

Supplementary Information for

- 5 Pathways of N_2O production by marine ammonia-oxidizing archaea determined from dual-
- isotope labeling
-
- 8 Xianhui S. Wan^{a1}, Lei Hou^{b, c}, Shuh-Ji Kao^b, Yao Zhang^b, Hua-Xia Sheng^b, Hui Shen^b, Senwei Tong^b, Wei
- 9 Qin^c, Bess B. Ward^{a1}
- 10 a Department of Geosciences, Princeton University, NJ 08544, USA.
- ^b State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361101, China.
- ^c Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of
- Oklahoma, OK 73019, USA.
- 14 ¹ Corresponding authors: Xianhui S. Wan, Bess B. Ward
- **Author Contributions:** X. S. W., W. Q. and B. B. W. designed research; X. S. W., L. H., H. X. S., H. S.
- and S. T. performed experiments; S. J. K. and Y. Z. contributed new reagents/analytic tools; X. S. W., W.
- Q., and B. B. W. analyzed data; X. S. W. and B. B. W. wrote the paper with inputs from all authors.
- **Competing Interest Statement:** The authors declare no competing interest.
- **Classification:** Microbiology; Earth, Atmosphere and Planetary Sciences
- **Keywords:** Nitrous oxide, ammonia-oxidizing archaea; dual isotope; marine N2O production pathways,
- kinetics
-
- **This PDF file includes:**
- Supplementary text 1-3
- Figures S1 to S3
- Tables S1
- SI References
-

29 **Supplementary Text**

Supplementary Text 1: Compare the ⁴⁵N₂O production ratio observed in the field

31 Our findings are important for interpretation of isotope labeling patterns observed in isotope tracer 32 experiments in the ocean. When expressed as a fraction of the total $(^{45}N_2O/(^{45}N_2O + ^{46}N_2O))$, apparent hybrid 33 formation ranged from 0.24 to 0.85 across the range of NH₄⁺:NO₂⁻ concentration ratios from 0.05 to 10 (SI *Appendix*, Fig. S1). In this experiment $\binom{45}{2}$ is truly hybrid, i.e., composed of N from two different sources. 35 46 N₂O, however, could be partially hybrid, because it might result from the combination of two different 36 compounds, both derived from the initially labeled ${}^{15}NH_4{}^+$ (see result from experiment 3 and 5). In a standard 37 isotope tracer experiment performed with natural seawater samples, it is usually assumed that none of the 38 observed $^{46}N_2O$ is hybrid. Thus, the amount of hybrid N₂O might be underestimated if we consider only 39 ⁴⁵N₂O. Recent ¹⁵N labeling experiments consistently observe a high fraction of ⁴⁵N₂O production (i.e., > 70%) 40 in the world's ocean including the mid-latitude North Atlantic (1), the western North Pacific (2), and the 41 Eastern Tropical South Pacific (3-4), indicating that the hybrid formation is the main source of N2O in the 42 ocean. A more recent manipulation further found that the ⁴⁵N₂O: ⁴⁶N₂O was insensitive to ¹⁵NH₄⁺: ¹⁴NO₂⁻ 43 ratio when these substrates were experimentally manipulated in the Eastern Tropical North Pacific (5). 44 Currently, we are unable to explain the discrepancy of $\binom{45}{2}$. $\binom{46}{2}$ production in response to $\binom{15}{14}$: $\binom{14}{2}$ 45 ratio between SCM1 culture and the field studies. However, several factors, including the influence of $\rm ^{14}NH_4^+$ 46 concentration in the natural environments, the isotope dilution of the tracer substrates, and ammonia 47 oxidation coupled to NO₂ reduction during the incubation, would also cause deviation of the measured 48 45 N₂O: 46 N₂O from the predicted ratio (6). The potential involvement of microbial N₂O production from other 49 members of the microbial community also complicates the interpretation of the observed $45N_2O$: $46N_2O$ in the 50 field. Nevertheless, the field data suggest that further experiments with $15NO₂$ tracers or more tests using 51 other marine AOA strains would be useful, but also that interpretation of the hybrid isotope signature in 52 marine samples is not straightforward.

Supplementary Text 2. Using O atom source to deduce NO2 - 53 **production pathways**

54 Based on the result that half of O atoms in NO₂ produced by marine AOA strain CN25 were sourced from 55 H₂O, a stepwise oxidation of NH₂OH to NO₂ via NO was proposed as the ammonia oxidation pathway in 56 AOA (7-8). A similar model was also proposed in AOB (9), although the enzyme catalysing the oxidation of 57 NO to NO₂ remains to be identified. Alternatively, NO₂ was also hypothesized to be produced by a reaction 58 between NH₂OH and NO that yields two molecules of NO₂, in which the NO was produced by NO₂ 59 reduction (10). In this model, 2/3 of O atoms should be sourced from H2O and the remaining 1/3 of O atoms 60 from O₂. In our experiment, 63% of O atoms in NO₂ were sourced from H₂O, which is close to the 2/3 value 61 predicted for NO₂ produced by NH₂OH and NO. However, it should be noted that any abiotic intracellular 62 O atom exchange between NO₂ and ¹⁸O-H₂O would increase the portion of H₂O as the O source for NO₂. 63 For instance, if NO₂ is produced via NH₂OH oxidation, an intracellular O atom exchange ratio of 26% is

- 64 required to explain the ratio observed in our study. On the other hand, O_2 accounted for \sim 26% of O atoms in
- 65 NO₂, which was lower than the predicted values in both scenarios (50% in NH₂OH oxidation pathway and
- 66 33% in NH2OH plus NO pathway). The low value might be attributed to intracellular O atom exchange,
- 67 which would reduce the apparent contribution of O_2 to NO₂. Incomplete equilibration of ¹⁸O₂ in the
- 68 headspace with DO in the medium could also lower the contribution of O_2 to NO_2 ⁻, although this seems
- 69 unlikely. Nevertheless, our results suggest a significantly higher contribution from H₂O than O_2 for the O
- 70 atoms in NO₂. Based on the importance of substrate ratio (NH₄⁺: NO₂) in determining the N sources for
- 71 N₂O, it is possible that the relative contribution of different O sources might also vary with substrate ratio.

Supplemental Text 3: Choice of preservative for N2O and NO2 - 72 **production studies**

73 Mercuric chloride (HgCl₂) has been widely used as a preservative to terminate microbial activities due to its 74 high toxicity and high solubility in water (11, 12). In hopes of minimizing the use of this toxic material, and 75 due to concerns about the potential for artefacts of HgCl₂ on N₂O production, we compared the effect of 76 HgCl₂ and sodium hydroxide (NaOH) on both NO₂ and N₂O production for three cell treatments and three ¹⁵N-labelled substrates (Preservative test in Table S1). Our results suggested that both HgCl₂ and NaOH 78 effectively stopped SCM1 activity, and similarly preserved the isotope signal in NO₂ and N₂O during ¹⁵NH₄⁺ 79 labelling incubations (*SI Appendix*, Fig. S3*A-D*). In contrast, N2O isotopes were differentially affected by the 80 two preservatives in ¹⁵NO₂ labelling incubations. HgCl₂ resulted in significantly higher $\delta^{15}N-N_2O$ than using 81 NaOH in both the viable cell and heat killed cell treatments, indicating the application of HgCl₂ induces an 82 artefact of N₂O production from NO₂ associated pathways (*SI Appendix*, Fig. S3E, F). The ¹⁵NO₃ labelling 83 experiment was performed only in the viable cell group. There was no significant change in $\delta^{15}N-N_2O$ during 84 incubation in either HgCl₂ or NaOH treatments, indicating that NO₃ was not involved in archaeal N₂O 85 production (*SI Appendix*, Fig. S3*G*). Therefore, we concluded that NaOH is a better preservative to study 86 archaeal N₂O production, and NaOH was chosen as the preservative for all further experiments reported here. 87

Supplementary Figures and Table

 $\widetilde{P}0$ Fig. S1. Fraction of ⁴⁵N₂O to total labeled N₂O production under different ¹⁵NH₄⁺: ¹⁴NO₂ ratios.

- 91 Regression between ⁴⁵N₂O: (⁴⁵N₂O + ⁴⁶N₂O) production rate against ¹⁵NH₄⁺ and ¹⁴NO₂⁻ concentration ratio.
- Error bars represent propagated standard deviation from triplicate samples.
-

94 95 **Fig. S2. Impact of NH₂OH on NO₂⁻ production rate. Gary bars: abiotic control using filtrate with NH₄⁺** 96 (50 μmol L⁻¹) and NH₂OH (1 μmol L⁻¹). Blue bars: viable cell with NH₄⁺ (50 μmol L⁻¹). Red bars: viable cell 97 with NH₄⁺ (50 µmol L⁻¹) and NH₂OH (1 µmol L⁻¹). Error bars represent standard deviation from triplicate 98 samples.

IO1 Fig. S3. Preservative Test for the effects of NaOH and HgCl₂ on NO₂ and N₂O production. A-B, δ¹⁵N-

 NO₂ in cells amended with 50 μmol L⁻¹ of ¹⁵NH₄⁺. C-D, δ¹⁵N-N₂O in cells amended with 50 μmol L⁻¹ of 103 ¹⁵NH₄⁺. E-F, δ^{15} N-N₂O in cells amend with 40 µmol L⁻¹ of ¹⁵NO₂⁻. G, Change of δ^{15} N-N₂O during ¹⁵NO₃⁻ labeling incubation. The X-axis marks time of adding preservatives after ¹⁵N tracer amendment. The $\delta^{15}N$ in NaOH treatment is shown in blue bars and the results of HgCl2 treatment are shown in red bars. Error bars

represent standard deviation from triplicate samples. The stars (**) represent significance difference at

p<0.01 level. Note Y-axes differ in scale.

Exp ¹	Cell treatment	Tracers	Preserve	Target	Time points
Preserv- ative test	1) Viable cells 2) Autoclaved cells	1) $15NH_4$ ⁺ : 50 µM 2) $15NO_2$: 50 µM 3) ${}^{15}NO_3$: 100 µM	$1)$ HgCl ₂ 2) NaOH	Determine the best way to terminate incubations and preserve N ₂ O	$0, 24h$ (for viable cells)
1	1) Viable cells	1) $15NH_4$ ÷: 0.1, 0.5, 1, $1.5, 2, 5, 8, 10 \mu M$	1) NaOH	Explore the ammonia and N_2O production kinetics	3 timepoints
\overline{c}	1) Viable cells	1) ${}^{15}NH_4$ ⁺ + ${}^{14}NO_2$: 1.5 & 15 µM 2) $15NH_4$ + $14NO_2$: 5 & 5 µM 3) ${}^{15}NH_4$ ⁺ + ${}^{14}NO_2$: $10 \& 1 \mu M$	1) NaOH	Investigate the impact of NH ₄ ⁺ : $NO2$ on $N2O$ production	0, 6, 24h
3	1) Viable cells (washed by fresh medium)	1) $15NH_4$ ⁺ : 20 µM 2) $15NH_4$ ⁺ + $14NO_2$: 20 & 20 μM 3) ${}^{15}NO_2$: 20 µM 4) ${}^{15}NO_2$ ⁺ ${}^{14}NH_4$ ⁺ : 20 & 20 µM	1) NaOH	Track the source of N atoms using ${}^{15}N$ substrates	0, 24h
4	1) Viable cells 2) Filtrate	1) ¹⁵ NH ₂ OH: 1 μ M 2) $15NO_2$: 10 µM 3) ${}^{15}NO_2$ ⁻ + ${}^{4}NH_2OH$: $10 \& 1 \mu M$	1) NaOH	Examine N_2O production from NH ₂ OH	Time course $(0,$ 1, 3, 6, 12 h
5	1) Viable cells (washed by fresh medium) 2) Fresh medium	1) H_2 ¹⁸ O, NH ₄ ⁺ NO ₂ : 20 & 20 μM 2) ${}^{18}O_2$, NH ₄ ⁺ + NO ₂ : 20 & 20 μM 3) $NH_4^+ + N^{18}O_2$: 20 & 20 μM	1) NaOH	1) Track the source of O atoms using ${}^{18}O$ substrates 2) Quantify the abiotic O atom exchange rate between H_2O and NO ₂	Time course $(0,$ 6, 12, 24h) for selected treatments $0, 24h$ (for the remaining groups)

109 **Table S1. Summary of experimental treatments.**

 110 $\frac{1}{1}$: All the experiments were carried out in biological triplicates at each timepoint.

Supplementary References

- 1. Q. Ji, B. B. Ward, Nitrous oxide production in surface waters of the mid-latitude North Atlantic Ocean. *J. Geophys. Res. Oceans* 122, 2612-2621 (2017).
- 2. F. Breider et al., Response of N2O production rate to ocean acidification in the western North Pacific. *Nat. Clim. Chang.* 12, 954-958 (2019).
- 3. C. Frey et al., Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru. *Biogeosciences* 17, 2263-2287 (2020).
- 4. A. E. Santoro, Nitrification and nitrous oxide production in the offshore waters of the Eastern Tropical South Pacific. *Global Biogeochem. Cy.* 35, e2020GB006716 (2021).
- 5. C. Frey *et al.*, Kinetics of nitrous oxide production from ammonia oxidation in the Eastern Tropical North Pacific. *Limnol. Oceanogr.* doi.org/10.1002/lno.12283 (2022).
- 6. X. S. Wan *et al.*, Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump. *Nat. Geosci.* 16, 29-36 (2023).
- 125 7. P. Carini, C. L. Dupont, A. E. Santoro, Patterns of thaumarchaeal gene expression in culture and diverse marine environments. *Environ. Microbiol.* 20, 2112-2124 (2018).
- 127 8. A. E. Santoro, C. Buchwald, M. R. McIlvin, K. L. Casciotti, Isotopic signature of N_2O produced by marine ammonia-oxidizing archaea. *Science* 333, 1282-1285 (2011).
- 129 9. J. D. Caranto, K. M. Lancaster, Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. *Proc. Natl. Acad. Sci. U.S.A.* 114, 8217-9222 (2017).
- 10. J. A. Kozlowski, M. Stieglmeier, C. Schleper, M. G. Klotz, L. Y. Stein, Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. *ISME J.* 10, 1836-1845 (2016).
- 11. J. R. Christian, D. M. Karl, Measuring bacterial ectoenzyme activities in marine waters using mercuric chloride as a preservative and a control. *Mar. Ecol. Prog. Ser.* 123, 217-224 (1995).
- 12. D. C. Wolf, T. H. Dao, H. D. Scott, T. L. Lavy, Influence of sterilization methods on selected soil microbiological, physical, and chemical-properties. *J. Environ. Qual.* 18, 39-44 (1989).
-