SUPPORTING INFORMATION

Mitochondria-targeted COUPY photocages: synthesis and visible-light photoactivation in living cells.

Marta López-Corrales,¹ Anna Rovira,¹ Albert Gandioso,¹ Santi Nonell,² Manel Bosch,³ Vicente Marchán^{*,1}

¹ Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franqués 1–11, E-08028 Barcelona (Spain).

² Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, E-08017 Barcelona (Spain)

³ Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E- 08028 Barcelona (Spain)

E-mail: <u>vmarchan@ub.edu</u>

Table of contents

1 Reversed-phase HPLC analysis of COUPY-caged compounds (3-8)	S 3
2 2D NMR characterization of coumarin scaffolds (12-14, 17 and 18)	S 4
3 2D NMR characterization of COUPY-caged compounds (4-8)	S 9
4 Irradiation experiments	S14
5 Confocal microscopy studies	S26
6 ¹ H, ¹³ C and ¹⁹ F NMR spectra and HR ESI-MS of the compounds	S32

1.- Reversed-phase HPLC analysis of COUPY-caged compounds (3-8).

Figure S1. Reversed-phase HPLC traces of COUPY-caged compounds (3-8).

2.- 2D NMR characterization of coumarin scaffolds (12-14, 17 and 18).

Figure S2. Structure of *E* and *Z* rotamers of coumarin 12 with some diagnostic NOE crosspeaks indicated, and expansions of the NOESY spectrum of 12 in CDCl₃ at 298 K showing some characteristic NOE cross-peaks.

Figure S3. Structure of *E* and *Z* rotamers of coumarin 13 with some diagnostic NOE crosspeaks indicated, and expansions of the NOESY spectrum of 13 in CDCl₃ at 298 K showing some characteristic NOE cross-peaks.

Figure S4. Structure of *E* and *Z* rotamers of coumarin 14 with some diagnostic NOE crosspeaks indicated, and expansions of the NOESY spectrum showing some characteristic NOE cross-peaks and exchange cross-peaks between rotamer resonances of the same sign as the diagonal (top) and of the COSY spectrum (bottom) of 14 in CDCl₃ at 298 K.

Figure S5. Structure of *E* and *Z* rotamers of coumarin 17 with some diagnostic NOE crosspeaks indicated, and expansions of the NOESY spectrum of 17 in DMSO- d_6 at 298 K showing some characteristic NOE cross-peaks.

Figure S6. Structure of *E* rotamer of coumarin 18 with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of 18 in DMSO- d_6 at 298 K showing some characteristic NOE cross-peaks.

3.- 2D NMR characterization of COUPY-caged compounds (4-8).

Figure S7. Structure of *E* rotamer of COUPY-caged compound 4 with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of 4 in DMSO- d_6 at 298 K showing some characteristic NOE cross-peaks.

Figure S8. Structure of *E* rotamer of COUPY-caged compound 5 with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of 5 in DMSO- d_6 at 298 K showing some characteristic NOE cross-peaks.

Figure S9. Structure of *E* rotamer of COUPY-caged compound **6** with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of **6** in DMSO- d_6 at 348 K showing some characteristic NOE cross-peaks.

Figure S10. Structure of *E* rotamer of COUPY-caged compound **7** with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of **7** in CD₃OD at 298 K showing some characteristic NOE cross-peaks.

Figure S11. Structure of *E* rotamer of COUPY-caged compound **8** with some diagnostic NOE cross-peaks indicated, and expansions of the NOESY spectrum of **8** in CD₃OD at 298 K showing some characteristic NOE cross-peaks.

4.- Irradiation experiments.

Figure S12. Photon spectral irradiance of the LEDs used in this work (top) and photographs of the custom-built irradiation setup used for uncaging experiments (bottom).

Figure S13. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **4** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with visible LED light (470-750 nm range, centered at 530 nm) for 15 min (middle) and 60 min (bottom) at 37 °C.

Figure S14. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **4** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with visible LED light (470-750 nm range, centered at 530 nm) for 15 min (middle) and 60 min (bottom) at 37 °C.

Figure S15. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **6** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with visible LED light (470-750 nm range, centered at 530 nm) for 30 min (middle) and 60 min (bottom) at 37 °C.

Figure S16. Plot of the temporal evolution of the amounts of COUPY-caged compounds **3-6** after irradiation with yellow light (560 \pm 40 nm; 40 mW cm⁻²). The lines connecting the experimental points are meant to aid the reader in visualizing the data. All the experiments were performed in a 1:1 (v/v) mixture of PBS buffer and ACN at 37 °C.

Figure S17. Temporal evolution of the solution absorbance and emission intensity of COUPY caged compounds **3-6** upon illumination with a LED source covering from the cyan to the farred region of the visible spectrum (470–750 nm; 150 mW cm⁻²). All the experiments were performed in a 1:1 (v/v) mixture of PBS buffer and ACN at 37 °C.

Figure S18. Reversed-phase HPLC-ESI MS traces at 260 nm of COUPY-caged compound **3** after standing for different times in the dark at 37 °C in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard). From bottom to top: t = 0, 2 h, 4 h and 5 h.

Figure S19. Reversed-phase HPLC-ESI MS traces at 260 nm of COUPY-caged compound **4** after standing for different times in the dark at 37 °C in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard). From bottom to top: t = 0, 2 h, 4 h and 5 h.

Figure S20. Reversed-phase HPLC-ESI MS traces at 260 nm of COUPY-caged compound **5** after standing for different times in the dark at 37 °C in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard). From bottom to top: t = 0, 2 h, 4 h and 5 h.

Figure S21. Reversed-phase HPLC-ESI MS traces at 260 nm of COUPY-caged compound **6** after standing for different times in the dark at 37 °C in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard). From bottom to top: t= 0, 2 h, 4 h and 5 h.

Figure S22. Plot of the temporal evolution of the amounts of COUPY-caged compounds **3** and **4** after irradiation with yellow light $(560 \pm 40 \text{ nm}; 40 \text{ mW cm}^{-2})$ in 1:1 or 4:1 (v/v) mixtures of PBS buffer and ACN at 37 °C. The lines connecting the experimental points are meant to aid the reader in visualizing the data.

Figure S23. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **7** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with visible LED light (470-750 nm range, centered at 530 nm) for 9 min (middle) and 25 min (bottom) at 37 °C.

Table S1. MS data for coumarin photoproducts generated upon photoactivation of compound7. Data was obtained from HPLC-ESI MS analysis after 25 min of irradiation (Figure S23).

Peak (min)	% relative	λ_{\max}	m/z	Compound
11.4	8.1	379	380	-
12.4	10.5	552	417	-
13.0	70.8	552	376	15
13.9	6.4	567	374	-
14.9	4.2	581	358	23

Figure S24. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **8** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with visible LED light (470-750 nm range, centered at 530 nm) for 2 min (middle) and 8 min (bottom) at 37 °C.

Table S2. MS data for coumarin photoproducts generated upon photoactivation of compound **8**. Data was obtained from HPLC-ESI MS analysis after 8 min of irradiation (Figure S24). Since DNP and compound **24** co-elute, integration of coumarin photoproducts was carried out at 400 nm where DNP does not give signal.

Peak (min)	% relative	λ_{max}	m/z	Compound
8.7	5.0	369	450	-
9.2	11.7	555	487	-
9.5	63.6	553	446	18
10.0	1.9	567	444	-
10.5	11.9	582	428	24
10.7	5.9	565	612	8

Figure S25. Temporal evolution of the solution absorbance and emission intensity of COUPY caged compounds **7-8** upon illumination with a LED source covering from the cyan to the farred region of the visible spectrum (470–750 nm; 150 mW cm⁻²). All the experiments were performed in a 1:1 (v/v) mixture of PBS buffer and ACN at 37 °C.

Figure S26. DNP calibration curve prepared for 5–60 µM concentration.

Figure S27. Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **7** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with red LED light (620 nm) for 22 min (middle) and 154 min (bottom) at 37 °C.

Figure S28 Reversed-phase HPLC-ESI MS traces at 260 nm for the photolysis reaction of **8** in a 1:1 (v/v) mixture of PBS buffer and ACN in the presence of DMAP (internal standard) at t=0 (top) and after irradiation with red LED light (620 nm) for 15 min (middle) and 56 min (bottom) at 37 °C

5.- Confocal microscopy studies

Figure S29. Dark stability of COUPY photocage **7** in Dullbecco Modified Eagle Medium (DMEM) containing high glucose and supplemented with 10% fetal bovine serum (FBS) and 50 U/mL penicillin-streptomycin. Reversed-phase HPLC-ESI MS traces of cell culture medium at 260 nm (A) and at 550 nm (B), and of a solution of compound **7** in cell culture medium at t = 0 (C: 260 nm and D: 550 nm) and after standing for 1 h in the dark at 37 °C (E: 260 nm and F: 550 nm).

Figure S30 Dark stability of COUPY photocage **8** in Dullbecco Modified Eagle Medium (DMEM) containing high glucose and supplemented with 10% fetal bovine serum (FBS) and 50 U/mL penicillin-streptomycin. Reversed-phase HPLC-ESI MS traces of cell culture medium at 260 nm (A) and at 550 nm (B), and of a solution of compound **8** in cell culture medium at t = 0 (C: 260 nm and D: 550 nm) and after standing for 1 h in the dark at 37 °C (E: 260 nm and F: 550 nm).

Figure S31. Co-localization studies with COUPY photocage 8 (top) and coumarin alcohol 18 (bottom) with Mitotracker Green FM. Single confocal planes of HeLa cells incubated with 8 or 18 (2 μ M, red) and MTG (0.1 μ M, green). A), D) Overlay of the two staining. B), E) compounds 8 and 18 signal, respectively. C), F) MTG signal. Scale bar: 20 μ m. All images are at the same scale as A.

Figure S32. Visual inspection of co-localization experiments. Left column shows single confocal planes of HeLa cells with merged stainings of COUPY photocage **8** (mM 2, red) and MTG (0.1 mM, green, top row), coumarin alcohol **18** (2 mM, red) with MTG (0.1 mM, green, central row) and COUPY photocage **8** (2 mM, red) with Rho123 (26 mM, green, bottom row). Scale bar: 20 mm. Central column shows the scatterplots of fluorescence signals of left column images. Right column shows the plot profiles of fluorescence intensities along the lines drawn on left column images.

Figure S33. Single confocal planes of HeLa cells incubated with Rho123 (26 μ M, 15 min) before (A) and after addition (B) of DNP (200 μ M). Scale bar: 20 μ m.

Figure S34. Mean intensity (Arbitrary Units) graph of COUPY photocage **8** and Rho123 at the mitochondria before and after irradiation with yellow light (BP 545/25 filter, 1.4 mW/cm², 15 s).

Figure S35. Top: Single confocal planes of HeLa cells incubated with coumarin **18** (2 μ M, 30 min) before (A) and after addition (B) of DNP (2 μ M). Scale bar: 20 μ m. Bottom: Mean intensity (Arbitrary Units) graph of coumarin **18** before and after addition of DNP (2.0 μ M, 37 °C, X min).

5.- ¹H, ¹³C and ¹⁹F NMR spectra and HR ESI-MS of the compounds

Figure S36. ¹H and ¹³C NMR spectra of compound 12 in CDCl₃.

Figure S37. HR ESI-MS spectrum of compound 12.

Figure S38. ¹H and ¹³C NMR spectra of compound 13 in CDCl₃.

Figure S39. HR ESI-MS spectrum of compound 13.

Figure S40. ¹H and ¹³C NMR spectra of compound 14 in CDCl₃.

Figure S41. HR ESI-MS spectrum of compound 14.

Figure S42. ¹H and ¹³C NMR spectra of compound 15 in DMSO-*d*₆.

Figure S43. HR ESI-MS spectrum of compound 15.

Figure S44. ¹H and ¹³C NMR spectra of compound 16 in CDCl₃.

Figure S45. HR ESI-MS spectrum of compound 16.

Figure S46. ¹H and ¹³C NMR spectra of compound 36 in DMSO- d_6 .

Figure S47. HR ESI-MS spectrum of compound 17.

Figure S48. ¹H and ¹³C NMR spectra of compound 18 in DMSO-*d*₆.

Figure S49. HR ESI-MS spectrum of compound 18.

Figure S50. ¹H, ¹³C and ¹⁹F NMR spectra of compound 3 in DMSO-*d*₆.

Figure S52. ¹H, ¹³C and ¹⁹F NMR spectra of compound 4 in DMSO-*d*₆.

Figure S53. HR ESI-MS spectrum of compound 4

Figure S54. ¹H, ¹³C and ¹⁹F NMR spectra of compound 5 in DMSO-*d*₆.

Figure S55. HR ESI-MS spectrum of compound 5.

Figure S56. ¹H, ¹³C and ¹⁹F NMR spectra of compound **6** in DMSO-*d*₆. ¹H and ¹³C NMR spectra were recorded at 348 K.

Figure S57. HR ESI-MS spectrum of compound 6.

Figure S58. ¹H and ¹³C NMR spectra of compound **7** in CD₃OD and DMSO-*d*₆, respectively.

Figure S59. HR ESI-MS spectrum of compound 7.

Figure S60. ¹H and ¹³C NMR spectra of compound 8 in DMSO-*d*₆ and CDCl₃, respectively.

Figure S61. HR ESI-MS spectrum of compound 8.