4. These findings suggest

that monocyte responses after BCG vaccination are heteroge-

neous, with four major types of transcriptional response.

To validate the robustness of the identified four BCG-induced TI

monocyte subpopulations, we assessed single-cell transcriptome

profiles from three additional, independent individuals from the

samecohort (300BCGcohort) using the same technology (10xGe-

nomics). Unsupervised clustering analysis here again revealed

four TI-induced monocyte subpopulations (Figures S5A and

S5B). We also checked the enriched pathways for upregulated

TIGs and downregulated TIGs separately. Twelve out of 33 en-

richedpathwaysof upregulatedTIGs, includingNOD-like receptor

signaling pathway, RIG-1-like receptor signaling pathway, NF-kB

signaling pathway, cytokine-cytokine receptor interaction, and

IL-17 signaling pathways, were replicated in the corresponding

subpopulations. While looking into the TIGs of each enriched

pathway,we found thatonaverage55%of themcanbe replicated.

For downregulated TIGs, 13 out of 30 enriched pathways,

including Toll-like receptor signaling pathway, legionellosis,

pertussis, AGE-RAGE signaling pathway in diabetic complica-

tions, and graft-versus-host disease, can be replicated (Figures

S5C and S5D). This high level of replication, despite the lower po-

wer of the second study, strongly suggests the robustness of the

pathways identified in the four TI monocyte subpopulations.
area downregulated. Interestingly, IFN-g pathways were upregulated in TM1 in h

indicated the importance of IFN-g pathways in TI and the role of these pathways i

and S6A–S6D.

(E) Further investigation comparing monocytes and CD8+ T cells explored com

expression level of the top 20 most active ligands identified in four subpopulations

each subpopulation, and TM1 was the most active cell type. Heatmap shows the

and TIGs in CD8+ T cells. See also Figures S6E–S6G.
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To further understand how the functions of these four distinct

monocyte subpopulations differ depending on the individual

functional TI response after BCG vaccination, we stratified indi-

viduals into high and low responders and then compared the

number of TIGs between them in each monocyte subpopulation

(Figure 4C). In TM1, 63.6%of the TIGswere shared between high

and low responders, whereas TIGs of TM2–TM4 were mostly

specific to either high or low responders. TM3 again showed

the least number of TIGs compared with the other three subpop-

ulations, thereby suggesting that those cells were less trainable

than the others. IFN-g-related pathways were upregulated in

TM1 for TIGs specifically in high responders but downregulated

in TM2 for TIGs specific in low responders. Similar to the findings

above (Figure 2A), this also suggests that IFN-g played an impor-

tant role in differing high and low responders (Figures 4D, S5E–

S5H, and S6A–S6D).

Crosstalk between TI monocyte subpopulations and
other immune cells
Considering the heterogeneous monocyte response after BCG-

induced TI and the large number of TIGs in CD8+ T cells, we per-

formed ligands-targets interaction between each monocyte sub-

population (senders)andCD8+Tcells (receivers) inT3m_LPS (after

being trained) separately. Most of the active ligands, including

AMAD17, PTPRC, IL18, CLCF1, TNF, IL15, and EBI3, were de-

tected in TM1. EBI3 in TM1 and CRLF2 in TM4 were the actively

communicating ligands with large numbers of TIGs in CD8+

T cells (Figure 4E). We did not identify unique ligands in TM3 that

interact with CD8+ T cells, which may again illustrate that TM3

monocytes are not as well trained as the other subpopulations.

As discussed above, we found that upregulated TIGs in TM1

and TM4 were also enriched in pathways related to T cells (Fig-

ure S4E). Subsequently, we further explored whether the four

different monocyte subpopulations interacted among them-

selves or with other immune cells, especially the communication

between TM1/TM4 and T cells. Analysis was performed between

each monocyte subpopulation (set as receiver) and all cell types

(including TM1–TM4, CD8+ T cells, CD4+ T cells, NK cells, and B

cells, set as the sender) separately. We observed that SEMA4D

in CD8+ T cells communicated with BCL3, CDKN1A, GADD45B,

PLEC, PTMA, UBC, and ELBO in TM4 (Figures S6E–S6G). CD4+

T cells interacted with TM1 via PTPRC (CD45). We also observed

that TM1 was the most active sender during communication and

interacted with all four monocyte subpopulations. Specifically,

IFNG expressed in NK cells, TNF expressed in TM1, and IL1B

and IL1A expressed in TM1, TM2, and TM3 showed interactions

with TIGs detected in either TM1/TM2/TM3 but not in TM4. Inter-

estingly, some ligands, such as TNF and ADM expressed in TM1

and CCL2 expressed in TM3, were also interacting with the

other two subpopulations, i.e., either TM2/TM3 or TM1/TM2,
igh responders but were downregulated in TM2 in low responders. This again

n explaining individual diversity in responding to TI. See also Figures S5C–S5H

munications between four monocyte subpopulations and CD8+ T cells. The

are shown as a dot plot. Different ligands were interacting with CD8+ T cells in

potential regulatory relationship between ligands in monocyte subpopulations
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respectively, but not with TM4. We observed that these ligands

were also TIGs (Table S1), thereby suggesting interactions

among TM1, TM2, and TM3 during TI. However, the interaction

between TM4 and other cell types showed very different pat-

terns. For example, unlike in TM1–TM3, an interaction between

TM4 and NK cells wasmissing. These results suggest a similarity

in interactions mediated by TM1, TM2, and TM3 with other im-

mune cells. Based on these data and the expression level of pre-

viously identified MCI signatures (Figure 3D), the notion that the

TM1–TM3 trained monocytes identified here are subpopulations

of MCI cells (while TM3 is most closely related also to non-train-

able cells) was further consolidated.

Trained monocyte subpopulations are regulated by
different transcription factors including STAT1

We next aimed to identify the active transcription regulators and

reconstruct the gene regulatory network important for the induc-

tion of the distinct TI programs in the four monocyte subpopula-

tions. First, the RcisTarget package in SCENIC20 was used to

identify TFs that may regulate the TIGs upon BCG vaccination.

GENIE321 was then used to reconstruct the gene regulatory

network based on the identified TFs and TIGs in each subpopu-

lation separately. TF-targets links were randomly permuted 500

times, and the area under the receiver-operating characteristic

curve (AUC) and the area under the precision-recall curve

(AUPR) and their corresponding p values were calculated (Fig-

ure 5A). In total, 41 TFs were found to be significantly enriched

in TIGs from the four monocyte subpopulations (AUC p < 0.05

and AUPR p < 0.05). Among the detected TFs, 65%were shared

among two ormore subpopulations. TM1, TM3, and TM4 had six

(XBP1, HIVEP2,GTF2B, JUND, FOSL1, andMEF2A), five (ETS2,

ATF4,NFAT5, PRDM1, and STAT6) and one (KLF6) specific TFs,

respectively (Table S2). Specifically, STAT1 was one of the mas-

ter TFs shared among all four subpopulations, together with

BACH1, IRF7, NFKB1, and CEBPB (Figure 5B). Among the TFs

shared by all four monocyte subpopulations, pathways in which

STAT1 functioned as a crucial TF regulate the IFN-g effects.22 To

validate the regulatory role of STAT1 in TI, monocytes were stim-

ulated with RPMI or BCG in the absence or presence of the

STAT1 inhibitor ruxolitinib (4 mM). Ruxolitinib significantly in-

hibited TI induced by BCG (Wilcoxon test, p = 0.0078 and

p = 0.031, respectively) (Figure 5C), demonstrating the role of

STAT1 for the induction of TI.

Subsequently, transcriptomic data in T3m_LPS were used to

separately predict the targets of STAT1 in high and low re-

sponders, employing GENIE3. It is interesting that the targets

of STAT1 in TM1 were completely unique between high and

low responders, while some were shared between the two

groups in other subpopulations (Figure S6H). We detected that

IFN-g-related pathways were upregulated in TM1, especially in

high responders (Figures 4B and 4D), which may again indicate

that IFN-g-related pathways acting through STAT1 play an

important role in BCG-induced TI.

Involvement of TM1 and TM4 trained immunity
monocyte subpopulations in diseases
To explore whether and how our identified TI-induced monocyte

subpopulations were also related to diseases, we tested the
enrichment of expression for genes responding to M. tubercu-

losis infections (the BCG targeted disease23) in the four mono-

cyte subpopulations. M. tuberculosis-responding genes were

enriched in the upregulated TIGs in TM1 but downregulated

TIGs in TM2, and they were mainly involved in IFN-g-related

pathways (BH corrected p value <1 3 10�25).

To further understand the function of TIGs in immune dis-

eases, as well as the specific monocyte subpopulation involved,

we used up- and downregulated DEGs between sepsis patients

and healthy individuals. Our goal was to test the potential overlap

and enrichment of TIGs with sepsis DEGs as an illustrative

example of an important immune-mediated disease. Based

on the circulating ferritin concentrations and data from the previ-

ous study,24 we compared three groups of sepsis patients with

either immune paralysis, macrophage activation-like syndrome

(MALS), or an unclassified immune profile. Sepsis-responding

genes were obtained by comparing each group of patients and

healthy controls separately. First, we calculated the DEGs be-

tween each subgroup of patients and healthy controls in sepsis

scRNA-seq data. Next, we ranked our TIGs based on the log2
fold change (log2FC) in decreasing order. Thereafter, we map-

ped the DEGs to the ranked TIGs and calculated the enrichment

score. We found that upregulated TIGs in TM1 were enriched in

the gene dataset that was downregulated in the MALS and im-

mune paralysis sepsis patients (Figure 6A). These genes were

related to the IFN-g and inflammatory response pathway (BH

corrected p value <0.05) (Figure 6B and Table S3). This suggests

a defective capacity of monocytes from sepsis patients to mount

an effective TM1 transcriptional program. Similarly, we observed

that down- and upregulated TIGs in TM1 and TM4 (Figures 6C

and 6D), respectively, were enriched in the genes from immune

paralysis and MALS patients. Among important pathways, they

were all enriched for genes of the complement pathway (Fig-

ure 6E and Table S3). An opposite pattern, i.e., downregulated

TIGs in TM1 but upregulated in patients, may contribute to sus-

ceptibility to sepsis, while upregulation of TIGs in both TM4 and

patients might provide protection against sepsis. A similar

pattern was detected in ICU-SEPSIS patients of the second

sepsis dataset25 (Figure 6C).

Altogether, these results suggest that TI monocyte subpopula-

tions (TM1 and TM4) are involved in immune response in infec-

tions, and defects in proper induction of TM1 and TM4 TI tran-

scriptional programs can lead to an increased severity of

sepsis or a higher risk of disease progression (toward MALS or

immune paralysis).

To facilitate the understanding of TI in diseases, we have im-

plemented the above analysis into an R tool, TIGENS, for testing

the enrichment of gene signatures from different TI monocyte

subpopulations in transcriptome data of patients. TIGENS is

freely available at GitHub of CiiM (https://github.com/

CiiM-Bioinformatics-group/TIGENS).

Genes associated with TI responses show higher
expression in TM4 subpopulation
To further validate the function of the identified TI monocyte sub-

populations, we tested whether the expression of genes associ-

ated with TI is enriched in these cells. First, we performed trained

immunity quantitative trait locus (TI QTL) mapping to calculate
Cell Reports 42, 112487, May 30, 2023 9
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Figure 5. TF analysis of monocyte subpopulations

(A) Workflow of TF identification. First, RcisTarget was performed to search the regulons from a human database using TIGs in each subpopulation separately.

GENIE3 was used to reconstruct gene regulatory networks between identified TFs and TIGs using our scRNA-seq dataset. TF-target links were ranked on the

basis of importance score. Then for each identified TF, we labeled the link with this specific TF as 1 with the others labeled as 0 and shuffled the rank 500 times to

calculate AUC p value and AUPR p value. Those TFs with both AUC p < 0.05 and AUPR p < 0.05 were considered significant.

(B) Unique and overlapping identified TFs among four monocyte subpopulations. Potential TFs in each subpopulation are colored dark green. See also Fig-

ure S6H.

(C) Lab validation of STAT1. Monocytes were stimulated with RPMI or BCG. Both simulations were performed separately with a carrier control (DMSO, 0) or with

4 mM ruxolitinib. Comparison of FC of IL-6 and TNF (both are TI markers) between after being trained and being trained with ruxolitinib, separately, revealed that,

after being trained with ruxolitinib, the TI effect decreases significantly (Wilcoxon test, p = 0.007813 and p = 0.0313, respectively).
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the correlation between the ratio (between T3m_LPS and

T0_LPS) of cytokine response (IL-1b) and SNP genetic variants

in 289 samples of the 300BCG cohort. Subsequently, we ex-

tracted genes located around SNPs having a TI QTL p value of

<1 3 10�3, within a 250 kb window both upstream and down-

stream, and tested whether they were enriched in the above

identified TIGs in each monocyte subpopulation, respectively.

Among these four subpopulations, the neutrophil-related mono-

cyte subpopulation (TM4) showed the highest number of upre-

gulated TIGs (38) that also contained QTLs (Table 1). Consid-

ering TM4 also had a greater number of upregulated TIGs

compared with TM2 and TM3, we set the TIGs of the other three

subpopulations as the background to test the significance of

enrichment. Fisher’s exact test showed that the enrichment
10 Cell Reports 42, 112487, May 30, 2023
was significant (p < 0.05), which suggested that TI QTL proximity

SNPs were more likely to influence TI response in TM4. To check

the robustness of our results, we selected a p value of <13 10�4

as another threshold and found that the number of TIGs in TM4

(neutrophil-related monocyte subpopulation) was consistently

larger than in other subpopulations (Table S4).

DISCUSSION

BCG vaccination not only protects against tuberculosis but also

against unrelated infections and all-cause mortality.3 This is

thought to be at least in part mediated by the induction of TI,

which results in amore effective activation of innate host defense

mechanisms in an antigen-independent manner.4,26 However,
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Figure 6. TIG association with sepsis disease

(A and B) Upregulated genes in TM1 were all enriched in downregulated genes of macrophage activation-like syndrome (MALS) and immune paralysis patients

compared with healthy controls. Enrichment analysis using enriched genes identified from MALS and immune paralysis (A), which were upregulated in TM1 but

downregulated in patients, separately, are summarized in (B). IFN-g responses and inflammatory responses were significantly enriched in both patients.

(C) Downregulated genes in TM1 were enriched in upregulated genes in patients in immune paralysis and MALS patients compared with healthy controls. The

same result was also detected in ICU-SEPSIS patients from the second cohort.

(D) In two independent sepsis cohorts, we observed that upregulated genes in TM4 are enriched in upregulated genes in both immune paralysis and ICU-SEPSIS

patients compared with healthy controls.

(E) Pathway enrichment analysis using enriched genes from (C) and (D) showed genes that were upregulated in TM1 and downregulated in TM4, but upregulated

in patients (compared with healthy controls), were all enriched in the complement pathway. These analyses may indicate the balance between TM1 and TM4.
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there is a large variation in the TI response to BCG between indi-

viduals, and the molecular mechanisms behind this variation are

not known. The 300BCG cohort has been designed to compre-

hensively investigate the immunological effects of BCG vaccina-

tion.11 One very important aspect that is basically unknown is the

heterogeneity of the TI response at a cellular level: are there

different subpopulations of trained innate immune cells, and

what are their characteristics and roles in disease? In this study,

we presented single-cell transcriptome profiles of immune cells

isolated from 39 healthy individuals, stimulated ex vivo with

LPS before and 3 months after BCG vaccination. We identified
four different populations of TI monocytes characterized by spe-

cific activation of immune pathways after BCG vaccination. We

also reported the role of STAT1 and type II IFN pathway for the

induction of TI, and the defects in proper induction of these pro-

grams in patients with severe sepsis.

One of the interesting findings was to identify the effects of

BCG-induced TI at the level of different immune cell populations.

When assessed per immune cell type, we found a large number

of TIGs, mainly in monocytes and CD8+ T cells. Subsequently,

we also observed cell-cell communication networks between

monocytes and CD8+ T cells during TI, and these intense
Cell Reports 42, 112487, May 30, 2023 11



Table 1. Analysis of association between monocyte

subpopulations and TI combining genetics dataset

TM1 TM2 TM3 TM4

No. of TIGs located

within IL-1b QTL areas

29 1 0 38

No. of TIGs 350 19 35 309

We calculated the number of TIGs located within IL-1b QTL areas.

Fisher’s exact test showed that TI QTL proximity SNPs were more likely

to influence TI response in TM4 (p < 0.05).
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interactions suggested that although monocytes represent the

main substrate of TI, their function was strongly influenced by

CD8+ T cells, while CD8+ T cells were also influenced by mono-

cytes after BCG vaccination. The importance of interaction be-

tween monocytes and T cells for induction of TI is supported

by a recent study on TI in a malaria model.14 Importantly, the

data on the enrichment of the type II IFN pathway in the induction

of the TI programs may suggest a role of IFN-g produced by

CD8+ cells in these effects. This remains to be formally demon-

strated, but IFN-g has been shown to be crucial for the induction

of TI by BCG also in animal models.15

Another interesting finding of our study was that we observed

individual variations in TI while measuring cytokine production

capacity before and after vaccination: high responders (N = 19)

and low responders (N = 20) were separated based on the FC

of one of the key TI responsemarkers, i.e., a change in IL-1b pro-

duction capacity following BCG vaccination. To explore the rea-

sons andmechanisms leading to individual diversity, enrichment

analysis using TIGs was performed which, interestingly, showed

that IFN-g-related pathways were upregulated in monocytes

from high responders but downregulated in monocytes from

low responders. Finally, an important argument for the role of

the type II IFN pathway for the induction of TI was provided by

the complementary data on the enrichment of STAT1 motifs in

TI genes and the functional experiment showing inhibitory ef-

fects of the JAK/STAT pathway inhibitor ruxolitinib on the induc-

tion of TI.

Previous studies have shown that monocytes and macro-

phages mediate protective effects upon multiple stimulations

from various pathogens.6,27 However, the heterogeneous

response of monocytes in TI after vaccination was not studied.

An in vitro study has recently attempted to unveil monocyte het-

erogeneity after being trained, and reported three populations of

trained monocytes—MCI (monocytes producing higher chemo-

kines and inflammatory cytokines), MC (monocytes producing

higher chemokines), and non-trained monocytes (monocytes

that do not increase their function after training)—based on the

corresponding TI response profiles.10 We wanted to explore

whether similar heterogeneity exists after in vivo vaccination

with BCG, a canonical inducer of TI. We therefore compared sin-

gle-cell transcriptional profiles before and after BCG vaccination

using an unsupervised clustering method. This enabled us to

identify four monocyte subpopulations (TM1, TM2, TM3, and

TM4) with distinct TI characteristics, immune functions, and

regulated TFs. We observed that TM1–TM3 expressed the

earlier described MCI signatures, while TM4 expressed MC sig-

natures. The presence of several subclasses of trained MCI
12 Cell Reports 42, 112487, May 30, 2023
monocytes in vivo was suggestive of subtle signals that were

masked in the in vitro model. Interestingly, IFN-g-related path-

ways were upregulated in high responders in both TM1 and

TM4 but downregulated in low responders in TM2, which argued

for specific pathways of induction for these distinctive TI

programs.

TFs are cell-type or condition specific and have a very impor-

tant role in determining the cellular function. Therefore, we

used TIGs to detect subpopulation-specific TFs, which in turn

helped us to interpret the distinguishing characteristic of each

trained monocyte subpopulation. Interestingly, we identified

both unique TFs corresponding to each subpopulation and

shared ones across all subpopulations. Among them, STAT1,

which was a crucial TF in regulating IFN-g effects, seemed to

act as a master TF across all four monocyte subpopulations.

The effect of STAT1 in regulating TI was experimentally validated

by pharmacological inhibition in vitro.

While very interesting from an immunological point of view, a

crucial question regards the importance of the TM1–TM4 TI pro-

grams for human diseases, which would in turn provide insights

into immunotherapy targets. As innate immune responses are

crucial for host defense, we investigated these transcriptional

programs in sepsis, which comprises different endotypes based

on severity or specific immune responses.24 Importantly, we

observed that the trained monocyte programs had dysregulated

expression in patients with severe sepsis. In detail, the genes

that were downregulated TIGs in TM1 were significantly upregu-

lated in patients with severe forms of sepsis. In contrast, the up-

regulated TIGs had different behavior whether they belonged to

the TM1 or TM4 programs: upregulated TM4 TIGs were also

higher in patients, whereas the upregulated TIGs in TM1 were

downregulated in patients. These data strongly suggest that it

is especially the TM1 TI program that is defective in patients

with severe sepsis, opening the possibility to identify specific im-

mune-based approaches to sepsis in the future that could target

the pathways belonging to TM1 TI. The response to type II IFNs is

an important component of the TM1 TI program, and IFN-g is

currently in clinical trials for patients with sepsis (https://

clinicaltrials.gov/ct2/show/NCT04990232).

Limitations of the study
This study also has limitations. First, we have focused on mono-

cytes, which are probably the most important cell type in TI, but

earlier studies have also reported that BCG affects several other

innate immune cell types including NK cells, neutrophils, dendritic

cells, and even adaptive immune cell types, e.g., T cells.4,28 Future

studies should also focus on how these cells respond to BCG

vaccination-induced TI. For example, it would be interesting to

explore whether there are any subpopulations of other innate im-

mune cells after being trained and how they interact and coop-

erate with each other upon secondary stimuli. Second, our study

investigated post-BCG changes up to 3 months after vaccination,

but future studies should investigate the effects of BCG beyond

3 months. Third, in this study we demonstrate the importance of

the crosstalk between monocytes and CD8+ T cells for induction

of TI, and this finding is based solely on the data generated by the

BCG vaccination. The important role of T cell/monocyte interac-

tion for an efficient induction of TI has been also recently

https://clinicaltrials.gov/ct2/show/NCT04990232
https://clinicaltrials.gov/ct2/show/NCT04990232
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demonstrated in the case of malaria.14 However, whether this

interaction is important for other stimuli that induce TI remains

to be investigated by future studies. Fourth, the definition of

high- and low-TI responders was limited to the FCs of ex vivo

IL-1b production. In the future, an unbiased and generalized

model should be established to explore individual response differ-

ences upon stimulations or vaccinations in TI studies. Finally, li-

gands-targets communication could only provide cell-cell interac-

tion between two groups. However, we found that upregulated

TIGs in both monocytes and CD8+ T cells were all enriched in

the NK-cell-mediated cytotoxicity pathway, which may imply a

more complicated network between monocyte CD8+ T cells and

NK cells during TI. In addition, since multi-omics datasets such

as epigenomics, metabolomics, and proteomics are available,

integrating different layers of data could be powerful and may un-

cover deeper biological information.

Taken together, using an in vivo BCG-induced TI model, inde-

pendent data-driven cross-check, and functional experimental

validation, we have identified four distinctive TI transcriptional

programs that characterize monocyte subpopulations in vivo.

We unraveled and demonstrated the importance of IFN-

g-related pathways and STAT1 regulation for these identified

trained monocyte subpopulations, and we reported defective in-

duction of these programs in patients with severe sepsis. We

believe that our findings will provide a crucial starting point for

studying cell-type heterogeneity during TI and allow for a better

understanding across different cell types and diseases.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yang Li

(yang.li@helmholtz-hzi.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data has been deposited at European Genome-phenome Archive (EGA), which is hosted by the EBI and

the CRG, under accession number EGAS00001006990 (https://ega-archive.org/studies/EGAS00001006990).

d All original code has been deposited at https://github.com/CiiM-Bioinformatics-group/TIGENS and is publicly available as of

the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

300BCG study design
To study the immunological effects of BCG vaccination, 325 healthy (44% male and 56% female) adult volunteers of Western Euro-

pean ancestry were included in the 300BCG cohort between April 2017 and June 2018 in the Radboud University Medical Center.

Healthy volunteers were recruited using local advertisements and flyers in Nijmegen (the Netherlands) and were compensated for

participation. After written informed consent was obtained, EDTA blood was collected, followed by administration of a standard

dose of 0.1 mL BCG (BCG-Bulgaria, InterVax) intradermally in the left upper arm by a medical doctor. Vaccination of study partici-

pants was organized in batches of 6–16 subjects per day. Three months after BCG vaccination, additional blood samples were

collected. The exclusion criteria comprised the use of systemic medication, except for oral contraceptives or acetaminophen,

and antibiotics within three months before inclusion, previous BCG vaccination, history of tuberculosis, any febrile illness four weeks

before and during participation, any vaccination within threemonths before participation, and amedical history of immunodeficiency.

The fold change (FC) of IL-1b between T3m and T0 was used as a measure for BCG-induced TI. Subsequently, we selected 39 in-

dividuals at the extremes of this TI spectrum: high (FC R 2 of S. aureus-induced IL-1b production; N = 19) and low (FC < 2; N = 20)

responders.

Study approval
The 300BCG (NL58553.091.16) study was approved by the Arnhem-Nijmegen Medical Ethical Committee. Written informed consent

was obtained before any research procedure was initiated. The study was performed in accordance with the declaration of Helsinki.

METHOD DETAILS

PBMC isolation and stimulation
Peripheral blood mononuclear cell (PBMC) isolation was performed by density centrifugation over Ficoll-Paque (GE healthcare, UK).

Cells were washed twice in PBS and suspended in RPMI culture medium (Roswell Park Memorial Institute medium, Invitrogen, CA,

USA) supplemented with 50mg/mL gentamicin (Centrafarm), 2 mMglutamax (GIBCO), and 1mMpyruvate (GIBCO). In a total volume

of 200 mL/well, 53105 PBMCs were cultured in round bottom 96-well plates (Greiner) and stimulated ex vivo with 5 3 106 CFU/mL

heat-killed S. aureus before vaccination and 3 months after vaccination. IL-1b production was measured after 24 h incubation (37�C,
5% CO2) in supernatants using commercial ELISA kits, in accordance with the manufacturer’s instructions, and the fold change in

cytokine production (after vaccination compared to baseline) was used as a measurement of the magnitude of the trained immunity

response and was used to identify low vs. high responders. In addition, isolated PBMCs were stimulated for 4 h with either RPMI

(control) or LPS 10 ng/mL (serotype 055: B5; Sigma).

Single-cell library preparation and RNA-sequencing
In total, 156 samples were mixed into 32 pooled libraries. In each pool, an equal number of cells from 3 or 5 different donors were

pooled together. Single cell gene expression libraries were generated on the 10x Genomics Chromium platform using the Chromium

Next GEM Single Cell 30 Library & Gel Bead Kit v3.1 and Chromium Next GEMChip G Single Cell Kit (10x Genomics) according to the

manufacturer’s protocol. Libraries were sequenced on a NovaSeq 6000 S4 flow cell using v1 chemistry (Illumina) with 28bp R1 and

90bp R2 run settings. These pools were sequenced in 3 batches in which conditions and timepoints weremixed tominimize potential

batch effects.
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Pilot validation dataset
Individuals from the 300BCG cohort were vaccinated in the morning with 0.1 mL of BCG (BCG vaccine strain Bulgaria; Intervax).

PBMCs isolated from 3 healthy donors (19, 24, and 25 years of age, all men) before vaccination and 90 days after vaccination

were stimulated ex vivo with RPMI medium (control) or 10 ng/mL LPS. In total, 12 samples (3 donors 3 2 vaccination-status 3 2 re-

stimulation-status) were applied to 103 Genomics scRNA-seq in 1 batch. CellRanger v3.1.0 was used to process scRNA-seq of the

in vivo study. To generate a digital gene expression matrix for each sample, we mapped their reads to the GRCh38 human reference

genome and recorded the number of UMIs. UMI count matrices were then imported to R/Seurat package for downstream analyses.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing and demultiplexing
In each library, bcf2fastq Conversion Software (Illumina) was used to convert BCL files to FASTQ files, along with sample sheet

including 10x barcodes. The proprietary 10x Genomics STAR in CellRanger pipeline (v3.1.0) was used to align read data to

GRCh38/b38 (downloaded from 10XGenomics). We set the parameter of setting of expected cells to 2000. Finally, a gene expression

matrix was generated which recorded UMIs count of each gene in each cell.

In each library, duplicates were removed using pre-mapped bam files, and cells were assigned to their individuals of origin using

souporcell (v2.0)29 and, 91.98% cells were retrieved for downstream analysis. Since T0 data of one individual contained few cells at

T3m, we discarded it from downstream analysis. Subsequently, the souporcell tool was employed to cluster cells based on allele

counts using hierarchical clustering strategy and assign individuals to clusters. Further, the genotype dataset of each individual

was used to cross-check the consistency between the assigned individuals via souporcell and individual phenotypes id.

Data quality control
Cells with: 1) MT-genes percentage more than 25% and 2) number of detected genes less than 100 or more than 5,000 were

removed. Also, only genes expressed in at least 5 cells (leaving �200k cells and 21,975 genes) were considered for the downstream

analysis.

Data integration and clustering
In total, cells were collected from 3 batches in 10, 10, 12 pools, respectively. In each pool, 5 samples from different individuals at

different timepoints with different stimulations were pooled randomly. Seurat (v4.0.0)30 package of R (v4.0.2) was used to integrate

and analyze all data together. In brief, at first, for each independent dataset from each pool, UMI counts were normalized

(log(10000x + 1)) and the top 2000 variable features were selected using NormalizeData and FindVariableFeatures function with

default parameters, respectively. Later, repeated features were identified across all independent datasets, and utilized for scaling

and PCA analysis on each dataset. Instead of canonical correlation analysis, in order to speed up calculation for integration and avoid

overcorrection,30 reciprocal PCA was used via the SelectIntegrationFeatures function to detect integration anchors. Followed by

IntegrateData, the integrated dataset was scaled and clustered using default parameters. Cell clusters were further annotated

combining the results from SingleR31 package of R (HumanPrimaryCellAtlasData, BlueprintEncodeData, MonacoImmuneData,

DatabaseImmuneCellExpressionData and NovershternHematopoieticData were selected as reference) and the expression level of

known cell markers (CD4+ T cells: IL7R, CD3D; CD8+ T cells: CD8A, CD8B; Monocytes: CD14, IL1B; NK cells:GNLY, NKG7; B cells:

CD79A; mDC: HLA-DPA1, HLA-DPB1; pDC: CTSC, TSPAN13; Platelet: PPBP). We also found a group of T cells with a high expres-

sion of HSPA1A, HSPA1B and labeled as HSP(T). After removing undefined cells, the remaining cells (CD4+ T cells = 65170, CD8+

T cells = 31926, Monocytes = 31601, NK cells = 28796, B cells = 21356, mDC = 2211, pDC = 1223) across all individuals and con-

ditions were used for downstream analysis.

Unsupervised clustering for trained monocytes
FindVariableFeatures function of the Seurat was employed to detect the top variable genes in monocytes and perform unsupervised

clustering. Initially, we calculated the mean value of each gene at T0 in each individual. Then the expression value of each gene in

each monocyte of each individual at T3m was subtracted by the corresponding mean value of each gene of monocytes of each in-

dividual at T0 and define the difference as "TI changes". Later, based on TI changes, unsupervised clustering employing Spearman

correlation in ComplexHeatmap package (v2.7.7)32 was performed to estimate the similarity between cells and, subsequently, mono-

cytes were clustered into 4 groups using k-means. Then we extracted monocytes from PBMC and mapped the clustered sub-pop-

ulations to extracted monocytes for visualization.

Differentially expressed genes tests and enrichment analysis
Differential gene expression analysis was performed using FindMarkers/FindAllMarkers function with Wilcoxon Rank-Sum test in

Seurat. Genes expressed in at 10% cells and having p_val_adj <0.05 (Bonferroni correction) were considered significant. In each

identified main cell type, the BCG response genes were compared between T3m_RPIM and T0_RPIM. For each main cell type

and monocyte sub-population, TIGs were defined based on the changes between T3m_LPS and T0_LPS. Additionally, the same an-

alyses were also done for high- and low-responders separately.
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Enrichment analysis
For the enrichment test, significant gene sets were subjected to enrichGO and enrichKEGG function (pAdjustMethod = "BH", qva-

lueCutoff = 0.05) of ClusterProfiler (v3.18.1)33 package of R, separately. In order to focus on the immune-related pathways, enrich-

ment of genes that were upregulated in high-responders but downregulated in low-responders in monocytes and disease associa-

tion analysis, GENE2FUNC function in FUMA34 was used and MsigDB H (hallmark gene sets) database39 was set as background.

Pathways with BH correction <0.05 were regarded as significant.

Cell-cell interaction analysis
NicheNet (v1.0.0)16 was used to infer cell-cell interaction in the T3m_LPS based on aggregated prior information of ligand-receptor,

signaling and gene regulatory data. In brief, initially, communications analysis was performed between twomain cell types having the

largest numbers of TIGs, i.e., monocytes and CD8+ T cells, and one-time monocytes and CD8+ T cells were set as ’’receiver’, and

’’sender’, respectively and other time vice-versa. For the communications betweenmonocyte sub-populations and all the cell types,

we set each sub-population as ’’sender’, separately. In each analysis, TIGs were regarded as sets of interest (targets) and ligands

were identified from senders. The genes expressed in at least 10% cells from senders were considered as background genes.

Top 20 ligands were selected based on the Pearson correlation coefficients with TIGs. Cell-cell interaction was visualized using circl-

ize (v0.4.12).35

Transcription factors of each sub-population and gene regulatory network reconstruction
For each monocyte sub-population, SCENIC (v1.2.4)20 was used to find activated regulons of TIGs separately. Specifically,

RcisTarget (v1.10.0) was applied to identify cis-regulatory motifs of TIGs using hg38_refseq-r80_10kb_up_and_down_tss.mc9nr.-

feather database. GENIE3 (v1.12.0)21 was used to reconstruct the gene regulatory network while targets were TIGs. Further, to select

the top TFs based on ranked TF-target links obtained from GENIE3, for each TF, we labeled each link with the specific TF as 1 and

others as 0 and calculated AUC and AUPR value. Then we performed random shuffles for 500 times and TFs with AUC-pvalue <0.05

and AUPR-pvalue <0.05 were considered as potential TFs. Cytoscape36 was used for gene regulatory (between identified TFs and

TIGs) network visualization.

Gene set enrichment analyses for disease association study
To understand the association between TIGs and immune diseases, gene set enrichment analysis of TIGs was performed using the

GSEA function in ClusterProfiler package33 of R’ ’TERM2GENE’ was the ranked TIGs based on their avg_log2fc (calculated by

Seurat) in each sub-population and ’’’geneList’ was the differentially expressed genes between patients and healthy control in

each disease group.

Genotype data pre-processing
DNA samples of individuals were genotyped using the commercially available SNP chip, Infinium Global Screening Array MD v1.0

from Illumina. optiCall 0.7.040 with default settings was used for genotype calling. Genetic variants with a call rate %0.01 were

excluded, as were variants with Hardy-Weinberg equilibrium (HWE) % 0.0001, and minor allele frequency (MAF) % 0.001. The

strands and variants identifiers were aligned to the 1000 Genomes reference panel using Genotype Harmonizer.41 One sample

was excluded from the pre-imputed dataset due to high relatedness. We then imputed the samples on the Michigan imputation

server using the human reference consortium (HRC r1.1 2016)42 as a reference panel. Data were phased using Eagle v2.3, and

we filtered out genetic variants with an R2 < 0.3 for imputation quality. We identified and excluded 17 genetic outliers, and selected

4,296,841 SNPs with MAF 5% for follow-up QTL mapping.

Association with cytokine QTL
TI cytokine QTL analysis was performed using MatrixEQTL37 package of R. After filtering outliers, 278 individuals were left. The

changes of TI associated cytokines, i.e. IL-1b, between T3m and T0 with S. aureus stimulation after 24 h, were only considered. Prior

to analysis, cytokine measurements were log2-transformed using the Shapiro-Wilk normality test for normal distribution check and

SNPswithMAF >0.05were removed. Age, sex and cell counts were considered as covariates in the linearmodel. TIGswithin ± 250kb

of TI cytokine-QTLs were selected as being regulated. Fisher’s exact test (two-sided, p value <0.05) was used to identify which

monocyte sub-population is significantly correlated with TI.

Independent cohort validation of sub-populations identification
Cells with: 1) MT-genes percentage more than 25% and 2) number of detected genes less than 100 or more than 5,000 were

removed. UMI counts were normalized (log(10000x + 1)) and the top 2000 variable features were selected using NormalizeData

and FindVariableFeatures function with default parameters, respectively. PCA was performed based on the 2,000 most variable

features identified in Seurat. The cells were then clustered using the Louvain algorithm based on the first 20 PCA dimensions

with a resolution of 0.7. For 2D data visualization, we performed UMAP also based on the first 20 PCA dimensions. TI markers of

each identified sub-population were used as features. Each feature in each cell in T3m_LPS was subtracted by the mean value
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of the corresponding gene in the corresponding individual in T0_LPS. Spearman correlation was performed to calculate the sim-

ilarity between cells in T3m_LPS and k-means was used to cluster cells.

STAT1 validation experiment
For the STAT1 validation experiment, we used a previously optimized in vitro TI model. PBMCswere isolated as described above, but

from buffy coats (Sanquin) instead of fresh blood. Untouched monocytes were isolated by negative magnetic separation (Pan mono-

cyte isolation kit human, Miltenyi Biotec). All monocyte culture was performed in RPMI (described above) further supplemented with

10% human pooled serum. Briefly, the monocytes were stimulated for 24 h with RPMI or BCG for 24 h, in the presence of 4 mMRux-

olitinib or a carrier control (DMSO). The cells were washed and incubated for 5 days with an intermittent medium refresh on day 3. On

day 6, monocytes were re-stimulated with LPS for 24 h. Subsequently, cytokine production was assessed using ELISA as described

above.

Data visualization
In general, the R package Seurat and ggplot2 (v3.3.6)38 were used to plot figures.

ADDITIONAL RESOURCES

Clinical trial registry (NCT04990232) for the human sepsis trial data described in the manuscript can be found here (https://

clinicaltrials.gov/ct2/show/NCT04990232).
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Figure S1. Overview of data quality, related to Figure 1. (A) Sample information. 

Fold Change (FC) of IL-1b in 39 individuals. Individuals with FC ≥ 2 were defined as 

high-responders (N = 19) and verses were defined as low-responders (N = 20). UMAP 



of scRNA-seq dataset splitting by donor, batch and gender were shown in (B-D). All 

cell clusters were uniformly distributed among individuals, batches and sexes, which 

in turn suggested minimal effect of technical batch or donors. 

 
  



 
Figure S2. Comparison of TI and BCG effect and TI functional enrichment 
analysis, related to Figures 1 and 2. (A) The total number of BCG response genes 

in main cell types. BCG response genes were defined as the between T3m_RPMI and 

T0_RPMI. Up-regulated means the expression level of those genes were higher 3 

months after BCG vaccination without LPS stimulation than before BCG vaccination 

without LPS stimulation. (B) The number BCG response genes in high- and low- 

responders, respectively. (C-J) Comparison was between T3m_LPS and T0_LPS. Up-

regulated means the expression level of those genes were higher 3 months after BCG 

vaccination with LPS stimulation than before BCG vaccination with LPS stimulation. In 



GO Enrichment of Biological Process (C) and Molecular Functions (D) using up-

regulated trained immunity response genes in high responders. GO Enrichment of 

Biological Process (E) and Molecular Functions (F) using up-regulated trained 

immunity response genes in low responders. GO Enrichment of Biological Process (G) 

and Molecular Functions (H) using down-regulated trained immunity response genes 

in high responders. GO Enrichment of Biological Process (I) and Molecular Functions 

(J) using down-regulated trained immunity response genes in low responders. 

 
  



 
Figure S3. TIGs enrichment analysis, related to Figure2 and 3. (A) Enriched 

pathways using all genes (either significant in high-responders or low-responders) that 

were up-regulated in high responders but down-regulated in low responders. GO 



Enrichment results of TIGs for up-regulated genes (B) and down-regulated (C) genes 

in each main cell type. KEGG enrichment results for up-regulated genes (D) and down-

regulated (E) genes in each main cell type. T3m_LPS and T0_LPS were compared. 

 
  



 
Figure S4. Validation of clustering robustness and functional analysis, related 
to Figure 3 and 4. (A) Unsupervised clustering using top 100 most variable genes. (B) 

Unsupervised clustering using top 300 most variable genes. (C) FeaturePlot of the 
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expression levels of markers for classical monocytes (CD14) and non-classical 

monocytes (FCGR3A) after being trained (T3m_LPS). (D) FeaturePlot of the 

expression levels of markers for M1 (CD80, CD86) and M2 (CD163, CD68) after being 

trained (T3m_LPS). GO (E) and KEGG (F) enrichment analysis for up-regulated TIGs. 

GO (G) and KEGG (H) enrichment of down-regulated TIGs, related to Figure 3 and 4. 

 
  



 
Figure S5. Validation using an independent pilot cohort and functional analysis, 

related to Figure 3 and 4. (A) Heatmap of un-supervised clustering using markers 

identified in 300BCG scRNA-seq dataset. (B) UMAP of identified sub-populations. 



KEGG enrichment using up-regulated TIGs (C) and down-regulated TIGs (D). GO 

Enrichment for up- (E) and down-regulated (F) TIGs in high-responders. GO 

Enrichment for up- (G) and down-regulated (H) TIGs in low-responders. 

 
  



 
Figure S6. Functional analysis, cell-cell interaction and reconstruction of STAT1 
regulated network, related to Figure 4 and 5. KEGG Enrichment for up-regulated 

TIGs in high- (A) and low- (B) responders. KEGG Enrichment for down-regulated TIGs 
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in high- (C) and low- (D) responders. (E-G) Cell-cell interaction between TM1-TM4 

(receiver) and other cell types (sender), respectively. The circos plot (E) and heatmap 

(G) are ligands-targets connection, and dotplot shows the expression level of ligands 

in each cell type. (H) Predicted targets of STAT1 in each monocyte sub-population in 

high- and low- responders, respectively. 

  



Table S4. The number of TIGs that were located in TI QTLs areas (p-value < 1×10-4) 

in each monocyte sub-population, related to Table 1.  

 

TIGs (logFC > 0) IL1b
(TIGs/snps)

TM1 350 3(21)
TM2 19 0
TM3 35 0
TM4 309 9(59)
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