List of Supplemental Materials

Figure S1. Associations between slopes of biomarkers of kidney injury, inflammation and tubular health with the composite CKD outcome in participants without recurrent AKI

Figure S2. Associations between tertiles of the slopes of biomarkers of kidney injury,

inflammation and tubular health and kidney function decline

Figure S3. Associations between slopes of biomarkers of kidney injury, inflammation and tubular health with incident CKD and with CKD progression

Figure S4. Associations between biomarker slopes from hospitalization to 3- months visits, and

from 3- to 12-months visits with the composite CKD outcome

Table S1. Monthly biomarker percentage change in participants without recurrent AKI

 Table S2. Biomarker measurement assays

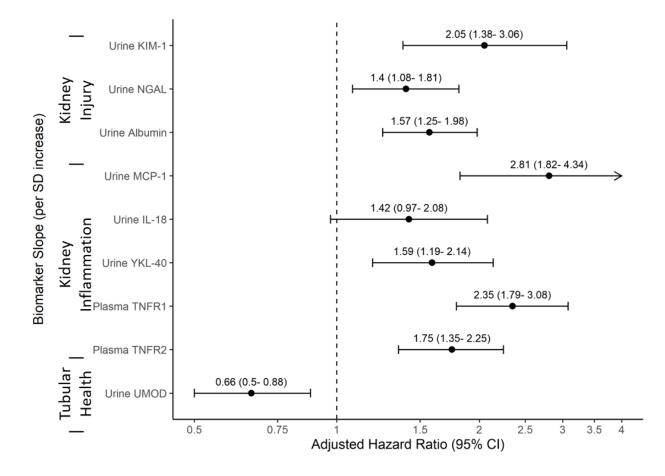
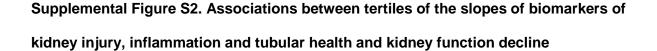
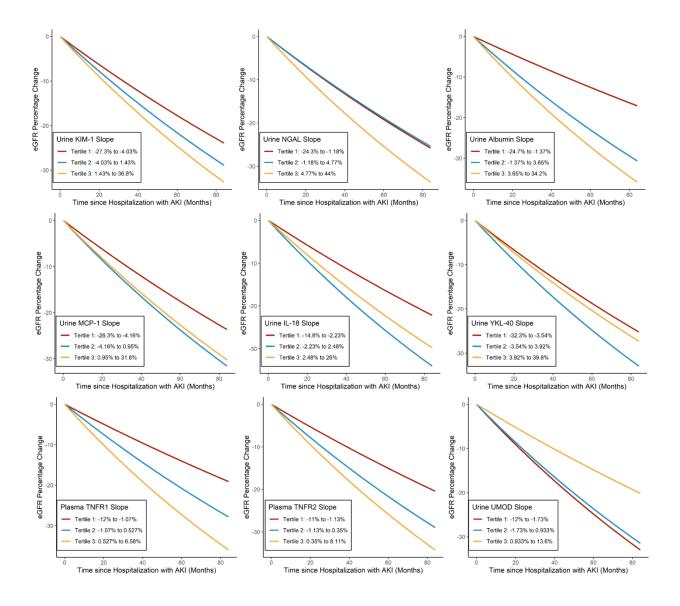
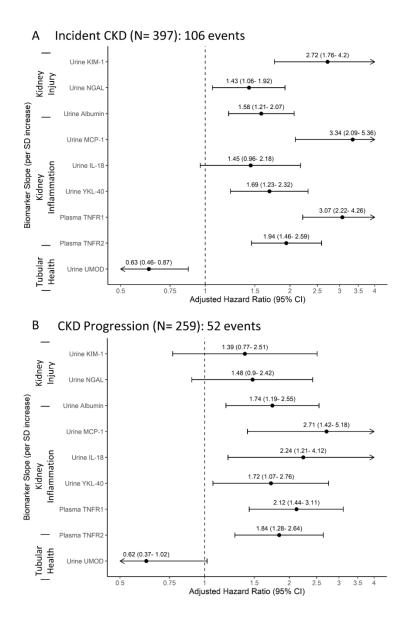

Table S3. Mean and standard deviation of biomarker slopes

 Table S4. Significance levels comparing biomarker gene expression in kidneys from mouse

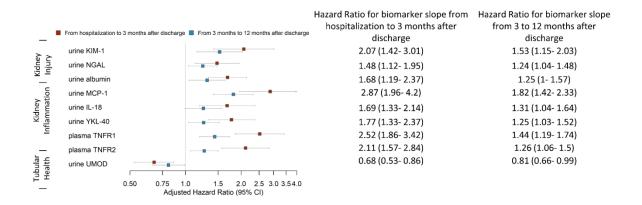
models of atrophy and repair after ischemic reperfusion injury


 Table S5.
 STROBE checklist.


Supplemental Figure S1. Associations between slopes of biomarkers of kidney injury, inflammation and tubular health with the composite CKD outcome in participants without recurrent AKI


Five hundred and sixty-one participants did not have recurrent AKI from hospitalization to 12 months after discharge.

Model adjusted for biomarker at hospitalization, age, sex, self-identified race, Hispanic ethnicity, hypertension, diabetes, atherosclerotic cardiovascular disease, congestive heart failure, smoking status, baseline eGFR prior to hospitalization, albuminuria at hospitalization, urine creatinine at hospitalization and the slope of urine creatinine from hospitalization to 12 months after discharge.


Supplemental Figure S3. Associations between slopes of biomarkers of kidney injury, inflammation and tubular health with incident CKD and with CKD progression

(A) Biomarker slopes' associations with incident CKD in 397 participants without pre-existing CKD; (B) Biomarker slopes' associations with CKD progression in 259 participants with pre-existing CKD.

Model adjusted for biomarker at hospitalization, age, sex, self-identified race, Hispanic ethnicity, hypertension, diabetes, atherosclerotic cardiovascular disease, congestive heart failure, smoking status, baseline eGFR prior to hospitalization, albuminuria at hospitalization, urine creatinine at hospitalization and the slope of urine creatinine from hospitalization to 12 months after discharge.

Supplemental Figure S4. Associations between biomarker slopes from hospitalization to 3- months visits, and from 3- to 12-months visits with the composite CKD outcome

Five hundred and eighty-one participants had urine biomarkers measured at all three timepoints, and 541 participants had plasma biomarkers measured at all three timepoints.

Biomarker slopes at both time intervals were scaled by their standard deviations, so the hazard ratios represent the risk of CKD outcome per standard deviation increase in biomarker slopes.

Model adjusted for biomarker at hospitalization, age, sex, self-identified race, Hispanic ethnicity, hypertension, diabetes, atherosclerotic cardiovascular disease, congestive heart failure, smoking status, baseline eGFR prior to hospitalization, albuminuria at hospitalization, urine creatinine at hospitalization and the slope of urine creatinine from hospitalization to 12 months after discharge.

Supplemental Table S1. Monthly biomarker percentage change in participants without

recurrent AKI

Biomarker

Biomarker Percentage Change from hospitalization

Category

to 12 months after hospitalization (per month)*,

median (Q1, Q3)

		No CKD			
			Outcome	CKD Outcome	р
	Biomarker	Total (N=561)	(N=440)	(N=121)	Value [#]
		-1.15%	-1.43%	-0.69%	
~	Urine KIM-1	(-6.08%, 2.86%)	(-6.59%, 2.65%)	(-4.94%, 3.49%)	0.08
Injur		1.47%	1.11%	2.19%	
Kidney Injury	Urine NGAL	(-3.94%, 6.13%)	(-4.42%, 5.89%)	(-1.54%, 8.12%)	0.079
ž	Urine	1.07%	0.76%	3.04%	
	Albumin	(-3.22%, 5.08%)	(-3.84%, 4.66%)	(-0.82%, 6.26%)	< 0.001
		-1.32%	-1.64%	-0.81%	
	Urine MCP-1	(-5.8%, 2.28%)	(-6.04, % 2.17%)	(-5.44%, 2.33%)	0.262
		0.02%	-0.18%	1.02%	
ation	Urine IL-18	(-3.71%, 3.94%)	(-4.13%, 3.67%)	(-2.99%, 4.99%)	0.036
mm		0.1%	-0.22%	2.04%	
Kidney Inflammation	Urine YKL-40	(-6.65%, 5.87%)	(-6.71%, 5.19%)	(-5.37%, 8.15%)	0.024
idne	Plasma	-0.41%	-0.55%	0.17%	
Y	TNFR1	(-1.68%, 0.94%)	(-1.76%, 0.76%)	(-1.22%, 1.38%)	0.002
	Plasma	-0.38%	-0.52%	0.01%	
	TNFR2	(-1.72%, 0.8%)	(-1.86%, 0.64%)	(-1.46%, 1.09%)	0.014

ılar	lth		-0.26%	-0.11%	-0.72%	
Tubula	Health	Urine UMOD	(-2.51%, 1.8%)	(-2.38%, 1.94%)	(-3.24%, 1.28%)	0.041

*Monthly percentage changes were converted from the slopes of log2-transformed biomarker

for interpretation.

[#]p value calculated using Wilcoxon tests.

Supplemental Table S2. Biomarker measurement assays

Biomarker	Biomarker Name	Urine or	Assay
		Plasma	
KIM-1	Kidney injury molecule-1	Urine	Duoset DY1750, R & D Systems Inc.,
			Minneapolis, MN
IL-18	Interleukin-18	Urine	Medical & Biological Laboratories Co.,
			Nagoya, Japan
MCP-1	Monocyte chemoattractant	Urine	Meso Scale Diagnostics, Gaithersberg,
	protein-1		MD
UMOD	Uromodulin	Urine	Meso Scale Diagnostics, Gaithersberg,
			MD
NGAL	Neutrophil gelatinase-	Urine	NGAL ELISA Kit 036; Bioporto,
	associated lipocalin		Grusbakken, Denmark
YKL-40	Chitinase 3-like 1	Urine	Meso Scale Diagnostics, Gaithersberg,
			MD
Albumin	Albumin	Urine	Siemens ProSpec analyzer (Siemens
			GMBH)
TNFR1	Soluble tumor necrosis	Plasma	Meso Scale Diagnostics, Gaithersberg,
	factor receptor-1		MD
TNFR2	Soluble tumor necrosis	Plasma	Meso Scale Diagnostics, Gaithersberg,
	factor receptor-2		MD

Biomarker	Biomarker Slope (log2 change per	Biomarker Monthly Percentage
	month), mean (SD)	Change*, mean (SD)
Urine KIM-1	-0.024 (0.109)	-1.36% (7.42%)
Urine NGAL	0.017 (0.125)	1.57% (8.73%)
Urine Albumin	0.011 (0.110)	1.08% (7.53%)
Urine MCP-1	-0.030 (0.107)	-1.78% (7.21%)
Urine IL-18	0.003 (0.090)	0.38% (6.31%)
Urine YKL-40	-0.005 (0.148)	0.18% (10.24%)
Plasma TNFR1	-0.007 (0.034)	-0.44% (2.35%)
Plasma TNFR2	-0.009 (0.036)	-0.58% (2.46%)
Urine UMOD	-0.007 (0.052)	-0.45% (3.60%)

Supplemental Table S3. Mean and standard deviation of biomarker slopes

*Biomarker monthly percentage change was calculated from biomarker slope

Supplemental Table S4. Significance levels comparing biomarker gene expression in kidneys from mouse models of atrophy and repair after ischemic reperfusion injury

Biomarker	model factor (atrophy vs. repair	time factor	model- time interaction
gene\	model)		
Significance			
level			
Havcr1	<0.0001	<0.0001	<0.0001
Lcn2	0.4888	<0.0001	<0.0001
Ccl2	<0.0001	<0.0001	<0.0001
ll18	<0.0001	<0.0001	<0.0001
Chi3l1	<0.0001	<0.0001	<0.0001
Tnfrsf1a	<0.0001	0.0012	0.0012
Tnfrsf1b	<0.0001	<0.0001	<0.0001
Umod	0.0003	<0.0001	<0.0001

Supplemental Table S5. STROBE Statement—checklist of items that should be included in reports of observational studies

	Item No.	Recommendation	Page No.	Relevant text from manuscript
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3	
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3	
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6	
Objectives	3	State specific objectives, including any prespecified hypotheses	6	
Methods				
Study design	4	Present key elements of study design early in the paper	6, 16	
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	16	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	16	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls		
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the sources and methods of selection of participants		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed	16	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of controls per case		

Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	17
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	17
Bias	9	Describe any efforts to address potential sources of bias	16
Study size	10	Explain how the study size was arrived at	16-17

Continued on next page

Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable,	19-20
variables		describe which groupings were chosen and why	
Statistical	12	(a) Describe all statistical methods, including those used to control for confounding	19-20
methods		(b) Describe any methods used to examine subgroups and interactions	20
		(c) Explain how missing data were addressed	17, 19
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	20
		<i>Case-control study</i> —If applicable, explain how matching of cases and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods taking account of sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	20
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6, 28
		(b) Give reasons for non-participation at each stage	6, 19
		(c) Consider use of a flow diagram	Fig 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7, Table 1
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	7
Outcome	15*	Cohort study—Report numbers of outcome events or summary measures over time	7
data		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	8
		their precision (eg, 95% confidence interval). Make clear which confounders were	
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	29, Fig 2
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	NA
		meaningful time period	

Continued on next page

Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8-9
Discussion			
Key results	18	Summarise key results with reference to study objectives	11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15
Generalisability	21	Discuss the generalisability (external validity) of the study results	13-14
Other informati	ion		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	22

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org

Supplemental Acknowledgments

ASSESS-AKI consortium:

Johns Hopkins University, Baltimore, MD: Chirag R. Parikh, Steven Menez, and Yumeng Wen;

Icahn School of Medicine at Mount Sinai, New York, NY: Steven G. Coca;

Yale School of Medicine, New Hanen, CT: Dennis G. Moledina;

Western University, London, Canada: Amit X. Garg;

Kaiser Permanente Northern California, Oakland, CA: Alan S. Go, Sijie Zheng and Leonid V. Pravoverov;

University of California, San Francisco, San Francisco, CA: Chi-yuan Hsu, Raymond K. Hsu, and Kathleen D. Liu;

Pennsylvania State University, Hershey, PA: Vernon M. Chinchilli, Nasrollah Ghahramani;

University of Texas San Antonio, San Antonio, TX: W. Brian Reeves;

Vanderbilt University, Nashville, TN: T. Alp Ikizler, Edward D. Siew, Julia B. Lewis and Lorraine Ware;

Cincinnati Children's Hospital, Cincinnati, OH: Prasad Devarajan, Catherine D. Krawczeski, and Michael R. Bennett;

Montreal Children's Hospital, Montreal, Canada: Michael Zappitelli;

University of Washington, Seattle, WA: Jonathan Himmelfarb, Mark M. Wurfel;

New York University, New York, NY: James S. Kaufman;

National Institute of Health, Bethesda, MD: Paul L. Kimmel;

University of Iowa, Iowa City, IA: John B. Stokes (in memoriam).