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We aggregated data from 6 Latino cohorts with a total sample size of 18,885 individuals 

(8,150 cases and 10,735 controls): SIGMA1, SIGMA2, SIGMA3, MXBB, MGB and GERA 

cohorts (Figure 1, ESM Table 1). 

The Slim Initiative for Genomic Medicine in the Americas (SIGMA) Cohorts [1–3] include 

individuals of Mexican or Mexican American origin recruited from both hospital- and 

population-based studies. The SIGMA study comprised of three different subsets. The 

SIGMA1 subset consists of 4,190 individuals, the SIGMA2 subset is composed of 3,730 

individuals with a high proportion of Central and South America Native ancestry and the 

SIGMA3 subset includes 5,790 individuals. All human research was approved by the 

Comité de Ética e Investigación del Centro de Estudios en Diabetes, the Ethics and 

Research Committees of the Instituto Nacional de Ciencias Médicas y Nutrición Salvador 

Zubirán, the Ethics and Research Committes of the Instituto Nacional de Medicina 

Genómica and the Federal Commission for the Protection against Health Risks 

(COFEPRIS) (CAS/OR/CMN/113300410D0027-0577/2012). 

The Mexican Biobank Cohort (MXBB)[4] includes population-based individuals from the 

2000 Mexican National Health Survey conducted between the years 1999 and 2000 in 

Mexico. In the present study, we used a subset of 1,730 individuals for whom DNA 

genotyping data and type 2 diabetes definition were available. MXBB studies involving 

human participants were reviewed and approved by the Research Ethics Committee 

(Approval CI-1479) of the National Institute of Public Health, Mexico). The patients/ 

participants provided their written informed consent to participate in this study. 

The Mass General Brigham (MGB) Biobank[5] maintains blood and DNA samples of 

patients seen at MGB hospitals, including the Massachusetts General Hospital, Brigham 
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and Women’s Hospital, McLean Hospital and Spaulding Rehabilitation Hospital, all in the 

Boston area (U.S.). We analyzed a subset of 2,115 genetically identified Latino samples. 

MGB work was conducted with approval from the MGB Institutional Review Board (study 

2016P001018). It acknowledges the Partners HealthCare System for support of the MGB 

biobank and MGB patients for providing samples, genomic data, and health information 

data. 

The Genetic Epidemiology Research on Aging cohort (GERA)[6] includes over 100K 

adults who were members of the Kaiser Permanente Medical Care Plan in the Northern 

California Region of the U.S. In this study, we analyzed a subset of 1,330 genetically 

identified Latino samples. 

For each cohort, we selected Latino samples based on their genetically estimated 

ancestry, as described below. We calculated the principal components (PCs) using 

common genetic variants (minor allele frequency [MAF]5%) using FlashPCA[7] on both 

self-reported Latino individuals and the 1000G Phase 3 samples. Then, we separately 

estimated the mean of the top 4 PCs on either Latino samples or each of the four 

continental superpopulations defined in the 1000G Project (i.e. European, African, East 

Asian, and South Asian). For MGB and GERA, we applied a first filtering step to remove 

Latino samples within 2 SD of the mean for PCs 1-4 for each superpopulation cluster. 

This step was not applied to SIGMA and MXBB cohorts since they showed more 

homogeneous genetic ancestries that fall on the expected cline of Native American and 

European ancestry. For all discovery cohorts, we applied a second step where outlier 

Latino samples lying more than 4 SD away from the mean PC for its own Latino cluster 

were also removed. For all cohorts, we estimated the genetic-based global ancestry using 
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Admixture[8]. After excluding high linkage disequilibrium (LD) regions, we performed LD 

pruning in each dataset, using a window 50kb, a shift of 5 variants at each step, and LD 

between variants r2>0.2. We then merged non-ambiguous alleles with 1000Gp3 samples 

and ran ADMIXTURE on the output file assuming 1-10 five ancestral populations (K=1-

10). We used a cross validation procedure to identify the best K. We used the default 

termination criteria for stopping the prior estimation algorithm, that is a log-likelihood 

increase by less than the convergence criterion =10-4 between iterations. We ran the 

same procedure 10 times and found an average pairwise similarity>0.99 among the 10 

runs in all cohorts. (ESM Fig. 1). 

 

Genotyping, quality control and imputation 

Genotyping was done using several commercially available genome-wide arrays. A 

subset of the SIGMA samples (N=9,520) underwent whole-exome sequencing (WES), 

which we integrated with the genotyping array data to improve the imputation backbone 

(Table S1). We applied pre-imputation quality control to each dataset separately. Variant 

quality checks included the exclusion of variants with 5% or more missing data, 

MAF<0.1%, a Hardy-Weinberg equilibrium p-value<510-10, palindromic single nucleotide 

variants (AT or CG), duplicates, as well as a case vs. control missingness difference P-

value<0.00005. We also excluded samples with 2% or more missing data, that did not 

pass the sex check or that were closely related as estimated by the proportion of identity 

by descent (IBD>0.185) between pairs of individuals. Clean datasets were phased using 

SHAPEIT2[9] and used as input for imputation. 



 5 

For comparison purposes, we imputed the phased haplotypes using both 1000G Phase 

3 version 5[10] and TOPMed reference panels freeze 8[11] in each cohort, separately. 

We used Michigan imputation and TOPMed imputation servers to impute genotypes.[12–

14] For chromosome X, we imputed non-pseudoautosomal regions from females and 

males separately. 

 

Imputation performance evaluation 

We used the r2 quality measure, as reported by the Michigan and TOPMed imputation 

servers. It calculates the ratio of the empirically observed variance of the allele dosage to 

the expected binomial variance.[15] We evaluated the performance of TOPMed and 

1000G imputations by summarizing the chromosome-wise r2 quality measure and the 

number of well-imputed (r20.8) variants at different allele frequency thresholds. To 

further test if the quality of imputation was well-powered to detect low-frequency and rare 

variation without relying on the imputation server’s quality measures, we leveraged 

available WES data from SIGMA3 cohort and estimated the proportion of the sequenced 

variants, for chromosome 22 only, that were well-imputed with TOPMed and 1000G 

panels at different WES allele frequency thresholds. Loss-of-Function (LoF) variants are 

of clinical interest as they disrupt protein-coding genes, potentially being disease-causal. 

Therefore, we used SnpEff[16] to annotate the WES variants for chromosome 22 only 

and estimated the percentage of well-imputed variants identified with TOPMed and 

1000G imputations. We used CADD score[17] to predict the deleteriousness of variants. 

We classified the variants using the score cut-offs of 10 and 20, below which the variants 

were considered as benign. 
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We also calculated the effective sample size (Neff) needed to reach 80% statistical power 

to detect genome-wide significant associated signals (=510-8) at different effect sizes 

and allele frequencies covered by the imputations. Neff was calculated as derived by 

Grotzinger et al. [18]: 

𝑁𝑒𝑓𝑓 = 4(1
𝑁 𝑐𝑎𝑠𝑒𝑠⁄ + 1

𝑁 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)⁄  

 

Type 2 diabetes association and meta-analysis 

Type 2 diabetes association analyses were performed in each cohort with SNPTEST 

using the expectation maximization (em) method[19] for doing maximum likelihood 

estimation in a generalized linear model framework using genotype probabilities under 

the additive model. Models were adjusted for sex, age, body mass index (BMI) and 10 

PCs to account for population structure. We ran additional models without adjusting for 

BMI. Only well-imputed variants (r20.5) were meta-analyzed using the inverse of the 

corresponding squared standard errors in METAL.[20] The statistical significance 

threshold was set to P<510-8. 

We performed LD-based clumping on the genome-wide significant variants to keep one 

representative variant per region of LD. We set an LD r2=0.5 and a distance between 

variants of 250 kb. If the variant was located within a previously reported type 2 diabetes-

related locus, we used a conditioning strategy to test for distinct signals. We conditioned 

on each of the previously reported SNPs within the locus. We performed conditional 

analyses in each cohort separately, and then meta-analyzed using the inverse of the 

variance of the effect estimates. If our lead variant showed evidence of residual type 2 
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diabetes association (p-value<510-5) after conditioning on any previously reported 

variant within the locus, we considered our novel signal as distinct. 

Variants with sub-genome-wide significance (p<110-6) that were only imputed with the 

TOPMed reference panel, showed increased frequency in the Latino population and were 

> 250 kb from other reported genome-wide significant variants from large consortia 

analyzing either European or East Asian populations[21, 22] were considered for further 

investigation. 

 

Replication sample 

Variants associated with type 2 diabetes risk at genome-wide and sub genome-wide 

significance were tested for replication in six independent cohorts described below (Table 

S2). 

Progress in Diabetes Genetics in Youth (PRODIGY) 

PRODIGY is the largest cohort for youth-onset type 2 diabetes with available GWAS data, 

comprising the Treatment Options for Type 2 Diabetes in Adolescents and Youth 

(TODAY)[23] and the SEARCH for Diabetes in Youth studies[24]. TODAY includes 

participants diagnosed with type 2 diabetes prior to 18 years of age and have documented 

BMI85th percentile at the time of diagnosis. Of note, the American Indian tribal nations 

that partnered on the TODAY Study elected not to participate in the genomics collection. 

SEARCH is a population-based prospective registry study launched in 2000 that 

ascertained diabetes in youth diagnosed at <20 years of age in the U.S. Overall, 

PRODIGY has shown consistent direction and size of effects for most genetic variants 

associated with type 2 diabetes in adults.[25] The TODAY and SEARCH protocols were 
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approved by the institutional review boards of each participating institution. Participants 

provided written informed parental consent and child assent, including consent and 

assent specifically for genetic testing. 

We identified 1,198 youth type 2 diabetes cases of Latino descent. As the control group, 

we used 1,805 diabetes-free adult Latino samples from the T2D-GENES (Type 2 

Diabetes Genetics Exploration by Next-generation sequencing in multi-Ethnic Samples) 

and from the METS (Mexican Metabolic Syndrome) Cohort.[26] Genotypes from both 

datasets were merged and the pre-imputation quality control additionally included the 

exclusion of variants with genotyping array missingness difference (p-value<0.00005). 

Phasing was done as described above and genotypes were imputed to the TOPMed 

reference panel to ensure high-quality imputation. Type 2 diabetes association was tested 

under an additive model using SNPTEST and em method[19]. Models were adjusted for 

sex and 10 PCs to account for population structure. Given the case-control design of this 

replication cohort, age and BMI were not considered as covariates. 

Cameron County Hispanic Cohort (CCHC) 

CCHC is a population-based cohort of Mexican American individuals living in the 

U.S.[27] We selected 971 type 2 diabetes cases and 857 controls. We used high-quality 

TOPMed imputed genotypes (r2>0.9) and tested for type 2 diabetes association under 

additive models adjusted for sex, age, BMI and 10 PCs. Human research was approved 

by the relevant Institutional Review Boards. All participants provided written informed 

consent. CCHC was approved by the Committee for the Protection of Human Subjects 

at the University of Texas Health Sciences Center at Houston, Human Research 

Protections Program at Vanderbilt University. 
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Urban American Indians and Arizona Pima Indians cohorts 

We also used 851 type 2 diabetes cases and 2,191 controls from four groups of urban-

dwelling American Indians living in or near Phoenix, Arizona, as well as 2,571 type 2 

diabetes cases and 5,088 controls from a community of Pima Indians in Arizona, who 

participated in a longitudinal study of type 2 diabetes.[28] For both cohorts, imputation 

was done using Pima whole-genome sequences from 266 individuals. Variant 

rs1016378028, was directly genotyped using Taqman probes. type 2 diabetes association 

was tested by fitting additive models adjusted for sex, age, BMI and 5 PCs. In the Pima 

cohort, we additionally adjusted for birth year since exams took place over many years. 

In the Pima cohort, we used linear mixed models to account for estimated relatedness 

among individuals, whereas in the Urban American Indians cohort, we used a genomic 

control procedure. Human research was approved by the relevant Institutional Review 

Boards. All participants provided written informed consent. 

Population Architecture using Genomics and Epidemiology (PAGE) study 

The PAGE study aims to conduct genetic epidemiological research in ancestrally diverse 

populations within the U.S.[29] It includes four population-based cohorts with significant 

numbers of Latino participants: the Hispanic-Community Health Study/Study of Latinos 

(HCHS/SOL), the Women’s Health Initiative (WHI), the Multiethnic Cohort (MEC) and the 

Icahn School of Medicine at Mount Sinai BioMe biobank in New York City (BioMe). 

Genotyped individuals self-identified as Hispanic/Latino, African American, Asian, Native 

Hawaiian, Native American or other. For this study, Latino samples were selected based 

on their genetically estimated ancestry following the same two-step filtering approach that 

we implemented with the discovery cohorts. We analyzed up to 6,761 type 2 diabetes 
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cases and 5,747 controls. We used high-quality TOPMed imputed genotypes (r2>0.9) and 

tested for type 2 diabetes association under additive models adjusted for sex, age, BMI 

and 14 PCs. Analyses were conducted in SUGEN[30] to account for relatedness within 

datasets. Human research was approved by the relevant Institutional Review Boards. All 

participants provided written informed consent. 

All of Us Research Program 

The All of Us Program aims to build a national longitudinal resource of multiple data types 

and biosamples from at least one million individuals in the U.S., with the main goal of 

broadly reflecting the diversity in the country.[31] We analyzed whole genome sequencing 

data from 8,958 genetically identified Admixed American/Latino individuals, of which 

1,243 were type 2 diabetes cases and 7,715 were controls. We tested the type 2 diabetes 

association under additive models adjusted for sex, age, BMI, and 16 PCs. All participants 

consent to participate. The work described here was confirmed as meeting criteria for 

non-human subject research by the AoU Institutional Review Board. All methods were 

carried out in accordance with relevant guidelines and regulations. 

 

Replication in non-Latino populations 

Since one of our novel variants, rs2891691, is also prevalent among African (MAF=16%) 

and East Asian populations (MAF=7.6%), we tested its replication in both ancestries. For 

East Asian ancestry, we leveraged publicly available summary statistics from Vujkovic et 

al., 2020 [32] (46,511 T2D cases and 169,776 T2D controls, Neff=142,087). For African 

ancestry, the largest publicly available summary statistics dataset is from Vujkovic et al., 

2020 [32] ((31,446 T2D cases and 56,092 T2D controls, Neff=55,217)). To increase the 
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sample size and statistical power, we leveraged 4 additional datasets of African ancestry 

for which he had available individual-level data. The 4 cohorts are: the UKBB 

(Neff=2,516), the MGB[5] (Neff=1,078), the GERA [6] (N=1,563) and the All of Us [31] 

(N=6,395). Except for the All of Us cohort that has whole exome sequencing data, we 

performed quality control and imputed each cohort to the TOPMed panel, as described 

for the Latino analyses. We used high quality imputed variants to perform a type 2 

diabetes GWAS in each cohort, separately. Then, we meta-analyzed the results using the 

inverse of the corresponding squared standard errors with METAL. The Neff of the T2D 

GWAS African meta-analysis was 66,769. 

To aggregate the rs2891691 allelic effects across Latino, African, and East Asian 

ancestries, we performed a fixed-effects meta-analysis. Additionally, to allow for 

heterogeneity in allelic effects correlated with ancestry, which is not accommodated with 

a fixed-effects meta-analysis, we used MR-MEGA software [33]. It implements a multi-

ancestry meta-regression approach to model the allelic effects as a function of axes of 

the genetic variation, which are derived from a matrix of mean pairwise allele frequency 

differences between GWAS. Specifically for this analysis, we did not include the All of Us 

cohort, as we did not have available GWAS data (ESM Fig. 3). 

 

Association with type 2 diabetes-related phenotypes 

Given the lack of large-scale publicly available biobanks with Latino samples that may 

allow for better characterization of our novel signals, including those occurring at a low 

frequency, we assembled a collection of cohorts to perform QTL analyses focused on 46 

glycemic, anthropometric and lipid traits. In addition to 5 of the Latino cohorts analyzed in 
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the type 2 diabetes meta-analysis (i.e. SIGMA1, SIGMA2, SIGMA3, MXBB and MGB 

Biobank), we included three extra cohorts, which we also imputed to the TOPMed panel 

as described above: the METS Cohort, the Mexican Hypertriglyceridemia (MHTG) 

Cohort, as well as the genetically identified Latino samples from the UK Biobank 

(UKBB).[34] The MHTG study was reviewed and approved by the Ethics and Research 

Committees from the Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran 

and UCLA Institutional Review Board MIRB1. The UK Biobank has obtained ethical 

approval covering this study from the National Research Ethics Committee (REC 

reference 11/NW/0382). 

We also analyzed the Nightingale Nuclear Magnetic Resonance-based panel of 168 

metabolomic biomarkers in Latino samples from the UKBB. The panel provides measures 

spanning multiple pathways, including lipoprotein lipids, fatty acids, amino acids, ketone 

bodies and glycolysis metabolites. 

QTL analyses were conducted using high-quality TOPMed imputed genotypes and 

cleaned phenotypes from non-pregnant Latino adults. We used inverse rank normal 

transformation when the normality assumption was not met. Association analyses were 

done with a maximum of 26,400 adult Latino individuals depending on the trait, of whom 

19,459 were diabetes-free. We used SNPTEST and em method to run linear regressions 

assuming additive genetic models in each cohort, separately. Models were adjusted for 

sex, age, BMI, and 10 PCs. If the outcome was available in >1 cohort, we meta-analyzed 

the results using the fixed-effects inverse variance method. 

 

Credible sets 
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For each novel variant, we identified the set of variants with 99% probability of containing 

the causal variant. We used a Bayesian method[35], considering variants in LD with the 

lead variant (r2>0.1). We calculated LD using genetic data from 1,996 Hispanic/Latino 

samples from TOPMed Freeze 5b. For each region, an approximate Bayes factor (ABF) 

was calculated for each variant as follows: 

 

𝐴𝐵𝐹 = √1 − 𝑟 𝑒(
𝑟𝑧2

2
)
 

 

where 𝑟 = 0.04
(𝑆𝐸2 + 0.04)⁄  and 𝑧 =

𝛽
𝑆𝐸⁄  

 

The  and the SE are the estimated effect size and the corresponding standard error, 

respectively, that result from testing the variant association under a logistic regression 

model. 

The posterior probability for a variant being causal is equal to its ABF divided by the sum 

of all ABF values for the locus. Large values of the Bayes factor correspond to strong 

evidence for association. Therefore, variants are ranked by ABF in decreasing order, and 

the cumulative probability is calculated starting at the top of the list until the value exceeds 

99%. 

 

Genomic annotation of the 99% credible set variants 

We used the 99% credible sets for each novel signal to annotate their genomic effect 

using the VEP[36] (GRCh38.p7) and SNPNEXUS[37] applications. This allowed us to 
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gather information about gene and protein proximity, the effect of non-synonymous 

coding variants on protein function (SIFT, PolyPhen), non-coding variants scoring (CADD, 

FunSeq2), and the occurrence of regulatory elements. 

We used GTEx V8[38] to assess the influence of the variants in gene-level expression, 

as well as the TIGER Portal[39] for evaluating the gene-level expression in pancreatic 

islets and the Islet Gene View[40] for assessing the gene co-expression in human islets. 

We also assessed individual variant associations with a variety of common phenotypes 

and diseases using the Common Metabolic Disease Knowledge Portal (cmdgenkp.org. 

2021 Nov 15), as well as other resources, including web servers such as UK Biobank 

imputed with TOPMed (https://pheweb.org/UKB-TOPMed/) and FinnGen 

(https://r6.finngen.fi/). We also assessed gene-phenotype associations using the 

Genebass browser[41], a resource of exome-based association statistics across 281,852 

individuals with exome sequence data from the UKBB.[42] 

To obtain more evidence implicating the variants or their closest genes, with any disease 

or biological process, we used the Open Targets Platform, which aggregates a variety of 

resources and scores the collected information to contextualize and weigh the underlying 

evidence.[43] 

 

Expression of genes near novel variants 

We also assessed the expression levels of the genes  500 kb around the novel signals 

in human islets under different conditions pertaining to type 1 diabetes and type 2 

diabetes. We examined the following datasets: Type 1 diabetes dataset (FACS-purified 

β cells obtained from donors with type 1 diabetes) downloaded from GSE121863 (n=4 

https://pheweb.org/UKB-TOPMed/
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type 1 diabetes versus 12 controls)[44]; type 2 diabetes samples gathered and integrated 

from three cohorts: one generated by T2DSystems (TIGER Portal), and the other two 

downloaded from the Gene Expression Omnibus (GEO) database under accession 

numbers GSE159984 and GSE50244 (a total of n= 47 type 2 diabetes cases versus 228 

controls)[39, 45, 46]; brefeldin A-exposed human islets (0.1 μg/mL for 24h) downloaded 

from GEO under accession number GSE152615 (n=4)[47]; cytokine-exposed human 

islets (exposed to interferon-γ (1,000 U/ml) and interleukin-1β (50 U/ml) for 48 h or to 

interferon-α (2000 U/mL) for 2h, 8h, or 18h, n=5-6 per condition) from GSE108413 and 

GSE133221[48, 49]; human islets exposed to palmitate (0.5 mM), high glucose (22.2 mM) 

and palmitate plus high glucose for 48h (n=3-5 per condition) from GSE159984[45]. Gene 

expression differences between groups were assessed using p-values and adjusted p-

values (Benjamini Hochberg correction) determined by the Wald test using the DESeq2 

pipeline.[50] Transcript per million (TPM) was normalized by Salmon 1.4.0.[51] 

 

Polygenic scores 

Polygenic scoring using single ancestry summary statistics and LD reference panels was 

calculated via Bayesian Regression and Continuous Shrinkage priors as implemented in 

PRS-CS.[52] We used the UKBB LD reference panel and GWAS summary statistics from 

European[22], East Asian[21] and Latin American populations. GWAS Latino summary 

statistics were calculated using a meta-analysis with five of the discovery cohorts (i.e. 

SIGMA1, SIGMA2, SIGMA3, MGB, and GERA). Five phi shrinkage priors () were used 

(i.e. 1, 10-2, 10-4, 10-6 and the one automatically estimated from the data). Then, we used 
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the estimated posterior SNP effect sizes for each ancestry to calculate the PSs in a 

training cohort (i.e. MXBB). 

To evaluate the performance of the PSs, we first fitted a simple model that included sex, 

age and 10 PCs to account for population stratification. We then fitted models that 

additionally included the PS standardized scores. We calculated the variance explained 

in type 2 diabetes status for each model using the Nagelkerke pseudo r2. We repeated 

the same strategy by comparing the individuals above different percentile cutoffs with 

those in the interquartile of the PS. The best shrinkage prior was selected based on the 

larger incremental r2 of type 2 diabetes status in the MXBB training cohort. Then, the 

selected model was tested in a target cohort (i.e. the METS Cohort). 

Given that the ancestry-specific PSs were not highly correlated (r2<0.3), we also used 

PRS-CSx[53], a novel method that improves cross-population polygenic prediction by 

integrating GWAS summary statistics from multiple populations. For a given shrinkage 

prior, PRS-CSx returns posterior SNP effect size estimates for each discovery population, 

which we used to calculate the cross-population PS. First, we fitted a linear regression 

combining the standardized scores for each population in the MXBB training cohort, as 

follows: 

 

𝑦~𝐵∅,𝑃𝑜𝑝1𝑃𝑅𝑆∅,𝑃𝑜𝑝1 +  𝐵∅,𝑃𝑜𝑝2𝑃𝑅𝑆∅,𝑃𝑜𝑝2 + ⋯ +  𝐵∅,𝐾𝑃𝑅𝑆∅,𝐾 

 

where y is type 2 diabetes status, B,Pop is the regression coefficient for a given phi 

shrinkage prior and population and PS,Pop is the standardized PS for a given phi 

shrinkage prior and population. The phi shrinkage prior and corresponding regression 
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coefficients for the linear combination of PS that maximizes the incremental Nagelkerke 

pseudo R2 were used in the METS target cohort to evaluate the performance of the cross-

population PS. 

 

𝑃𝑅𝑆𝐶𝑆𝑥 =  �̂�∅,𝑃𝑜𝑝1𝑃𝑅𝑆∅,𝑃𝑜𝑝1 +  �̂�∅,𝑃𝑜𝑝2𝑃𝑅𝑆∅,𝑃𝑜𝑝2 + ⋯ +  �̂�∅,𝐾𝑃𝑅𝑆∅,𝐾 

 

We also calculated the AUC either for the covariates sex, age and 10 PCs or the cross-

population PS plus the covariates. The DeLong test was used to assess the difference 

between AUCs. We then calculated the OR per standard deviation in the cross-population 

PS, adjusting for sex, age and 10 PCs. Finally, we identified the high-risk individuals at 

the top 2.5%, 5% and 10% of the cross-population PS distribution and calculated the OR 

of the high-risk individuals versus the interquartile distribution.  

 

ESM FIGURES 

 

 

ESM Fig. 1. Individual global ancestry estimation in the discovery Latino cohorts. 

Global ancestry proportions were estimated after merging genotypes with 2,504 
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individuals from the 1000G phase 3, using ADMIXTURE software at K=5. Colors 

represent the super-continental ancestries: African (red), European (blue), East Asian 

(green) and South Asian (yellow). Grey color represents Admixed American ancestry. 

 

 

ESM Fig. 2. QQ plots of association statistics in GWAS. Plots show the calibration 

under the null and enrichment of T2D-associated variants in the tail for autosomes and 

chromosome X, stratifying by minor allele frequency. There was a minimal inflation of test 

statistics for variants with an allele frequency of 0.05 or higher, as indicated by a slight 

early departure between observed and expected P-values of the QQ plots (lambda=1.1). 

For low-frequency or rare variants, we observed deflated QQ plots, which is expected 

given the large sample sizes needed to reach statistical power. 
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ESM Fig. 3. Meta-analysis of the association of rs2891691 with type 2 diabetes 

across ancestries across Latino, African, and East Asian ancestries, where the 

variant is present. a. Forest plot of rs2891691 allelic effects across each ancestry, as 

well as the fixed-effects and MR-MEGA multi-ancestry meta-regression effects across 

ancestries. b. Axes of genetic variation separating the 11 T2D GWAS used to model the 

multi-ancestry allelic effects of rs2891691 with type 2 diabetes. 
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ESM Fig. 4. Regional plot of the association at novel ORC5/LHFPL3 locus 

conditional on two nearby T2D-associated signals. Two type 2 diabetes-associated 

signals near the rs2891691 variant have been reported in Europeans. One is located 

within the upstream RELN gene (a) (rs39328, b38 chr7:103,804,531)[22], while the other 

is located within the downstream LHFPL3 gene (b) (rs73184014, b38 

chr7:104,875,827)[32]. rs2891691 was not in LD with either of these variants (r2<0.0006), 

and neither of them was associated in our Latino meta-analysis (p=0.30 and p=0.07, 

respectively). After conditioning on each of them, rs2891691 remained significant (OR 
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[95% CI] =2.01 [1.59-2.53], p=3.110-9 and OR [95% CI] =2.01 [1.59-2.53], p=3.510-9, 

respectively). Red color intensity indicates r2 to the novel variant rs2891691. Blue color 

intensity indicates r2 to the conditional variants. 
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ESM Fig. 5. Expression levels of genes around the two Latino T2D-associated 

leading variants. Multiple tissue and human islets expression levels (TPM) from GTEx 

and TIGER portals. 

 

 

 

ESM Fig. 6. Expression levels of genes around the two Latino T2D-associated 

leading variants in human islets under different conditions. a. Expression levels 

(mean TPM+SD) of genes  500 Kb to ORC5 lead variant in human islets under control 

condition. b. Expression levels (mean TPM+SD) of genes  500 Kb to HDAC2 lead variant 

in human islets under control condition. c. Expression level of ORC5 and d. HDAC2 and 

MARCKS in human islets under different conditions (in orange, compared to control in 

green) and in islets of patients with T1D or T2D. Asterisks show the adjusted (Benjamini 

Hochberg correction) p value * <0.05; ** <0.01; *** <0.001. BFA brefeldin A, G high 



 23 

glucose, P palmitate, PG palmitate + high glucose; specific conditions and data sources 

are provided in the Methods section. 
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