Supporting Information for

Nasal administration of anti-CD3 mAb (Foralumab) downregulates *NKG7* and increases *TGFb1* and *GIMAP7* expression in T cells in subjects with COVID-19.

Thais G. Moreira¹, Christian D. Gauthier¹, Liam Murphy¹, Toby B. Lanser¹, Anu Paul¹, Kimble T. F. Matos², Davide Mangani¹, Saef Izzy¹, Rafael M. Rezende¹, Brian C. Healy¹, Clare M. Baecher-Allan¹, Tanuja Chitnis¹, Vijay Kuchroo¹, Howard L. Weiner¹

Correspondence: hweiner@rics.bwh.harvard.edu / tmoreira@bwh.harvard.edu/

* Howard L. Weiner / Thais Garcias Moreira Ann Romney Center for Neurologic Diseases Department of Neurology,
Brigham and Women's Hospital,
Harvard Medical School, Boston, MA, USA.
60 Fenwood Rd, Boston, MA. 02115 USA

This PDF file includes:

Figures S1 to S7 Tables S1 and S2

Other supporting materials for this manuscript include the following:

Datasets S1 to S8

Figure S1. Gating strategy for RNA-sequencing and Ingenuity Pathway Analysis A) Sample selection for RNA-sequencing. 39/60 patients were allocated. Samples from Fora/Dexa group were not elected for this study and thus 28/39 patients were selected. Further, 12/28 samples were removed because patients did present lung involvement or did not collect CT scan on endpoint and thus could not be evaluated. We then used IL-6 serum levels at baseline to define a sample selection zone that excluded skewed IL-6 serum levels. Samples within median and interquartile range were used for single cell RNA-seq analysis and it is shown in squared shape. Bulk RNA-seq **B)** Gating strategy for cell sorting: bulk RNA-seq (Smart-Seq2) and 10x single cell RNA-seq. PBMCs were stained with viability dye, CD3, CD19, CD66b and CD14 and FACS-sorted. Cells were gated on singlet+ Live+ cells. P1 (CD3⁺), P3 (CD19⁺) and P5 (CD14⁺) were gated on P2, CD3⁻. **C-E)** Ingenuity Pathways Analysis on DEG genes (p<0.05) of comparisons between healthy volunteers and COVID-19 subjects in CD3⁺ T cells, CD19⁺ B cells and CD14⁺ monocytes . N=7 healthy volunteers (HV), N=8 untreated controls and N=8 Foralumab treated

Untreated controls
 Foralumab

Figure S2. T cell subtyping. A) Canonical cell markers for T cell subsets. **B)** UMAP plots of T cells showing localization of CD3⁺ cell subset markers. **C)** CD3⁺ subsets including T helper stratification into Th1, Th2 and Th17 subsets. **D)** Graphic representation T cell subset distribution in healthy controls, untreated and Foralumab treated COVID-19 subjects at baseline (day-2) and at day 10 shown in Fig1E. Bars represent mean<u>+</u>SEM. One-way ANOVA followed by Tukey *post hoc* analysis ** p<0.01. **E)** UMAP plots of T cells showing localization of effector genes.

JMAP 2

В

Figure S3. TCR sequencing in Foralumab treated subjects. A, B) TCR sharing patterns of specific T cell subsets by comparing usage of V(D)J genes on healthy controls (A), untreated controls vs. Foralumab treated subjects (B). C) Distribution within UMAP plots of T cells subsets. D) Violin plots showing the frequency of clonal T cells in CD8⁺ TEMRA and CD8⁺ CM cells (Median+IQR). Graphs show percentage of each clonal type and individual status. 4 healthy volunteers, 4 untreated controls (before and after) and 4 Foralumab treated subjects (before and after) were studied.

Figure S4. Effector gene cluster and exhaustion modules in CD3+ T cells. A) UMAP plots of T cells showing localization of effector genes in CD3+ cells across treatment. **B)** Exhausted score of >0.01 was used to determinate highly exhausted cells and compared to low/not exhausted cells (<0.01). *MAF, TGFB1, IL2, TNFa* and *IFNg* gene expression in exhausted and not exhausted cells is compared and shown in Violin-plots (Median<u>+</u>IQR). **C)** Distribution of exhaustion score within UMAP plots of CD3+ T cells subsets in in healthy controls, untreated COVID19 subjects and Foralumab treated subjects at baseline (day-2) and at day 10. Violin plots (Median<u>+</u>IQR) with individual points is shown. HC= healthy controls. One-way ANOVA, followed by Tukey *post hoc* analysis was performed and comparison between healthy vs. day-2 and untreated vs Foralumab is shown. * P < 0.05, ** P < 0.01, *** P < 0.001.

Figure S5. A, B) *NKG7* and *TGFB1* counts in CD3+ subsets in healthy controls, untreated and Foralumab treated COVID-19 subjects at baseline (day-2) and at day 10. *NKG7* (**A**) and *TGFB1* (**B**). Bars represent mean<u>+</u>SEM. One-way ANOVA followed by Tukey *post hoc* analysis ** p < 0.01. * P < 0.05, ** P < 0.01, **** P < 0.001.

Figure S6. Serum markers altered by COVID-19 detected by proteomics. A) Comparison between healthy volunteers and COVID-19 subjects. Dots are individual values, bars represent mean<u>+</u>SEM. Student's t test. Healthy = healthy controls. COVID-19 refers to all COVID-19 subjects at baseline (day-2). **p < 0.01, **** P < 0.001. B) Resume of up and downregulated serum markers obtained by Olink.

В

Figure S7. A) Serum BDNF before and after treatment measured by Multiplex. **B)** Serum ST1A1, AXIN1, SIRT2, NT-3, FLT3L and IL-12B change (before and after treatment) measured by Olink. Bars represent change from baseline. Student's t test. **C)** Dot plot showing average expression and percent of *FLT3G*, *SIRT2*, *SULT1A1* and *AXIN1* in CD3⁺ cell subsets. **D)** Heat maps showing gene expression of the corresponding proteins found to be modulated by Foralumab treatment in sera. One-way ANOVA, followed by Tukey *post hoc* analysis was used for analysis in D. * P < 0.05, ** P < 0.01, ***P = 0.001

Table S1. Subject demographics

		Fora	lumab	Unt	reated	Healthy controls	
	Total	Gender (F/M)	Age (yrs)	Gender (F/M)	Age (yrs)	Gender (F/M)	Age (yrs)
Proteomics	n=33	12 (10/2)	44.5 ± 11	15 (9/6)	31 ± 18.9	6 (5/1)	42.4 ± 7
Bulk-RNA	n=23	8 (7/1)	47.6 ± 9.1	8 (6/2)	39.8 ± 19.1	7 (2/5)	31.9 ± 5.1
scRNAseq	n=12	4 (3/1)	46.7 ± 8.3	4 (3/1)	48.7 ± 24.5	4 (2/2)	35.6 ± 2.5

Proteomics: Multiplex and Olink Bulk-RNA: Smart2-seq scRNAseq: 10X genomics Age ± Standard Deviation

Control				Foralumab						
	Day -2	Day 10				Day -2	Day 10			
	Mean (±SD) #		Change		p-value*	Mean (±SD)		change		p-value
IL.18	34.8 (±18.9)	32.2 (±17.7)	-2.6; 95% CI: -9.6, 4.3	-Ψ	0.429	46.9 (±15.5)	37.6 (±12.6)	-9.3; 95% CI: -18.9, 0.2	- Ψ	0.054
BDNF	144.4 (±217.6)	174.3 (±191)	29.9; 95% CI: -109.2, 169	-	0.651	91.5 (±105.6)	279.6 (±274.6)	188.1; 95% CI: 50.8, 325.4	↑	0.012
VEGF-A	455.6 (±391.8)	525.1 (±359.6)	69.5; 95% CI: -98.1, 237.2	-	0.389	362.1 (±184.7)	610.4 (±310.2)	248.3; 95% CI: 103.8, 392.9	1	0.003
PIGF-1	49.2 (±29)	67.4 (±38.6)	18.1; 95% CI: -0.8, 37.1	-	0.059	55.8 (±28.7)	87.1 (±41)	31.3; 95% CI: 12.2, 50.5	1	0.004
SCF	6.3 (±4.6)	6.8 (±3.7)	0.5; 95% CI: -0.6, 1.6	-	0.316	5.5 (±3.2)	6.6 (±4.1)	1.1; 95% CI: 0.2, 2	1	0.023
HGF	73 (±43.9)	125.5 (±72.4)	52.5; 95% CI: 23.9, 81.1	Ţ	0.001	89.6 (±41.1)	187.2 (±89.5)	97.6; 95% CI: 63.7, 131.6	↑	<0.001
PDGF-BB	34.6 (±31)	77.5 (±78.4)	42.9; 95% CI: 0.3, 85.5	Ţ	0.048	48 (±49.5)	159.2 (±219.4)	111.1; 95% CI: -1, 223.3	-	0.052
IP-10	28.2 (±16.5)	12.3 (±8)	-15.9; 95% CI: -23.1, -8.7	\downarrow	<0.001	30.9 (±20.2)	13.4 (±6.7)	-17.5; 95% CI: -29, -6	\downarrow	0.006

Table S2: Serum Biomarkers before and after treatment measured by Multiplex

Standard Deviation (SD)

*: P-value = difference within groups before (day-2) and after treatment (day 10) and controls. CI= confidence intervals

 Ψ Increase (\uparrow) Decrease (\downarrow) No change (-)

IL= Interleukin; Brain Derived Neutrophic Factor (BNDF); Interferon gamma inducible protein-10 (IP-10); Placental Growth Factor (PIGF); Stem cell Factor (SCF); Hepatocyte Growth Factor (HGF); Vascular Endothelial Growth Factor A (VEGF-A); Platelet Derived Growth Factor (PDGF).