Supporting Information

Altered DNA repair pathway engagement by engineered CRISPR-Cas9 nucleases

Vikash P. Chauhan ^{1,2}, Phillip A. Sharp ^{1,2*}, and Robert Langer ^{1,3*}

¹ Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

² Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

³ Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

* Correspondence to: sharppa@mit.edu (PAS), rlanger@mit.edu (RL)

Supporting Figures

Figure S1. Detailed views of mutated Cas9 residues. (**A**) Wide view of Cas9 residues at the interface with the substrate DNA strands that were selected for mutation and screening. The mutated residues (red) are located in either the mobile HNH domain (green) or the immobile RuvC domain (blue), which are connected by linkers (yellow). (**B**) Focused view of the residues from **A** in the target cleft. (**C**) Focused view of the residues from **A** in the target cleft. (**C**) Focused view of the residues from **A** in the nontarget cleft. (**D**) Location of the same Cas9 residues in a structure of Cas9 without the DNA substrate bound. (**E**) Focused view of the residues from **D** in the nontarget cleft.

Figure S2. Assay for determining DNA break structure induced by Cas9 variants. (**A**) Assay for DNA break structure, where paired DSBs lead to perfect deletion junctions for blunt cuts and insertions in the deletion junctions for staggered cuts. The sequences of the insertions indicate cut positions in each strand. (**B**) Design of gRNA pairs to introduce deletion junctions.

Figure S3. Rational engineering produces Cas9 variants with increased HDR frequency. (A, B) Screen of precise editing and indel frequencies for engineered Cas9 (A) single-mutant and (B) doublemutant variants using an HDR template. (C) Design of a gRNA and HDR template to introduce a GFP to BFP conversion. (D) Frequency of precise gene conversion from GFP to BFP. (E) Flow cytometry plots showing BFP-positive (indicating precise edits), nonfluorescent (indicating indels), and GFP-positive (indicating unedited cells) cell population fractions. (F, G) Screen of precise editing and indel frequencies for engineered Cas9 (F) triple-mutant and (G) quadruple-mutant variants using an HDR template. * indicates p < 0.05 for precise editing frequency compared to wild-type Cas9 in A, B, D or for total editing frequency compared to wild-type Cas9 in F, G. Data were analyzed by deep sequencing in A, B, F, G or flow cytometry in D, E and represent means of n = 3 independent replicates with standard errors.

Figure S4. vCas9 improves on-target versus off-target editing specificity. (A, B) Indel frequencies at on-target (T) and off-target (OT1-OT3) loci. * indicates p < 0.05 for indel frequency compared to wild-type Cas9. Data were analyzed by Sanger sequencing and represent means of n = 2-3 independent replicates with standard errors.

Figure S5. Engineered Cas9 variants suppress small NHEJ indels and promote larger MMEJ indels.

(A) Design of a gRNA and HDR template to introduce precise edits. (B-D) Distributions of indel sizes induced. (E, F) Frequencies of repair pathways engaged (E) without (noT) and (F) with (T) a repair template at several loci. NHEJ mutations are subset into insertions or deletions, while MMEJ mutations are subset by microhomology length (MH1 to MH>5). (G, H) Precise editing and indel frequencies using HDR templates without or with an MMEJ inhibitor (Rucaparib) or NHEJ inhibitor (NU7026). * indicates p < 0.05 for indel size compared to wild-type Cas9 in B-D, for NHEJ frequency compared to wild-type Cas9 in E, F, or for precise editing frequency compared to wild-type Cas9 in G, H. ** indicates p < 0.05 for precise editing frequency compared to wild-type Cas9 in G, H. ** indicates p < 0.05 for precise editing frequency compared to wild-type Cas9 in G, H. ** indicates p < 0.05 for precise editing frequency compared to wild-type Cas9. Data were analyzed by deep sequencing and represent means of n = 3 independent replicates with standard errors.

Α

Cas9 EMX1 locus

G G A G G A C A T C G A T G T C A C C T C C A A T G A C T A G G G T G G G C A A C C A C A A A C C C A C G A G G G C A G -Reference gRNA

G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A .	A	Т	G /	4 (0 1	ΤA	10	G	G	Т	G	G	G	С	А	A	C	C /	1 0	C A	A	A	С	С	С	A	С	G /	4 (G G	G	G C	А	G	-36.21%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	ΤО	G /	4 (0 1	Γ-	C	G	G	Т	G	G	G	С	А	A	C	C/	4 0	C A	A	A	С	С	С	A	С	G /	4 (3 C	G	G C	А	G	-6.84%
G	G	А	G	G	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	ΤО	G /	4 (с.		. 0	G	G	Т	G	G	G	С	А	A	C	C/	4 0	C A	A	A	С	С	С	A	С	G /	4 (3 0	G	G C	А	G	-5.26%
G	G	А	G	G,	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	т	G /	4			. 0	G	G	Т	G	G	G	С	А	A	С	C /	4 0	A	A	A	С	С	С	A	С	G /	4 (3 G	6 G	G C	А	G	-2.48%
G	G	А	G	G,	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G /	4 (ΤA	۹ -	-	-	-	-	-	-	С	А	A	С	C /	4 0	A	A	A	С	С	С	A	С	G /	4 (3 G	6 G	G C	А	G	-2.47%
G	G	А	G	G	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G /	4 (ΤA	A A	G	G	G	Т	G	G	G	С	A	A	СС	C A		A	A	А	С	С	С	А	C	3 A	A C	6 G	G	С	A	-1.57%
G	G	А	G	G	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G	-			-	G	G	Т	G	G	G	С	А	A	С	C /	4 0	C A	A	A	С	С	С	A	С	G /	4 (3 0	; G	C	А	G	-1.28%
G	G	А	G	G	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G /	4 (0 1	ΤA	A T	A	G	G	G	Т	G	G	G	С	A	A	0	A	C	A	А	А	С	С	С	A	0 0	βA	G	G	G	С	-1.22%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	т	G /	4 (C .			-	-	-	-	-	-	-	- [-	- 1	C /	4 0	C A	A	A	С	С	С	А	С	G /	4 (3 0	G	G C	А	G	-1.07%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G /	4 (0	ΓA	۱ -	-	-	-	-	-	-	-	-	- 1	C	C /	4 0	C A	A	A	С	С	С	A	С	G /	4 (G G	G	G C	А	G	-1.05%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	ΤО	G	-			. 0	G	G	Т	G	G	G	С	А	A	C	C/	4 0	C A	A	A	С	С	С	A	С	G /	4 (G G	G	G C	А	G	-0.97%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	ΤО	G /	4 (0 1	ΤA	۱ -	-	G	Т	G	G	G	С	А	A	C	C/	4 0	C A	A	A	С	С	С	A	С	G /	4 (3 G	G	G C	А	G	-0.89%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	ΤО	G /	4 (0 1	ΤA	۰ ۱	-	-	-	-	-	G	С	А	A	C	C /	4 0	C A	A	A	С	С	С	A	С	G /	4 (3 0	G	G C	А	G	-0.87%
G	G	А	G	G	A	CA	A T	C	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G /	4			-	G	G	Т	G	G	G	С	А	A	C	C /	4 0	A	A	A	С	С	С	A	С	G /	4 (3 0	G	G C	А	G	-0.83%
G	G	А	G	G .	A	CA	A T	С	G	A	Т	G	Т	С	А	С	С	Т	С	С	A	A	Т	G	-				-	-	Т	G	G	G	С	А	A	C	C /	4 0	A	A	A	С	С	С	А	С	G /	4 (G G	; G	G C	А	G	-0.78%

vCas9 EMX1 locus

G G A G G A C A T C G A T G T C A C C T C C A A T G A C T A G G G T G G G C A A C C A C A A A C C C A C G A G G G C A G - Reference qRNA

G	G	А	GG	A	С	А	т с	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 0	Т	A	G	G	G T	G	G	G	C A	A A	С	С	А	C	A A	A	С	С	C /	4 (0	A	G	G	G	CA	G	- 56	3.38%
G	G	А	GG	A 6	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 0	Т	A	Т	A	GO	G	Т	G	GC	GC	A	А	С	C /	4 0	; A	А	А	С	0 0	C A	C	G	А	G(G G	C	-2.	43%
G	G	А	GG	A 6	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 C	- 1	-	-			-	-	- [- /	AA	С	С	А	C /	A A	A	С	С	C /	4 (0	6 A	G	G	G	A	G	-2.	09%
G	G	А	GG	β A	С	А	т с	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G			-	-		- 1	G	G	G	C A	A A	С	С	А	C	A A	A	С	С	C /	4 (0	6 A	G	G	G	C A	G	-1.	76%
G	G	А	GG	A 6	С	А	т с	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 -		-	-	G(GΙ	G	G	G	C A	A A	С	С	А	C /	A A	A	С	С	C /	4 (0	A	G	G	G	C A	G	-1.	71%
G	G	-		-	-	-		-	-	-	-	-	-	-			-	-	-	-	-	- 1			-	-		- 1	G	G	G	C A	A A	С	С	А	C	A A	A	С	С	C /	4 (0	A	G	G	G	C A	G	-1.	51%
G	G	А	GG	A 6	С	А		-	-	-	-	-	-	-			-	-	-	-	-	-			-	-			-	-	- [- A	С	С	А	C /	A A	A	С	С	C /	4 0	0	A	G	G	G	C A	G	-1.	10%
G	G	А	GG	A 6	С	А	т с	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 0	Т	A	С	Τ/	4 0	G	G	Т	GC	G	С	А	А	С	CA	C	А	А	A	0 0	0 0	A	С	G	A	G G	G	-1.	05%
-	-	-		-	-	-		-	-	-	-	-	-	-			-	-	-	-	-	- 1			-	-			-	-	-		- A	С	С	А	C	A A	A	С	С	C /	4 (0	A	G	G	G	C A	G	-0.	80%
G	G	А	GG	A 6	С	А	ТС	G	A	T	G	Т	-	-			-	-	-	-	-	-			-	-			G	G	G	C A	A A	С	С	А	C /	A A	A	С	С	C /	4 (0	A	G	G	G	C A	G	-0.	70%
G	G	А	GG	A 6	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G			-	-			-	G	G	C A	A A	С	С	А	C /	A A	A	С	С	C /	4 (0	6 A	G	G	G	C A	G	-0.	66%
G	G	А	GG	A 6	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	-	-			-	-			-	-	- [С	С	А	C /	A A	A	С	С	C /	4 (0	6 A	G	G	G	C A	G	-0.	65%
G	G	А	GG	6 A	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 0	Т	A	А	G(G) T	G	G	GC	A	A	С	С	A (CA	A	А	С	С	C A	4 0	G	А	G	G(GC	; A	-0.	53%
G	G	А	GG	6 A	С	А	ΤС	G	A	Т	G	Т	С	A	СС	Т	С	С	А	А	Т	G /	4 C	- 1	-	-			-	-	-			-	-	-	- /	A A	A	С	С	C /	4 (0	6 A	G	G	G	A	G	-0.	51%
-	-	-		-	-	-		-	-	-	-	-	-	-			-	-	-	-	-	-			-	-			-	-	G	CA	A A	С	С	А	C /	A A	A	С	С	C /	4 (0	6 A	G	G	G	C A	G	-0.	49%

В

Cas9 AAVS1 locus

T G T C C C C T C C A C C C C A C A G T G G G G C C A C T A G G G A C A G G A T T G G T G A C A G A A A A G C C C C A T - Reference gRNA

т	0	т	0	0	0	0	т	0	0	٨	0	0	0	0		0	٨	0	т	0	0	0	0	0	0	^	0	т		0	2	2			C	0	۵	т	т	0			0	0	0		۰ ۸			0	0	0	~ (т	2.2	000/
	G		C	C	C	C		C	C	A	C	C	C	C	A	C	A	G		G	G	G	G	C	C	A	C	1 1	٩ [G	5 (3 F	4 0	, A	. 0	G	A			G	5	G	A	C	A	9 /	A A	A	A	G	C			A		- 33	.23%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Т	Ą	G	G (G (G A	V C	A	G	G	А	Т	Т	GO	G T	G	А	С	A (G A	A	А	А	G	C (С	СС	A	- 10	.51%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Τ,	Ą	- (G (G A	4 0	A	G	G	А	Т	Т	G	GT	G	А	С	А	G,	A A	A	А	G	С	C (С	C A	Т	-6.9	96%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	G	-	-	-	-	-	- [- 1		- /	4 0	A	G	G	А	Т	Т	G	GT	G	А	С	А	G,	A A	A	А	G	С	C (С	C A	Т	-3.6	56%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	-	-	-	-	-	-	- [- 1		- /	4 0	A	G	G	А	Т	Т	G	GT	G	А	С	А	G,	A A	A	А	G	С	C (С	A	Т	- 3.4	19%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Т	Ą		- (G A	4 0	A	G	G	А	Т	Т	G	GΤ	G	А	С	А	G /	A A	A	А	G	С	С	С	A	Т	-2.9	93%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Т	-	G	G (G A	4 0	A	G	G	А	Т	Т	G	GΤ	G	А	С	А	G /	A A	A	А	G	С	С	С	A	Т	-1.	70%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	-	-	G	G (G A	4 0	A	G	G	А	Т	Т	G	GΤ	G	А	С	А	G /	A A	A	А	G	С	С	С	A	Т	-1.:	35%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Т	4	A	G (GO	G A	V C	A	G	G	А	Т	Т	G) T	G	А	С	A (GΑ	A	А	А	G	С	С	С	A	-1.	21%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Τ,	Ą					-	G	G	А	Т	Т	G	GΤ	G	А	С	А	G,	A A	A	А	G	С	С	С	A	Т	-1.()2%
Т	G	Т	С	С	С	С	Т	С	С	А	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	-	-		-	- [-		A	G	G	А	Т	Т	G	GΤ	G	А	С	А	G,	A A	A	А	G	С	С	С	A	Т	-0.9	95%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	G	-	-	-	-	-	- [- (G A	4 0	A	G	G	А	Т	Т	G	GΤ	G	А	С	А	G,	A A	A	А	G	С	C (С	C A	Т	-0.9	93%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	-	-	- [-		•	-	G	G	А	Т	Т	G	GT	G	А	С	А	G,	A A	A	А	G	С	C (С	C A	Т	-0.8	37%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	Т	G	G	G	G	С	С	A	С	Τ,	Ą	G(G (G	GO	βA	C	A	G	G	А	Т	TG	G	Т	G	А	C,	A G	A	А	А	А	G	С	СС	С	-0.8	34%
Т	G	Т	С	С	С	С	Т	С	С	A	С	С	С	С	А	С	А	G	-	-	-	-	-	-	-	-	-	-	- [-	- [-		-	-	G	А	Т	Т	G	GT	G	А	С	А	G /	A A	A	А	G	С	C (С	A	Т	-0.	78%

vCas9 AAVS1 locus

T G T C C C C T C C A C C C C A C A G T G G G G C C A C T A G G G A C A G G A T T G G T G A C A G A A A A G C C C C A T - Reference gRNA

bold Substitutions

- Insertions
- Deletions

Microhomologies

----- Predicted cleavage position

Figure S6. vCas9 suppresses NHEJ and promotes MMEJ. (**A**, **B**) Rates of the top sequences resulting from editing with Cas9 variants at the (**A**) EMX1 and (**B**) AAVS1 loci. Substitutions, insertions, and deletions are depicted. Deletions at microhomologies are labeled. The most frequent fifteen sequences are displayed along with percentages out of all sequencing reads. Data were analyzed by deep sequencing and represent a single replicate.

Figure S7. vCas9 enhances precise editing and suppresses indels across cell types. (A-C) Precise editing and indel frequencies using small replacement (<10 bp) HDR templates at several loci in (A) HeLa, (B) A549, and (C) Panc1 cells. * indicates p < 0.05 for precise editing frequency compared to wild-type Cas9. Data were analyzed by deep sequencing and represent means of n = 3 independent replicates with standard errors.

Figure S8. vCas9 enhances precise editing versus other Cas9 variants and fusions. (A, B) Precise editing and indel frequencies using an HDR template. * indicates p < 0.05 for precise editing frequency compared to wild-type Cas9. Data were analyzed by deep sequencing and represent means of n = 3 independent replicates with standard errors.

Figure S9. MDR enables efficient precise editing through MMEJ. (**A**) Design of a gRNA and MDR template to introduce a GFP to BFP conversion. (**B**) Precise editing and indel frequencies using MDR templates with varied microhomology arm lengths (0-10 bp at the 5' ends, 20 bp at the 3' ends). (**C**) Frequency of precise gene conversion from GFP to BFP. Data were analyzed by flow cytometry and represent means of n = 3 independent replicates with standard errors.

Figure S10. Additional designs for precise editing through MMEJ by MDR. (A-E) Design of gRNAs

and MDR templates to introduce precise edits.

Figure S11. Quiescent primary human dermal fibroblasts are nearly all non-dividing. (**A**) Cell cycle profiling of dividing and quiescent primary human dermal fibroblasts. (**B**) Flow cytometry plots showing EdU-high (indicating S phase), Propidium Iodide-high (indicating G2 phase), and EdU-low Propidium Iodide-low (indicating G1 or G0 phase) cell population fractions. All data were analyzed by flow cytometry and represent means of n = 3 independent replicates with standard errors.

Supporting Tables

Name	Sequence (5' - 3')
cas9-mut-FWD	GGTTGGACCGGTGCCACC
cas9-mid-REV	GGCCAGAGGGCCCACGTAGTAGG
cas9-mid-FWD	CCTACTACGTGGGCCCTCTGGCC
cas9-mut-REV	CTCTAGGAATTCTTACTTTTTCTTTTTTGCCTGGCC
R780A-BOT	CCCTCTTCGATCCGCTTCATGGCCTCGCGGCTGTTCTTCTGTCC
R780A-TOP	GGACAGAAGAACAGCCGCGAGGCCATGAAGCGGATCGAAGAGGG
R783A-BOT	GCTCTTTGATGCCCTCTTCGATGGCCTTCATTCTCTCGCGGCTGTTC
R783A-TOP	GAACAGCCGCGAGAGAATGAAGGCCATCGAAGAGGGCATCAAAGAGC
K810A-BOT	TCTGCAGGTAGTACAGGTACAGGGCCTCGTTCTGCAGCTGGGTGTTT
K810A-TOP	AAACACCCAGCTGCAGAACGAGGCCCTGTACCTGTACTACCTGCAGA
R832A-BOT	CCACATCGTAGTCGGACAGGGCGTTGATGTCCAGTTCCTGGTCC
R832A-TOP	GGACCAGGAACTGGACATCAACGCCCTGTCCGACTACGATGTGG
K848A-BOT	CCTTGTTGTCGATGGAGTCGTCGGCCAGAAAGCTCTGAGGCACGATA
K848A-TOP	TATCGTGCCTCAGAGCTTTCTGGCCGACGACTCCATCGACAACAAGG
K855A-BOT	TTGTCGCTTCTGGTCAGCACGGCGTTGTCGATGGAGTCGTCCT
K855A-TOP	AGGACGACTCCATCGACAACGCCGTGCTGACCAGAAGCGACAA
S964A-BOT	AAATCCTTCCGGAAATCGGCCACCAGCTTGGACTTCAG
S964A-TOP	CTGAAGTCCAAGCTGGTGGCCGATTTCCGGAAGGATTT
K968A-BOT	CGCACTTTGTAAAACTGGAAATCGGCCCGGAAATCGGACACCAGCTTGG
K968A-TOP	CCAAGCTGGTGTCCGATTTCCGGGCCGATTTCCAGTTTTACAAAGTGCG
R976A-BOT	GCGTGGTGGTAGTTGTTGATCTCGGCCACTTTGTAAAACTGGAAATCCT
R976A-TOP	AGGATTTCCAGTTTTACAAAGTGGCCGAGATCAACAACTACCACCACGC
H982A-BOT	GTAGGCGTCGTGGGCGTGGGCGTAGTTGTTGATCTCGCG
H982A-TOP	CGCGAGATCAACAACTACGCCCACGCCCACGACGCCTAC
K1003A-BOT	CGTACACGAACTCGCTTTCCAGGGCAGGGTACTTTTTGATCAGGGCG
K1003A-TOP	CGCCCTGATCAAAAAGTACCCTGCCCTGGAAAGCGAGTTCGTGTACG
K1047A-BOT	GCCGTTGGCCAGGGTAATCTCGGTGGCGAAAAAGTTCATGATGTTGCTG
K1047A-TOP	CAGCAACATCATGAACTTTTTCGCCACCGAGATTACCCTGGCCAACGGC
R1060A-BOT	CCGTTTGTCTCGATCAGAGGGGCCTTCCGGATCTCGCCGTTGG
R1060A-TOP	CCAACGGCGAGATCCGGAAGGCCCCTCTGATCGAGACAAACGG
R976A-H982A-BOT	GTAGGCGTCGTGGGCGTGGGCGTAGTTGTTGATCTCGGC
R976A-H982A-TOP	GCCGAGATCAACAACTACGCCCACGCCCACGACGCCTAC
D54R-BOT	CGGCTGTTTCGCCGCTCCGGAACAGCAGGGCTCCG
D54R-TOP	CGGAGCCCTGCTGTTCCGGAGCGGCGAAACAGCCG
S55R-BOT	CTCGGCTGTTTCGCCCCGGTCGAACAGCAGGGC
S55R-TOP	GCCCTGCTGTTCGACCGGGGCGAAACAGCCGAG
N980R-BOT	CGTCGTGGGCGTGGTGGTACCGGTTGATCTCGGCCACTTTG

N980R-TOP	CAAAGTGGCCGAGATCAACCGGTACCACCACGCCCACGACG
T1314R-BOT	CAGGGGCTCCCAGATTGGTCAGCCGAAACAGGTGGATGATATTCTCG
T1314R-TOP	CGAGAATATCATCCACCTGTTTCGGCTGACCAATCTGGGAGCCCCTG
N1317R-BOT	AGGCGGCAGGGGCTCCCAGCCGGGTCAGGGTAAACAGGTGG
N1317R-TOP	CCACCTGTTTACCCTGACCCGGCTGGGAGCCCCTGCCGCCT
A1322R-BOT	GTGGTGTCAAAGTACTTGAAGGCCCGAGGGGGCTCCCAGATTGGTCAGGG
A1322R-TOP	CCCTGACCAATCTGGGAGCCCCTCGGGCCTTCAAGTACTTTGACACCAC

Table S1. Oligodeoxynucleotide sequences used for mutagenesis and cloning.

Name	Sequence (5' - 3')
gRNA-scaffold-Nhel-FWD	CTCAGCTAGCGAGGGCCTATTTCCCATGATTCCTTCATATTTGC
gRNA-scaffold-EcoRI-REV	ATCAGAATTCAAAAAAAGCACCGACTCGGTGCCACTT
AAVS1-gRNA1-BOT	AAACCTAGGGACAGGATTGGTGAC
AAVS1-gRNA1-TOP	CACCGTCACCAATCCTGTCCCTAG
AAVS1-gRNA2-BOT	AAACATCCTGTCCCTAGTGGCCCC
AAVS1-gRNA2-TOP	CACCGGGGCCACTAGGGACAGGAT
ASNS-gRNA1-BOT	AAACTGCGCCCGCGCCAGCATCC
ASNS-gRNA1-TOP	CACCGGATGCTGGCGCGGGGGCGCA
CD274-gRNA1-BOT	AAACGGGAACTTCAAATTCATTCC
CD274-gRNA1-TOP	CACCGGAATGAATTTGAAGTTCCC
CD274-gRNA2-BOT	AAACTGGGAACTTCAAATTCATTC
CD274-gRNA2-TOP	CACCGAATGAATTTGAAGTTCCCA
CXCR4-gRNA1-BOT	AAACCCTCTTTGTCATCACGCTTC
CXCR4-gRNA1-TOP	CACCGAAGCGTGATGACAAAGAGG
EMX1-gRNA1-BOT	AAACCCCTAGTCATTGGAGGTGAC
EMX1-gRNA1-TOP	CACCGTCACCTCCAATGACTAGGG
EMX1-gRNA2-BOT	AAACTTCTTCTTCTGCTCGGACTC
EMX1-gRNA2-TOP	CACCGAGTCCGAGCAGAAGAAGAA
GFP-gRNA1-BOT	AAACACGGCGTGCAGTGCTTCAGC
GFP-gRNA1-TOP	CACCGCTGAAGCACTGCACGCCGT
HOTAIR-gRNA1-BOT	AAACCACCGCAGTTCTAGGCAAGC
HOTAIR-gRNA1-TOP	CACCGCTTGCCTAGAACTGCGGTG
KRAS-gRNA1-BOT	AAACCGATTATTATCAGCCTCAGC
KRAS-gRNA1-TOP	CACCGCTGAGGCTGATAATAATCG
KRAS-gRNA2-BOT	AAACCCCCGATTATTATCAGCCTC
KRAS-gRNA2-TOP	CACCGAGGCTGATAATAATCGGGG
MYC-gRNA1-BOT	AAACGCGTCGGGAGAGTCGCGTCC
MYC-gRNA1-TOP	CACCGGACGCGACTCTCCCGACGC
MYC-gRNA2-BOT	AAACCGCGTCGGGAGAGTCGCGTC
MYC-gRNA2-TOP	CACCGACGCGACTCTCCCGACGCG
MYC-gRNA3-BOT	CACCGCGACTCTCCCGACGCGGGG
MYC-gRNA3-TOP	AAACCCCCGCGTCGGGAGAGTCGC
STAT1-gRNA1-BOT	AAACCCAGCTGCAAGCATGTCATC
STAT1-gRNA1-TOP	CACCGATGACATGCTTGCAGCTGG
STAT1-gRNA2-BOT	AAACCAGCTGCAAGCATGTCATCC
STAT1-gRNA2-TOP	CACCGGATGACATGCTTGCAGCTG
TGFB1-gRNA1-BOT	AAACCTTGGTGGAAGCGCAGGCTC
TGFB1-gRNA1-TOP	CACCGAGCCTGCGCTTCCACCAAG
THORLNC-gRNA1-BOT	AAACCTTTGTTCACATCATCTCAC

THORLNC-gRNA1-TOP	CACCGTGAGATGATGTGAACAAAG
TP53-gRNA1-BOT	AAACTCCAGGTCCCCAGCCCAACC
TP53-gRNA1-TOP	CACCGGTTGGGCTGGGGACCTGGA
VEGFA-gRNA1-BOT	AAACCACGCACACACTCACTCACC
VEGFA-gRNA1-TOP	CACCGGTGAGTGAGTGTGTGCGTG
VEGFA-gRNA2-BOT	AAACACACGCACACACTCACTCAC
VEGFA-gRNA2-TOP	CACCGTGAGTGAGTGTGTGCGTGT

Table S2. Oligodeoxynucleotide sequences used for gRNA cloning.

Name	Sequence (5' - 3')
AAVS1- HDRtemplate	CAGGGCCGGTTAATGTGGCTCTGGTTCTGGGTACTTTTATCTGTCCCCTCC ACCCCACAGTGGGGCCGCTAGCAAGCTTGGACAGGATTGGTGACAGAAA AGCCCCATCCTTAG
CD274- HDRtemplate	TATGAAAGATAATGAAAAGCTATGGGAAAGATAACTTAGAAACAAAGAAGG CATGGATCCTCAGCCCTGGGCTAGCAAGCTTCAAATTCATTC
CXCR4- HDRtemplate	ATGGGTTACCAGAAGAAACTGAGAAGCATGACGGACAAGTACAGGCTGCA CCTGTCAGTGGCCGACCTGCTAGCAAGCTTCTTTGTCATCACGCTTCCCTT CTGGGCAGTTGATGC
EMX1- HDRtemplate	CTTGGGCCCACGCAGGGGCCTGGCCAGCAGCAGCAGCACTCTGCCCTC GTGGGTTTGTGGTTGCCCACCGCTAGCAAGCTTGTCATTGGAGGTGACAT CGATGTCCTCCCCATTG
GFP-BFP- HDRtemplate	CCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC CTCGTGACCACCCTGAGCCACGGGGTGCAGTGCTTCAGCCGCTACCCCG ACCACATGA
KRAS- HDRtemplate	GGCGACTTCGGGGACTTAGGGAGACCGGGCGGACGATTTCCCACACCGG GGCTGTCTGATCGCCGGCTAGCAAGCTTATTATCAGCCTCAGCACTTGGG CTGGGAATTTAG
MYC-HDRtemplate	AGCCTTTCAGAGAAGCGGGTCCTGGCAGCGGCGGGGAAGTGTCCCCAAA TGGGCAGAATAGCCTCGCTAGCAAGCTTCGGGAGAGTCGCGTCCTTGCTC GGGTGTTGTAAGT
STAT1- HDRtemplate	GTATTTCTAATAGACTTGAAAGGACAGCCAGGAGCAAAGATGGGCAGAAG GACAACCTGTTTCCCCAAGCTTGCTAGCAAGCATGTCATCCTCACATTTGG CCCCTTGGCCC
TGFB1- HDRtemplate	ACCCTGAGAGGAACTGGGACTTTGGGGTCCAGACTGCCAGCGTTTAGCG CAGCGGGGTCCTCCTGCCCCTTGGAAGCTTGCTAGCGCAGGCTCCTCCC CCCGCGCGTGGCAC
VEGFA- HDRtemplate	ACACACAGATCTATTGGAATCCTGGAGTGACCCCTGGCCTTCTCCCCGCT CCAACGCCCTCAACCCCACGCTAGCAAGCTTACACTCACT
HOTAIR- INStemplate-BOT	TAGAACTGCGCACACAAAAAACCAACACACAGATCTAATGAAAAATAAAGAT CTTTTATTGTGTGGAAGGCGCTGCCCCG
INStemplate-TOP	TGTGTGCGCAGTTCTAGGCAAGCACT
THORLNC- INStemplate-BOT	TTTCCCCCTTCACACAAAAAACCAACACACAGATCTAATGAAAAATAAAGATC TTTTATTTGTTCACATCATCTCACAAA
THORLNC- INStemplate-TOP	GATGTGAACAAATAAAAGATCTTTATTTTCATTAGATCTGTGTGTTGGTTTTT TGTGTGAAGGGGGAAAAGTCAATCCA
AAVS1- MDRtemplate-BOT	AATCCGGTGTCCCTAGTGGCCCCACTG
AAVS1- MDRtemplate-TOP	GGACACCGGATTGGTGACAGAAAAGCC
CD274- MDRtemplate-BOT	CTGGGACTTCAAATTCATTCCATCT
CD274- MDRtemplate-TOP	GAAGTCCCAGGGCTGAGGATCCATG
CXCR4- MDRtemplate-BOT	ACAAACAGGAGGTCGGCCACTGACAG
CXCR4- MDRtemplate-TOP	CTCCTGTTTGTCATCACGCTTCCCTT
GFP-BFP-5'0-3'20- MDRtemplate-BOT	CCCGTGGCTCAGGGTGGTCACGAGGGTG

GFP-BFP-5'0-3'20- MDRtemplate-TOP	GCCACGGGGTGCAGTGCTTCAGCCGCTA
GFP-BFP-5'5-3'20- MDRtemplate-BOT	TGCACCCCGTGGCTCAGGGTGGTCACGAGGGTG
GFP-BFP-5'5-3'20- MDRtemplate-TOP	CCTGAGCCACGGGGTGCAGTGCTTCAGCCGCTA
GFP-BFP-5'10- 3'20-MDRtemplate- BOT	AGCACTGCACCCCGTGGCTCAGGGTGGTCACGAGGGTG
GFP-BFP-5'10- 3'20-MDRtemplate- TOP	ACCACCCTGAGCCACGGGGTGCAGTGCTTCAGCCGCTA
KRAS- MDRtemplate-BOT	CCGCCTAGATTATTATCAGCCTCAGCA
KRAS- MDRtemplate-TOP	TAATCTAGGCGGCGATCAGACAGCCCC
MYC- MDRtemplate-BOT	CCCGCTGTCGGGAGAGTCGCGTCCTT
MYC- MDRtemplate-TOP	CCGACAGCGGGGGGGGGGGCTATTCTGCCC
TGFB1- MDRtemplate-BOT	CCCCTCTGGTGGAAGCGCAGGCTCCT
TGFB1- MDRtemplate-TOP	CACCAGAGGGGCAGGAGGACCCCGCT

 Table S3. Oligodeoxynucleotide sequences used for HDR and MDR templates.

Name	Sequence (5' - 3')
AAVS1-seq-r1- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTCACGGTTAATGTGGCT CTGGTTCTGG
AAVS1-seq-r2- FWD	ACACICITICCCTACACGACGCTCTTCCGATCTNAGTCGGTTAATGTGGCT CTGGTTCTGG
AAVS1-seq-r3- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCAGCGGTTAATGTGGCT CTGGTTCTGG
AAVS1-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGGTTAGACCCAATATC AGGAGACTAG
ASNS-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGACTTACAGGAGCCAG GTCGGTAT
ASNS-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGATTACAGGAGCCAGG TCGGTAT
ASNS-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACTTTACAGGAGCCAGG TCGGTAT
ASNS-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGTCAGGTGCGTAACAATC GC
CD274-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATCTGTATGTCTGCTGT GTACTTTGC
CD274-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCGATGTATGTCTGCTGT GTACTTTGC
CD274-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTAGTGTATGTCTGCTGT GTACTTTGC
CD274-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTAACAAATGGTGGTTG TCTAAA
CXCR4-seq-r1- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCGTTGGTCATGGGTTAC CAGAAGA
CXCR4-seq-r2- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACGTGGTCATGGGTTAC CAGAAGA
CXCR4-seq-r3- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGTATGGTCATGGGTTAC CAGAAGA
CXCR4-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACTGATGAAGGCCAGGA TG
EMX1-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGACCCTGAGTCCGAGC AGAAGAA
EMX1-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGACCTGAGTCCGAGCA GAAGAA
EMX1-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACTCCTGAGTCCGAGCA GAAGAA
EMX1-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGTGGCCAGAGTCCAGCT
GFP-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATGCGTAAACGGCCACA AGTTCAGC
GFP-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGATCGTAAACGGCCACA AGTTCAGC
GFP-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGCCGTAAACGGCCACA AGTTCAGC
GFP-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTAGTTGCCGTCGTCCTTGA AGA
HOTAIR-seq-r1- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGACCAGTGAAATCTGGC GAGAGCAG
HOTAIR-seq-r2- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGACAGTGAAATCTGGC GAGAGCAG

HOTAIR-seq-r3- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACTCAGTGAAATCTGGC GAGAGCAG
HOTAIR-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCAAACTATGTGTTCGCGG GTC
KRAS-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGACTTGAAAGGGTCTGT CGTGTTTG
KRAS-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGATTGAAAGGGTCTGT CGTGTTTG
KRAS-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACTTTGAAAGGGTCTGT CGTGTTTG
KRAS-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAACAAGCAGTCACCAAAA GTGG
MYC-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCGTCACGAAACTTTGCC CATAGCA
MYC-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACGCACGAAACTTTGCC CATAGCA
MYC-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGTACACGAAACTTTGCC CATAGCA
MYC-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTAAGTGGACTTCGGTGCTT ACC
STAT1-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATGAAAGTAGTATGCGT GGGCCTC
STAT1-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGATAAAGTAGTATGCGT GGGCCTC
STAT1-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGCAAAGTAGTATGCGT GGGCCTC
STAT1-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCTCAAAAGCTGGTAAAC CTTCA
TGFB1-seq-r1- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGACGTGACTCTACAAGA CCGAGGTG
TGFB1-seq-r2- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGAGTGACTCTACAAGA CCGAGGTG
TGFB1-seq-r3- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACTGTGACTCTACAAGA CCGAGGTG
TGFB1-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTGAGAGGAACTGGGAC TTTG
THORLNC-seq-r1- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNCGTTCTCCGGAGCAGAA ATAGAACAG
THORLNC-seq-r2- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNACGTCTCCGGAGCAGAA ATAGAACAG
THORLNC-seq-r3- FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGTATCTCCGGAGCAGAA ATAGAACAG
THORLNC-seq- REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTTTCATGCCGTCAAGTCTCA
TP53-seq-r1-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATGATTCCATGGGACTG ACTTTCTGC
TP53-seq-r2-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGATATTCCATGGGACTG ACTTTCTGC
TP53-seq-r3-FWD	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGCATTCCATGGGACTG ACTTTCTGC
TP53-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTCATCTGGACCTGGGTCTT CAGT
VEGFA-seq-r1-	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNATGGCGTCTTCGAGAGT

FWD	GAGGAC
VEGFA-seq-r2-	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNGATGCGTCTTCGAGAGT
FWD	GAGGAC
VEGFA-seq-r3-	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNTGCGCGTCTTCGAGAGT
FWD	GAGGAC
VEGFA-seq-REV	GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGGAGAGGGGACACACA GAT

 Table S4. Oligodeoxynucleotide sequences used for next-generation sequencing.

Name	Sequence (5' - 3')
EMX1-T-FWD	GGCTCCCTGGGTTCAAAGTA
EMX1-T-REV	AGAGGGGTCTGGATGTCGTAA
EMX1-T-seq	AACCCTATGTAGCCTCAGTCTTCCC
EMX1-OT1-FWD	TTATCCCCTACTCCTTCATCCCA
EMX1-OT1-REV	AAGGACAGCTTCTTATCCCTGTC
EMX1-OT1-seq	GGAGATTTGCATCTGTGGAGGC
EMX1-OT2-FWD	ACTCCTGGGACAATTATGAACGGTG
EMX1-OT2-REV	ACTATCCTTCTAGTCTTGGGCTAAATTC
EMX1-OT2-seq	GCTTCTTGTTCTTTGGCTTTCTTAATGAACTG
EMX1-OT3-FWD	GCACTGATTCATTAGGAGCTGG
EMX1-OT3-REV	AGTCCTATAGATTCACCCACCCA
EMX1-OT3-seq	TCCTGGTTCTGCCACTTGCTG
VEGFA-T-FWD	GCTCCAGATGGCACATTGTCAG
VEGFA-T-REV	AGGGAGCAGGAAAGTGAGGT
VEGFA-T-seq	CAAATATGTAGCTGTTTGGGAGGTCAG
VEGF1-OT1-FWD	TTCCCACCAAGGAGGGTTTCTT
VEGFA-OT1-REV	CCTCCCTCAAGGGAAGGTTGT
VEGFA-OT1-seq	CAAGTAGCTGAGATTACAGGCATGTGC
VEGFA-OT2-FWD	ATTCCTCAGGTGGGTTGATGGG
VEGFA-OT2-REV	AGAAAGGAGCCTCGACCAAGTC
VEGFA-OT2-seq	GCCTCCCTGCTGGTTCTCAGAG
VEGFA-OT3-FWD	TCCCATCCCACTTTAGTGTTCC
VEGFA-OT3-REV	TAACCCAGAACATCCAGGCAAC
VEGFA-OT3-seq	TACCATGAACGCAGCCATGC

 Table S5. Oligodeoxynucleotide sequences used for Sanger sequencing.

Sequences

<u>Cas9</u>

ATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACC AAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAG AACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAA TAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTA CCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGAT CTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGGGCGACCTGAACCC CGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGA AAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCA GACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGA TTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAAC TGCAGCTGAGCAAGGACACCTACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAG TACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGA GTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCAC CAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTC AAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGA GAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGG AGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAA GATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAG ATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGA CAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGA GAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGT GAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGT GGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAA AATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCAC ATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATT CTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAA ACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGG GGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGA

TTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACC TTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCC AATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCT CGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGA CCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAG CTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCCAGCTGCAGAACGAGAAGCTGTAC CTGTACTACCTGCAGAATGGGCGGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCC GACTACGATGTGGACCATATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGC TGACCAGAAGCGACAAGAACCGGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAG ATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGA CCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTG GAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGAC GAGAATGACAAGCTGATCCGGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTC CGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACC TGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACG ACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACG GCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAG GGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACC GAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATC GCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCT GTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG GGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGC TACAAAGAAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACG GCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCC AAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATG AGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCG AGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCA CCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGG AGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGA GGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTC TCAGCTGGGAGGCGAC

Cas9^{S55R-R976A-K1003A-T1314R} (vCas9), with mutations in red:

ATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGGGCTGGGCCGTGATCACC AAGAACCTGATCGGAGCCCTGCTGTTCGACCGGGGCGAAACAGCCGAGGCCACCCGGCTGAAGAG AACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAA TAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTA CCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAGCACCGACAAGGCCGACCTGCGGCTGAT CTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGGCCACTTCCTGATCGAGGGCGACCTGAACCC CGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTCGAGGA AAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCA GACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGA TTGCCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAAC TGCAGCTGAGCAAGGACACCTACGACGACCAGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAG TACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGA GTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCAC CAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTC AAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGA GAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGG AGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAA GATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGGCCAGGGGAAACAGCAG ATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAGGAAGTGGTGGA CAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAACGA GAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGT GAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGT GGACCTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAA AATCGAGTGCTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCAC ATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATT CTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCGAGGAACGGCTGAAA ACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGG GGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGA TTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACC TTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCC AATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCT

CGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATGGCCAGAGAGAACCAGA CCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGGCATCAAAGAG CTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCCAGCTGCAGAACGAGAAGCTGTAC CTGTACTACCTGCAGAATGGGCCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCC GACTACGATGTGGACCATATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGC TGACCAGAAGCGACAAGAACCGGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAG ATGAAGAACTACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGA CCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTG GAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGAC GAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTC CGGAAGGATTTCCAGTTTTACAAAGTGGCCGAGATCAACAACTACCACCACGCCCACGACGCCTACC TGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTGCCCTGGAAAGCGAGTTCGTGTACG ACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACG GCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAG GGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACC GAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATC GCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCT GTGCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTG GGGATCACCATCATGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGC TACAAAGAAGTGAAAAAGGACCTGATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACG GCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGGAAACGAACTGGCCCTGCCCTCC AAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCCCCGAGGATAATG AGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGCG AGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCA CCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTCGGCTGACCAATCTGGG AGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGA GGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTC TCAGCTGGGAGGCGAC

gRNA cloning backbone, with U6 promoter in green and scaffold in blue:

 GATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGGGTCTTCGAGAAGACCTGTTTTAGA GCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTG CTTTTTT