

1

Supplementary materials:

LCAT : An isoform-sensitive error correction for transcriptome
sequencing long reads

Wufei Zhu1, Xingyu Liao2,*

1Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical

Medical Science, China Three Gorges University, Yichang 443000, P.R. China.

2Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University

of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.

* Corresponding author.

E-mail address: Xingyu_Liao@126.com (Xingyu Liao)

2

S1. README of LCAT

1) Introduction

LCAT (An isoform-sensitive error correction for transcriptome sequencing long reads) is

a wrapper algorithm of MECAT, to reduce the loss of isoform diversity while keeping

MECAT's error correction performance. The experimental results show that LCAT not

only can improve the quality of transcriptome sequencing long reads, but also keeps the

diversity of isoforms.

2) Installation

❖ Install LCAT

git clone https://github.com/luckylyw/LCAT.git

cd LCAT

make

cd ..

export PATH=/home/tool/LCAT/Linux-amd64/bin:$PATH

After installation, all the executables are found in LCAT/ Linux-amd64/bin.

❖ Install HDF5

wget

https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8/hdf5-1.8.15-patch1/src/hd

f5-1.8.15-patch1.tar.gz

tar xzvf hdf5-1.8.15-patch1.tar.gz

mkdir hdf5

cd hdf5-1.8.15-patch1

./configure --enable-cxx --prefix=/home/tool/hdf5

make

make install

cd ..

export HDF5_INCLUDE=/home/tool/hdf5/include

export HDF5_LIB=/home/tool/hdf5/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/tool/hdf5/lib

The header files of HDF5 are in hdf5/include. The library files of HDF5 are in hdf5/lib

❖ Install dextract

git clone https://github.com/PacificBiosciences/DEXTRACTOR.git

cp LCAT/dextract_makefile DEXTRACTOR

cd DEXTRACTOR

export PATH=/home/tool/DEXTRACTOR:$PATH

3

Edit line 7 in the dextractor makefile as follows:

${CC} $(CFLAGS) -I$(HDF5_INCLUDE) -L$(HDF5_LIB) -o dextract dextract.c sam.c bax.c

expr.c DB.c QV.c -lhdf5 -lz

make -f dextract_makefile

cd ..

 3) Quick Start

LCAT can be used to correct RNA long reads produced by PacBio and Nanopore

platforms. The options and commands for processing different types of data are

introduced below.

❖ Correcting Pacbio Data

 Step 1: Detect overlapping candidates using lcat2pw

lcat2pw x 0 -d SRR6238555.fastq -o SRR6238555.fastq.pm.can -w wrk_dir -t 40 -n

100 -a 100 -k 4 -g 0

Step 2: Correct the noisy RNA reads based on their pairwise overlapping

candidates using lcat2cns.

lcat2cns -x 0 -t 40 -p 100000 -a 100 -l 100 -r 0.6 -c 4 -k 10

SRR6238555.fastq.pm.can SRR6238555.fastq corrected_reads.fastq

❖ Correcting Nanopore Data

 Step 1: Detect overlapping candidates using lcat2pw

lcat2pw -x 1 -d ERR2401483_proccessed_normalid.fasta -o candidatex.txt -w

wrk_dir -t 40 -n 100 -a 100 -k 4 -g 0

Step 2: Correct the noisy RNA reads based on their pairwise overlapping

candidates using lcat2cns.

lcat2cns -x 0 -t 40 -p 100000 -a 100 -l 100 -r 0.6 -c 4 -k 10 candidatex.txt

ERR2401483_proccessed_normalid.fasta corrected_reads.fastq

4) Program Descriptions

The introduction of modules designed in LCAT is shown in the following sections,

which also include the options and output format of each module.

❖ lcat2pw module

 Input Format: FASTA/FASTQ files

 Commands:

lcat2pw [-j task] [-d dataset] [-o output] [-w working dir] [-t threads] [-n

candidates] [-g 0/1]

4

Options

-j <integer> job: 0 = seeding, 1 = align. Default: 0.

-d <string> reads file name.

-o <string> output file name.

-w <string> working folder name, will be created if not exist.

-t <integer> number of cput threads. Default: 1.

-n <integer> number of candidates for gapped extension. Default: 100.

-a <integer> minimum size of overlaps. Default: 2000 if x = 0, 500 if x = 1.

-k <integer> minimum number of k-mer match a matched block has. Default: k=

4 if x = 0; k=2 if x = 1.

-g <0/1> whether print gapped extension start point, 0 = no, 1 = yes. Default: 0.

-x <0/x> sequencing technology: 0 = pacbio, 1 = nanopore. Default: 0.

Output Format

the results are output in can format, each result of which occupies one line and

9 fields:

[A ID] [B ID] [A strand] [B strand] [A gapped start] [B gapped start] [voting

score] [A length] [B length]

If the -g option is set to 1, two more fields indicating the extension starting

points are given:

[A ID] [B ID] [% identity] [voting score] [A strand] [A start] [A end] [A length]

[B strand] [B start] [B end] [B length] [A ext start] [B ext start]

In the strand field, 0 stands for the forward strand and 1 stands for the reverse

strand. All the positions are zero-based and are based on the forward strand,

whatever which strand the sequence is mapped.

❖ lcat2cns module

 Input Format can format files.

 Commands:

lcat2cns [options] input reads output

Options

-x <0/1> sequencing platform: 0 = PACBIO, 1 = NANOPORE. Default: 0

-t <Integer> number of threads (CPUs)

-p <Integer> batch size that the reads will be partitioned

-r <Real> minimum mapping ratio

-a <Integer> minimum overlap size

-c <Integer> minimum coverage under consideration

-l <Integer> minimum length of corrected sequence

-k <Integer> number of partition files when partitioning overlap results (if <

0, then it will be set to system limit value)

-d <Real> identity threshold

5

-w <Integer> slide window length

-m <Real> minimum coverage rate of modify region

-h print usage info.

If 'x' is set to be '0' (pacbio), then the other options have the following default

values:

-t 1 -p 100000 -r 0.9 -a 2000 -c 6 -l 5000 -k 10 -d 0.65 -w 75 -m 0.05

If 'x' is set to be '1' (nanopore), then the other options have the following default

values:

-t 1 -p 100000 -r 0.4 -a 400 -c 6 -l 2000 -k 10 -d 0.65 -w 75 -m 0.05

Output Format

The corrected sequences are given in FASTA format. The header of each

corrected sequence consists of three components seperated by underlines:

>A_B_C_D

where A is the original read id,

B is the left-most effective position,

C is the right-most effective position,

D is the length of the corrected sequence,

by effective position we mean the position in the original sequence that is

covered by at least c (the argument to the option -c) reads.

S2. Commands and workflow used in evaluations

1) Introduction of evaluation tool

LR_EC_analyser stands for Long Read Error Correction analyser. It is a python script that

analyses the output of long reads error correctors, like LoRDEC, NaS, PBcR, proovread,

canu, daccord, LoRMA, MECAT, pbdagcon, etc. It does so by running AlignQC

(https://github.com/jason-weirather/AlignQC) on the BAMs built by the mapping the output

of error correction tools to a reference genome (using for example gmap or minimap2) and

parsing its output, and creating other custom plots, and then putting all the relevant

information in a HTML report. It also makes use of IGV.js (https://github.com/igvteam/igv.js)

for an in-depth gene and transcript analysis.

LR_EC_analyser can be applied to evaluate the extent to which existing long-read DNA error

correction methods are capable of correcting long reads. It not only reports classical

error-correction metrics but also the effect of correction on long read connectivity

(impacts the inference of transcript structure and exon coupling), gene families, isoform

diversity, bias toward the major isoform, and splice site detection.

https://github.com/jason-weirather/AlignQC
https://github.com/igvteam/igv.js

6

2) Usage of the evaluation tool

Command: run_LR_EC_analyser.py

[-h] --raw RAWBAM

[--self <self.bam> [<self.bam> ...]]

[--hybrid <hybrid.bam> [<hybrid.bam> ...]]

--genome GENOME --gtf GTF

[--paralogous PARALOGOUS] [-o OUTPUT]

[-t THREADS]

[--colours <self.colours> [<self.colours> ...]]

[--pdf] [--skip_bam_process] [--skip_alignqc]

[--skip_copying]

Long reads error corrector analyser.

Optional arguments:

-h, --help show this help message and exit

--raw RAWBAM The BAM file of the raw reads (i.e. the

uncorrected long reads) mapped to the genome

(preferably using gmap -n 10 -f samse).

--self <self.bam>

[<self.bam> ...]

BAM files of the reads output by the SELF

correctors mapped to the genome (preferably

using gmap -n 10 -f samse).

--hybrid <hybrid.bam>

[<hybrid.bam> ...]

BAM files of the reads output by the HYBRID

correctors mapped to the genome (preferably

using gmap -n 10 -f samse).

--genome GENOME The genome in Fasta file format.

--gtf GTF The transcriptome in GTF file format.

--paralogous

PARALOGOUS

A file where the first two columns denote

paralogous genes (see file Getting Paralogs.txt to

know how you can get this file).

-o OUTPUT Output folder

-t THREADS Number of threads to use

7

--colours <self.colours>

[<self.colours> ...]

A list of colours in hex encoding to use in the

plots. Colour shading is nice to show related

corrections (e.g. full-length, trimmed and split

outputs from a same tool),but unless the analysis is

on few tools, it is hard to find a nice automated

choice of colour shading. Hand-picking is more

laborious but produces better results.This

parameter allows you to control the colors of each

tool. The order of the tools are: raw -> hybrid ->

self.The hybrid and self ordering are given by

parameter --hybrid and --self.See an example of

this parameter in

https://gitlab.com/leoisl/LR_EC_a

nalyser/blob/master/scripts/command_line_paper.

sh.

--pdf Produce .pdf files of the plots in the

<output_folder>/plots directory.

--skip_bam_process Skips BAM processing (i.e. sorting and indexing

BAM files) - assume we had already done this.

--skip_alignqc Skips AlignQC calls - assume we had already

done this.

--skip_copying Skips copying genome and transcriptome to the

output folder - assume we had already done this.

3) Reference and annotation files for four species used in the evaluation

The long reads of Mouse, Zebra finch, Calypte anna, and Human were used in

our experiments. The mouse and human data are sequenced by nanopore

technology, while zebra finch and Calypte anna are sequenced by PacBio

technology (Table 1). In addition, the corresponding reference genomes and

annotation files were from the NCBI website (https://www.ncbi.nlm.nih.gov/)

and the Ensembl website (ftp://ftp.ensembl.org/pub/). The version number of

genomes and the annotation files are shown in Table 2.

8

Table 1. Details of raw reads

Type Mouse Zebra finch Calypte anna Human

data_id ERR2401483 zebra_subreads anna_subreads NA12878

technology Nanopore Pacbio Pacbio Nanopore

read_number 740776 4812464 4144838 15152101

base_number 1353969728 14168047486 11993639660 13938188440

mean_size(bp) 2011 2944 2893.6 932.9

minmum_size(bp) 76 50 50 48

maxmum_size(bp) 98376 59135 2934 16110

read_map_ratio 86.80% 95.22% 94.35% 97.46%

base_map_ratio 90.95% 86.41% 83.72% 83.49%

error_rate 13.81% 13.36% 12.56% 15.00%

mismatch_rate 3.96% 3.77% 3.31% 4.49%

insert_rate 1.87% 5.91% 5.49% 4.65%

delete_rate 7.99% 3.68% 3.77% 5.86%

Table 2. Reference genome and annotation files for four species

Type Reference genome/annotation file

mouse Mus_musculus.GRCm38.dna.primary_assembly.fa

Mus_musculus.GRCm38.87.gtf

zebra Finch Taeniopygia_guttata.bTaeGut1_v1.p.dna.toplevel.fa

Taeniopygia_guttata.bTaeGut1_v1.p.99.gtf

calypte anna GCF_000699085.1_ASM69908v1_genomic.fna.fa

GCF_000699085.1_ASM69908v1_genomic.gtf

human Homo_sapiens.GRCh38.dna.primary_assembly.fa

Homo_sapiens.GRCh38.94.gtf

4) Specific steps for evaluation

First, use minimap2 to align the original reads and error-corrected reads to the reference

genome to obtain the sam files, then use LR_EC_analyser to mark the gene and its isoform

structure to which each read belongs according to the sam files and gene and exon

information in the genome annotation files.

The number of isoforms of each gene in the original reads and the error-corrected reads were

counted separately, and the number of isoform changes was calculated by the difference

between the two. By counting the number of genes whose isoforms increase or decrease, the

degree of loss of gene isoforms after error correction is reflected.

The running commands of minimap2:

./minimap2 -ax map-pb ref.fa pacbio.fq.gz > aln.sam

./minimap2 -ax map-ont ref.fa ont.fq.gz > aln.sam

9

“ref.fa” is the reference file.

“pacbio.fq.gz” is the compressed file of pacbio reads.

“ont.fq.gz” is the compressed file of nanopore reads.

The running commands of samtools:

./samtools view -bS -@36 aln.sam > aln.bam

./samtools sort -@64 aln.bam > aln.sorted.bam

The running commands of LR_EC_analyser

python run_LR_EC_analyser.py --genome /data/ref.fa --gtf /data/annotation.gtf --raw

/data/aln.sorted.bam -o /output/

“ref.fa” is the reference file.

“annotation.gtf” is the genome annotation file.

“aln.sorted.bam” is the bam file after sorted.

