
Supplementary Materials: 

1. Dataset and preprocessing descriptions  

Training data collection 

TCGA WES data (VCF files of MuTect2 variant calling pipeline) for lung squamous cell carcinoma 
(LUSC, n=489), lung adenocarcinoma (LUAD, n=511) and skin cutaneous melanoma samples 
(SKCM, n=469) were requested from the NCI GDC Repository (https://gdc.cancer.gov). Human 
Leukocyte Antigen (HLA) allele information corresponding to the LUAD, LUSC and SKCM samples 
was obtained from The Cancer Immunome Atlas (https://tcia.at/home) [1].  

Processed single-cell RNA sequencing (scRNA-seq) data of lung cancer and melanoma were 
obtained from the Gene Expression Omnibus (GEO; accession number: GSE17994 and 
GSE120575). Bulk RNA-seq level 3 expression data (normalized read counts) of the 1019 NSCLC 
and 474 melanoma tissues were downloaded from https://tcga.xenahubs.net. The read count was 
further converted into Transcripts Per Kilobase Million (TPM) quantification. Fusion gene lists for 
LUAD (n=471), LUSC (n=485) and SKCM (n=451) samples were retrieved from ChimerDB 4.0 
database (https://www.kobic.re.kr/chimerdb/) [2]. Location information of the fusion events aligned 
to the human reference genome (version 19, hg19) was further lifted to the hg38 genome. 

To further assess protein levels of tumors, protein expression profiles (reverse phase protein array 
[RPPA] data) of TCGA cohort (including 362 LUAD, 325 LUSC and 354 SKCM samples) were 
extracted from MD Anderson (http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/
index.html).  
Immunotherapy cohort data 
Raw bulk RNA-seq data (n=27) of SMC NSCLC cohort were downloaded from Sequence Read 
Archive (NCBI SRA: SRP217040). Processed gene expression data for these 27 tumor samples 
were downloaded from GSE135222. Corresponding WES data (including FASTQ files and VCF 
files) and associated HLA allele data of this cohort (n=146) were requested from European 
Genome-phenome Archive (EGA) under accession number EGAD00001005211 and previous 
studies [3, 4]. The tumor and matched germline WES FASTQ files for another independent LUAD 
cohort (Rizivi, n=34) were obtained from the Database of Genotypes and Phenotypes (dbGaP) 
under accession no. phs000980.v1.p1. All above lung cancer patients were treated with 
pembrolizumab (anti-PD-1). In SMC cohort, ICB treatment response information for only 122 
patients can be obtained. 

WES data of three melanoma cohorts (Abbott cohort, n=51; Amato cohort, n=52; Snyder cohort, 
n=64) were obtained from dbGap: phs002388.v1.p1; SRA: SRP267584 and dbGap: 
phs001041.v1.p1. Matched bulk RNA-seq data for 47 melanomas from Abbott cohort and 12 from 
Amato cohort were available at dbGap: phs002388.v1.p1 and SRA: SRP250849. Corresponding 
RNA expression data were downloaded from the supplementary table of Abbott’s publication [5] 
and GSE15996. All included melanoma patients were treated with nivolumab, ipilimumab, 
tremelimumab or pembrolizumab (anti-CTLA4 or anti-PD-1 therapy). Corresponding clinical 
information of five studies above was retrieved from related supplementary files in the original 
publications [6] and from GEO database. 
Raw sequence data processing, somatic mutation calling and annotation 
Somatic variants and VCF files were called using raw data of five ICB cohorts. First, the quality 
control for FASTQ files was assessed by using Trimmomatic (version 0.39)[7] and Samtools 
(version 1.9)[8]. Then, the ILLUMINACLIP step (keepBothReads is set True) and Sliding window 
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trimming were performed. Leading and trailing low quality (quality reading below 5) or N bases 
were removed. The raw reads (FASTQ files) were mapped to the hg38 genome using BWA-men 
(version 0.7.15)[9] with parameters -t 8 -T 0. Local realignment around indels and base quality 
recalibration of BAM files were performed with Genome Analysis Toolkit (GATK, version 4.1.7.0)
[10]. MuTect2 (version 4.1.0.0)[11] was next applied with default settings to detect SNVs and small 
indels in 34 pairs of tumors and matched normal samples. FilterMutectCalls was performed with 
default parameters on Mutect2 for selecting the most reliable variant calls. 

Somatic variants of two TCGA and five ICB datasets were further annotated using ANNOVAR [12] . 
In addition, functional impact prediction of mutations was carried out by the Variant Effect Predictor 
(VEP) from Ensembl. For both somatic SNVs and indels, the minimum variant allelic fraction was 
set to 2%. Indels that were annotated in genome repeat regions were removed. Germline variants 
present in the dbSNP database and common variants with AF over 5% reported by the 1000 
Genomes Project (1000G) and the Exome Aggregation Consortium (ExAC) database[13, 14] were 
further filtered out.  

For 5 ICB cohorts, CNVkit (version 0.9.7)[15] was employed for inferring somatic copy number 
alterations (SCNAs) in the aligned sequence reads (sorted BAM files). ABSOLUTE (v1.0.6)[16] 
was applied for estimating tumor purity and ploidy of these samples based on their MAF files and 
the copy number data (output files of CNVkit). The loss of heterozygosity (LOH) in at the HLA allele 
was inferred from their WES data using the algorithm LOHHLA[17]. A loss of heterozygosity event 
was reported when the significance of allelic imbalance was reached (p-value <0.01), and when 
the estimated copy number using binning and B-allele frequency settings was lower than 0.5. For 
TCGA samples, their purity/ploidy file (ABSOLUTE, TCGA_mastercalls.abs_tables_JSedit.fixed.txt) 
was downloaded at https://gdc.cancer.gov/about-data/publications/pancanatlas. The LOH-HLA 
information of TCGA cases was obtained from Yang’s publication[18]. 
Fusion gene detection and filtering 
STAR-Fusion (v1.10.1) and Arriba (v2.2.1) showed a higher sensitivity in detecting the fusion 
events and was both utilized in the GDC gene fusion pipeline. Therefore, the two tools were 
employed for detecting gene fusions from the RNA-seq data of SMC, Abbott and Amato samples. 
First, reads were aligned to the hg38 reference genome using STAR(v2.7.9a)[19] followed by 
fusion calling with the following parameters --examine_coding_effect; --FusionInspector inspect[20] 
in STAR-Fusion. Specifically, the inspect mode of FusionInspector (v2.6.0) which comes bundled 
with STAR-Fusion was used to inspect prediction results from STAR-Fusion and retain reliable 
fusion transcripts. The prediction output files provided fused gene names, junction read count, and 
information on the breakpoint, LargeAnchorSupport and coding region impacts. Fusions not 
supported by LargeAnchor reads were filtered out. Then, Arriba was also applied to call fusions in 
NSCLCs and melanomas given its short runtimes and utility in both basic cancer research and 
clinical translation[21]. The union of fusion genes detected by the above two algorithms was 
retained for further analysis.  

Moreover, GeneFuse (version 0.6.1)[22] was used to detect fusions from paired tumor and normal 
DNA of 5 ICB cohorts using a gene list of experimentally verified cancer-related fusions from the 
COSMIC database as well as two fusion files containing respectively TCGA NSCLC and SKCM 
fusion genes from ChimerDB 4.0. All genes in the fusion gene list files above were based on hg38 
reference assembly. Fusion genes that were observed in match normal samples of two cohorts 
were further filtered out. Finally, for five ICB cohorts, the fusion results predicted from above three 
tools were filtered using FusionGDB 2.0 database[23]. 



2. Supporting results for main Fig. 1 
The top-ranked frequent neoantigens predicted to strongly bind to patient’s MHC class I molecules 
are shown in Fig. S1. In total, there were 4927 candidate neoantigens derived from fusion genes 
predicted across 811 TCGA lung cancer (TCGA-LUNG) samples. Fusion-associated neoantigens 
occurred most frequently in the following fusion genes: GOLGA3-RPS11, BMS1P20-IGLL5 and 
CLTC-VMP1 (Fig. S1a). In 1002 and 783 NSCLC samples, a total of 128848 SNVs-derived and 
10625 indels-derived neopeptides were predicted to bind to MHC-I molecules, respectively. The 
most frequent peptides were induced by hotspot mutations in NSCLCs, including EGFRL858R, 
PIK3CAE545K,E542K, KRASG12V,G12A,G12D and TP53R158L (Fig. S1a). In 469 TCGA melanoma (TCGA-
SKCM) samples, there were 125770, 1554 and 2121 neoantigens originated from SNVs, indels 
and fusions, respectively. The predicted neoantigens occurred most frequently in BRAFV600M, 
NRASQ61K, RAC1P29S, TRO-MAGED2 and TTYH3-MAD1L1(Fig. S1a). 

3. Supporting results for main Fig. 3  
Neoantigens were highly sparse and infrequently shared between ICB cohort patients. In contrast 
to TCGA data, few neoantigens were derived from hotpot mutations like TP53, KRAS or BRAF 
except for EGFRL858R and CDH6S524L (Fig. S3a). Besides, the most frequent neoantigens were 
generated by fusion genes such as MAML3-ATXN3, GRM5-PIGK and CTSC−RAB38 in the 
combined NSCLC ICB cohort (SMC and Rizvi), and CTSC-RAB38, KANSL1-ARL17A and 
STEAP1B-RAPGEF5 in the combined melanoma ICB cohort (Synder, Amato and Abbott) (Fig. 
S3a). 



4. Supplementary figures 

Supplementary Fig. 1. a, The landscape of neoantigens derived from SNVs (top), indels (middle) 
and fusion genes (bottom) in TCGA-LUNG (left) and TCGA-SKCM (right). b, More neoantigens are 
observed per indel than a SNV or a fusion gene in TCGA-LUNG (left panel); in contrast, 
neoantigens derived from each of SNVs were found to be more than those from each of fusions 
and indels in TCGA-SKCM (right panel). P values are derived from Wilcoxon test and adjusted for 
multiple testing with the Benjamini-Hochberg procedure. 
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Supplementary Fig. 2. a, Heatmaps of correlations between mRNA expression levels of TCR gene signatures with NLS of three types (top panel), 
and GSEA normalized enrichment scores (NESs) for immune cell marker genes (bottom panel) in TCGA-SKCM primary samples. b, UMAP and tSNE 
plots of lymphoid and myeloid cells in scRNA-seq datasets of lung cancer and melanoma, colored by broad cell type. c, The cell-type fractions 
inferred using CIBERSORTx in bulk RNA-seq of TCGA-LUNG and TCGA-SKCM samples. d, The correlations of SNV-, indel- and fusion-derived NLS 
with CIBERSORTx-inferred exhausted CD8+ T cells in TCGA-SKCM samples. e, The cell-type fractions in bulk RNA-seq of ICB samples inferred by 
CIBERSORTx. f, The performance comparison of three models in validation and testing datasets.
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Supplementary Fig. 3. Neoantigens inferred from ICB cohorts and clinical efficacy evaluated by 
the NEO2IS and TMB, Related Fig. 3.  
a, Neoantigen landscape of combined NSCLC and melanoma ICB cohort and comparison of 
neoantigen frequency. b, The number of candidate neoantigens originating from each SNV or an 
indel observed to be significantly higher than those from a fusion gene in NSCLC and melanoma 
external datasets. c, Upper panel, Kaplan-Meier (KM) curves for relapse-free survivals according 
to NEO2IS (left) and TMB (right) in NSCLC and melanoma ICB cohorts; bottom panel, KM curves 
for overall survivals stratified by NEO2IS (left) and TMB (right) in two ICB cohorts (n=156). NEO2IS 
> median value and TMB > upper 20% of cohort TMB used as cut-off points. 

Supplementary Fig. 4. Genomic and molecular features associated with NEO2IS.  
a, Left panel, GSVA showing DDR pathways significantly enriched in high NEO2IS group (adjusted 
p-value < 0.05); right panel, the estimated proportion of ATM, POLE and MMR-related gene 
mutations in two subgroups divided by median NEO2IS. b, Left panel, tumor ploidy significantly 
related to the neoantigen signature; right panel, GSEA enrichment results (q-value <0.3) for 
immunomodulatory REACTOME pathways (top 10) that correlated with NEO2IS in external 
melanoma samples. c, Comparison of the mRNA expressions of genes associated with T-effector 
and INFγ pathway between high and low NEO2IS groups. d, NEO2IS shows significant association 
with PDL1 expression levels (left panel); higher levels of co-inhibitory receptors, LOHHLA and 
HLA/B2M gene mutations associated with higher NEO2IS (right panel) in melanomas. 
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Supplementary Fig. 5. a, CIBERSORTx-estimated cell fractions of CD8+ T-cell subsets in bulk 
RNA-seq datasets. b, EML4-ALK-derived LAFSGIMIV with high neoantigen score manifests 
potential immunogenicity in TCGA-LUNG (left); stronger cytolytic activity observed in responders 
than nonresponders in NSCLC and melanoma cohorts (middle and right). c, Tumors with higher 
PDL1 expressions exhibit durable clinical response to anti-PD1 treatment (left) and longer overall 
survival (right) in Rizvi cohort. d, NEO2IS correlated significantly with STAT3 pY705 abundance in 
TCGA tumors. e, Kaplan–Meier plots for RFS and OS from SMC and Abbott cohorts stratified by 
TCR Shannon entropy (upper) and TCR clonality (bottom). 
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