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Screening for extranodal extension with deep learning: evaluation in ECOG-ACRIN 
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S1. Supplemental Methods 
 
E3311 Lymph Node Segmentation and Labeling 
CT scans were reviewed in conjunction with the LND pathology reports and individual lymph 
nodes were manually segmented and labeled as negative, nodal metastasis (NM), or nodal 
metastasis with extranodal extension (ENE) per a standard operating procedure described in 
detail previously.1 In summary, a lymph node was only classified into the above categories if it 
could be deduced from correlative review of the pathology report that, (1) ENE and/or NM was 
confirmed present, and (2) the CT-identified LN matched in location, anatomic level, and size 
as described in the pathology report. For this study, the lymph node with largest short-axis 
diameter was segmented in every study, so long as a certain pathologic correlation could be 
made. The node with longest SAD radiographically was annotated by comparison with the 
documented size of the corresponding pathologic node at the corresponding lymph node 
level. 
 
E3311 pathology reports generally delineate the nodal level and the size of the lymph node 
where ENE is present (i.e. “extranodal extension is present at level IIA, node measuring 2.5 
cm in diameter”), which could be correlated back to the CT scan. For the purposes of 
annotation, the largest node was identified via measuring short-axis diameter and then was 
compared to the pathology report – if there was corresponding lymph node on pathology 
report that matched in anatomic level and size, then labels (benign vs positive and no ENE vs 
+ENE) was assigned with certainty. This process was then iterated for an additional 1-2 lymph 
nodes of varying smaller sizes that had certain pathologic correlations. In patients where no 
ENE was present in the entire specimen, “no ENE” could also be ascribed to the segmented 
nodes with certainty. For the smaller 1-2 lymph nodes, in rare cases when pathologic lymph 
node size was not documented, but there was only one node in a specified station with 
documented ENE, and that node corresponded to a radiographic node with SAD ≥10 mm, 
then a certain annotation could be made. If there was ambiguity in the pathology report, or 
stations with multiple positive nodes and no clear way to distinguish them (via size or lymph 
node level), then the node would not be segmented or annotated. An example of an 
ambiguous case would be one with two positive nodes in the same nodal level, one with ENE, 
one without, and the node with ENE was either a) not specified by size or b) had equivalent 
size as the other positive node. In addition to presence or absence of ENE, the extent of ENE 
was recorded (in millimeters) when available. The initial segmentation was performed by 
B.H.K. and then each segmentation was reviewed for accuracy by each radiologist in the 
study, and necessary changes were made prior to model testing. Segmentations and reader 
review were performed using the open-source software 3D Slicer v4.10 (Boston, MA).2 Scans 
were reviewed in axial, sagittal, and coronal planes. In all, 313 E3311 lymph nodes were 
segmented and annotated, and all of these were included in the primary study analysis. 
 
Image preprocessing and deep learning algorithm training pipeline protocol 
We utilized the DualNet architecture, training heuristics, and hyperparameters as described in 
detail in prior work.1 All preprocessing and training were performed using Python v3.8.5. 
Neural network training was done with Tensorflow v2.4 utilizing Keras v2.2. The algorithm 
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pipeline was the same as used in prior work1, with the following modifications that were made 
a priori for this study: to prevent the reliance on commercial software for lymph node 
segmentation and reader evaluation (as done in prior work with OsirixMD [Geneva, 
Switzerland]), we utilized the open-source, well-established 3D Slicer software (Boston, MA; 
slicer.org) for lymph node segmentation, converting losslessly from DICOM to Nearly Raw 
Rasterized Data (nrrd) format during curation. Additionally, given heterogeneity in slice 
thickness within the E3311 dataset (given the numerous participation institutions), we elected 
to resample all lymph node data to 1 x 1 x 3 mm voxel spacing. 
The steps for the protocol are summarized as follows for reference and reproducibility: 

1. Raw DICOM image conversion to NRRD utilizing Pydicom package and Simple 
ITK 

2. Lymph node segmentation in 3D Slicer saved to NRRD 
3. Interpolation to 1 (x) x 1 (y) x 3 (z) mm spacing with 10 mm dilation to 

encompass surrounding lymph node tissue environment 
4. Centering and cropping to a 118 x 118 x 32 voxel array (Box Input) 
5. Hounsfield Unit centering and normalization to unit variance with soft tissue 

windowing 
6. Derivation of second input array (Small Input) via cropping to the edge of the 

voxel region of interest and rescaling the Box Input to 32 x 32 x32  
 
 (example)    

   
 
 
 
 
 

 
7. Data splitting randomly 80% / 20% for training and tuning, stratified by node 

category (benign, positive without ENE, or ENE) 
8. Random upsampling of training and tuning data for the ENE (minority) class 2:1 

to improve tuning class balance  
9. Passing dual input arrays from training set into a custom data generator for 

augmentation 
10. Training and validation data are passed into DualNet (Figure S5) for training. 

Training was performed on a single RTX Titan 24 GB Graphical Processing Unit 
(Nvidia; Santa Clara, CA). 

 
Training Details 
To harness the hypothesized benefit of increasing training data, we combined the three 
datasets (Yale, Sinai, TCGA-TCIA), described in detail in our prior work1,3 (Table S2). 
Following curation of a combined dataset, and converting segmentations and images to 3D 
NRRD format, there were a total of 797 valid lymph nodes with annotated ground truth 
available for the development set: 605 from the Yale dataset, 138 from the Mount Sinai 

Box Input (example) Small Input (example) 
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dataset, and 54 from TCGA-TCIA. There was some attrition from the Yale and TCGA-TCIA 
datasets from our prior work, given inconsistent metadata that corrupted the conversion to 
NRRD when shifting to the 3D Slicer-pipeline with Z-axis resampling. Therefore, these nodes 
were excluded for practical reasons. The remaining data was split into training (80%, n=637) 
and internal validation (20%, n=160) sets of nodes, stratified by nodal category (benign, 
metastatic without ENE, or ENE). Data augmentation for the present study was performed 
with a real-time data generator utilizing a series of affine transformations, including random 
rotation, horizontal and vertical flipping. An additional augmentation feature was developed to 
mimic variability in human contouring of lymph nodes by introducing random erosions and 
dilations across the lymph node region of interest on the order of several millimeters. We 
hypothesized that this would increase generalizability of the algorithm at test time. Together, 
real-time augmentation would be expected to generate >60x individual node representations 
over the course of training (n >47,820). The model was specified to train for a maximum of 
300 epochs with early stopping once validation loss (i.e. binary cross-entropy loss) ceased to 
improve for 20 epochs. Learning rate began at 0.001 and was halved if loss plateaued for 10 
epochs. The network was trained on an in-house RTX TITAN GPU (Nvidia, Santa Clara, CA) 
using Tensorflow v2.4. Testing was performed in a Python v3.6.4 environment on both a 
desktop 2.6 GHz Intel Core i5 computer processing unit (CPU) (Apple; Cupertino, CA) and a 
Tesla V100 GPU (Nvidia; Santa Clara, CA). Upon execution of training and validation, the 
DLA obtained minimized loss at epoch 130 (Figure S6) and was locked at this point for further 
testing. AUC on the internal validation set at this point was 0.93. 

 
Algorithm Calibration 
Given the increasing recognition that neural networks outputs can be prone to miscalibration, 
we applied temperature scaling to the internal validation predicted probabilities.4 Temperature 
scaling, an extension of Platt Scaling5, is a widely used method whereby uncalibrated 
predictions are used as features for a logistic regression model, which was, importantly, 
trained on the internal validation set (n=160) to return the calibrated probabilities (without 
actually retraining any model parameters), using the following transform, which was optimized 
with respect to the negative log likelihood: 

 
This transform was then applied to the E3311 test set predicted probabilities and calibration 
plots were plotted for the original predictions and the calibrated predictions. Temperature 
scaling, by definition, does not affect model accuracy or discriminatory performance. 
 
Expected Calibration Error (ECE) was calculated via the following equation: 

 
Where n is the number of samples, and the difference between the acc and conf for a given 
bin represents the calibration gap. Temperature scaling was implemented via the Python 
package, NetCal (https://pypi.org/project/netcal/). 
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Contour Variance 
The source code for the contour variance custom script can be found in the 
“contour_variance.py” file at https://github.com/bhkann/DualNet-ENE 
 
Ancillary Analyses 
 
To determine if DLA prediction on the scan’s largest node could be a surrogate for patient-
level ENE, we evaluated DLA prediction on the largest node to predict patient-level pathologic 
diagnosis of ENE (at any node) and compared these results to reader predictions of patient-
level ENE following review of the entire scan. To determine if the DLA might augment 
radiologist performance, we conducted a simulated experiment whereby DLA predictions were 
used to augment uncertain reader Likert scores of 2 and 3 by substituting the DLA prediction 
(from the model with optimized YI threshold) in place of the reader prediction in those 
instances. 
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doi:10.1016/j.mri.2012.05.001 
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S2. Model Development and Training Dataset from Combined Model Dataset: Study 
Patient and Lymph Node Characteristics 

Abbreviations: ENE = extranodal extension 
For the purposes of this study, the DualNet model was retrained after adding the Mount Sinai and TCIA-TCGA 
(The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC)) datasets to the original Yale 
training data. Patients with non-oropharyngeal carcinoma who did not undergo HPV or p16 testing were coded as 
negative, given the very low incidence of HPV/p16 positive tumors in these disease sites.  Abbreviations: ENE = 
extranodal extension. For further detail, see “Methods” sections from 1) Kann BH, Aneja S, Loganadane GV, et al. 
Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep 
Learning Neural Networks. Scientific Reports. 2018;8(1):14036. doi:10.1038/s41598-018-32441-y ; and 2) Kann 
BH, Hicks DF, Payabvash S, Mahajan A, Du J, Gupta V, Park HS, Yu JB, Yarbrough WG, Burtness BA, Husain ZA, 
Aneja S. Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in 
Head and Neck Squamous Cell Carcinoma. J Clin Oncol. 2020 Apr 20;38(12):1304-1311. doi: 
10.1200/JCO.19.02031. 

 
 
 

 Model Development Combined Dataset 
 Yale Mount Sinai  TCIA-TCGA 
Patient Cohort Patients 

(N=270) 
Lymph 
Nodes 

(n=653) 

Patients 
(N=82) 

Lymph 
Nodes 

(n=130) 

Patients 
(N=62) 

Lymph 
Nodes 
(n=70) 

Primary Cancer Site N (%) n (%) N (%) n (%) N (%) n (%) 
    Oropharynx 72 (26.7) 178 (27.3) 41 (50.0) 71 (54.6) 1 (1.6) 1 (1.4) 
    Oral Cavity 106 (39.3) 251 (38.4) 32 (39.0) 44 (33.8) 51 (82.3) 59 (84.3) 
    Larynx/Hypopharynx/   
    Nasopharynx 

48 (17.8) 126 (19.3) 9 (11.0) 15 (11.6) 10 (16.1) 10 (14.3) 

    Salivary Gland 18 (6.7) 36 (5.5) 0 (0) 0 (0) 0 (0) 0 (0) 
    Unknown/Other 26 (9.6) 62 (9.5) 0 (0) 0 (0) 0 (0) 0 (0) 
Pathologic T-stage       
    T0 5 (1.9) 17 (2.6) 0 (0) 0 (0) 0 (0) 0 (0) 
    T1 36 (13.3) 91 (13.9) 25 (30.5) 38 (29.2) 5 (8.1) 5 (7.1) 
    T2 72 (26.7) 172 (26.3) 32 (39.0) 53 (40.8) 16 (25.8) 18 (25.7) 
    T3 37 (13.7) 94 (14.4) 9 (11.0) 15 (11.5) 19 (30.6) 22 (31.4) 
    T4 44 (16.3) 107 (16.4) 16 (19.5) 24 (18.5) 21 (33.9) 24 (34.4) 
    Unknown 76 (28.2) 172 (26.3) 0 (0) 0 (0) 1(1.6) 1 (1.4) 
Pathologic N-stage       
    N0 83 (30.7) 185 (28.3) 17 (20.7) 20 (15.4) 24 (38.7) 28 (40.0) 
    N1 38 (14.1) 82 (12.6) 11 (13.4) 17 (13.1) 12 (19.4) 14 (20.0) 
    N2 76 (28.2) 209 (32.0) 53 (64.6) 92 (72.7) 24 (38.7) 26 (37.1) 
    N3 9 (3.3) 33 (5.1) 1 (1.2) 1 (0.8) 0 (0) 0 (0) 
    Unknown 64 (23.7) 144 (22.0) 0 (0) 0 (0) 2 (3.2) 2 (2.9) 
HPV/p16 Status       
    Negative 188 (69.6) 454 (69.5) 44 (53.7) 67 (51.5) 6 (9.7) 7 (10.0) 
    Positive 76 (28.2) 185 (28.3) 38 (46.3) 63 (48.5) 0 (0) 0 (0) 
    Unknown 6 (2.2) 14 (2.2) 0 (0) 0 (0) 56 (90.3) 53 (90.0) 

Lymph Node Pathology      
Negative 380 (58.2) - 55 (42.3) - 29 (41.4) 

Nodal Metastasis, ENE(-) 153 (23.4) - 54 (41.5) - 46 (34.3) 
Node Metastasis, ENE(+) 120 (18.4) - 21 (16.2) - 17 (24.3) 
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S3. CT Scans and Image Acquisition 
 
All scans, pathology reports, and EHR data were de-identified in accordance with Health 
Insurance Portability and Accountability Act prior to transfer to the study investigators. 
 
CT Images were obtained in their entirety as de-identified, decompressed Digital 
Imaging and Communications in Medicine (DICOM) files. E3311 Protocol stipulated that 
diagnostic imaging must have been performed <30 days prior to trial registration, and 
surgery was to be performed <4 weeks after registration. Patients were specifically 
excluded if there was evidence of extensive or “matted/fixed” pathologic adenopathy on 
preoperative imaging. Of 251 study scans initially obtained, 187 were uncorrupted CT 
scans with contrast enhancement with linked pathology reports, and for 178 a certain 
correlation was able to be made in regards to ENE. Of 178 scans included in the study, 
46 institutions were represented, with a median of 3 patients per institution (range: 1 – 
17). Scans were performed on 22 different CT models. 
 
S3A. E3311 CT Scanner Characteristics 
CT Scanner Manufacturers and Models Used for Study Patients 

Manufacturer Model Patients (n=178) 
   (n)          (%) 

GE Medical Systems LightSpeed 45 25.3% 
 Discovery 31 17.4% 
 BrightSpeed 2 1.1% 
 Optima 7 3.9% 
 Revolution 8 4.5% 
 SafeCT 1 0.6% 
 HiSpeed 1 0.6% 
 Other 1 0.6% 
Siemens SOMATOM 31 17.4% 
 Biograph 2 1.1% 
 Perspective 2 1.1% 
 Sensation 11 6.2% 
 Other 6 3.4% 
Philips Brilliance 12 6.7% 
 Gemini 3 1.7% 
 iCT 1 0.6% 
 Ingenuity 2 1.1% 
 Intellispace 1 0.6% 
NMS NeuViz 1 0.6% 
Toshiba Aquilion 8 4.5% 
Velocity Medical Solutions VelocityAI 1 0.6% 
Other  1 0.6% 
 Total 178 100% 
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CT Scanner Specifications and Deviation Tables 
a) Scan Characteristic Deviation Table 

Scan Characteristic Mean Median Mode 
Range 

(min – max) 
Standard 
Deviation 

Pixel Size (cm) 0.52 0.49 0.49 (0.35 –1.15) 0.13 
Slice Thickness (cm) 2.57 2.5 2.5 (.625 – 5.0) 0.65 
Tube Voltage (kVp) 117.6 120.0 120.0 (80.0 – 140.0) 10.42 

 
b) Scan Characteristic Distribution 

Slice Thickness (cm) n = 82  (%) 
5.0 2 1.1% 
4.0 3  1.7% 
3.75 3  1.7% 
3.0 58  32.6% 
2.5 81  45.5% 
2.0 16  9.0% 
1.25 8 4.5% 
1.0 2 1.1% 
0.75 2 1.1% 
0.625 3 1.7% 
Axial Spatial 
Resolution (pixels)   

512 x 512 178 100% 
IV Contrast Bolus   
Optiray 300  5 2.8% 
Omnipaque  78  43.8% 
Isovue 370 16  9.0% 
Visipaque 1  0.56% 
Unknown 78  43.8% 
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S4A-B. Lymph Node Characteristics for E3311 Dataset 

 
 
Figure S4A-B. Short Axis Diameter (SAD) by ENE status among all nodes (n=313). (A) 
Median SAD was 7 mm (4-14 mm) for benign, 20 mm (6-37 mm) for malignant without 
ENE, and 24 mm (12-42 mm) for ENE (p<0.001). (B) Of ENE nodes (n=71), SAD for 
ENE ≤1 mm, >1 mm, and unspecified ENE was each 25, 25, and 24 mm, respectively 
(p=.60).  

A 

B 

≤1 mm 
>1 mm 
Unspecified 
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S4C. Number of nodes segmented and annotated per E3311 scan (n=178 scans, 313 
lymph nodes) 
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Figure S5. Deep 
Learning Algorithm 
(DualNet) Architecture 
Schematic 
Dimension-preserving 
input “BoxNet” DLA (A) 
is merged with size-
invariant “SmallNet” DLA 
(B) to form the DualNet 
input (C) with model 
output.  The model has 
the capability to merge 
HPV/p16-status (D), 
though this was found in 
prior work to not improve 
performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(B) 

(A) 

(C) 
(D) 
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S6. DLA Retraining on Combined Yale-Sinai-TCIA dataset (n=797) 
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S7. Sample Size Calculation for AUC Comparison 
 
We calculated the necessary sample size of labeled lymph nodes for each dataset to 
evaluate the study’s primary endpoint, area under curve (AUC) of the receiver operating 
characteristic (ROC) curve, which plots sensitivity versus the false-positive-rate (FPR). 
We calculated sample size to detect a Type I error of 5% with 80% Power. We assumed 
a null hypothesis of AUC 0.70 (based on existing literature and prior work),1,6,7 an 
alternative hypothesis of AUC 0.85 (based on our prior external validation results),3 and 
a ratio of negative to ENE lymph nodes of 4:1 (based on our prior work), yielding a 
sample of at least 155 lymph nodes needed. Power calculation was performed using 
MedCalc® v19 (MedCalc Software, Belgium). 
 
1.  Kann BH, Aneja S, Loganadane GV, et al. Pretreatment Identification of Head and Neck 

Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks. 
Scientific Reports. 2018;8(1):14036. doi:10.1038/s41598-018-32441-y 

2.  Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform 
for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30(9):1323-1341. 
doi:10.1016/j.mri.2012.05.001 

3.  Kann BH, Hicks DF, Payabvash S, et al. Multi-Institutional Validation of Deep Learning for 
Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell 
Carcinoma. Journal of Clinical Oncology. 2020;38(12):1304-1311. doi:10.1200/jco.19.02031 

4.  Guo C, Pleiss G, Sun Y, Weinberger KQ. On Calibration of Modern Neural Networks. 
arXiv:170604599 [cs]. Published online August 3, 2017. Accessed February 5, 2020. 
http://arxiv.org/abs/1706.04599 

5.  Platt JC. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized 
Likelihood Methods. In: Advances in Large Margin Classifiers. MIT Press; 1999:61-74. 

6.  Maxwell JH, Rath TJ, Byrd JK, et al. Accuracy of computed tomography to predict 
extracapsular spread in p16-positive squamous cell carcinoma. Laryngoscope. 
2015;125(7):1613-1618. doi:10.1002/lary.25140 

7.  Chai RL, Rath TJ, Johnson JT, et al. Accuracy of computed tomography in the prediction of 
extracapsular spread of lymph node metastases in squamous cell carcinoma of the head and 
neck. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1187-1194. 
doi:10.1001/jamaoto.2013.4491 
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S8. F1 Score, Positive Predictive Value, Negative Predictive Value for DLA and 
Radiologists 
  

ENE Overall 
  

ENE >1 mm 
  

 
Threshold F1 Score PPV NPV F1 Score PPV NPV 

DLA 
 
 
  

Best YI 
 
FPR<=30% 
 
FPR<=20% 
 
FPR<=10% 

.62 
 
.62 
 
.60 
 
.53 

.48 
 
.47 
 
.51 
 
.58 

.96 
 
.96 
 
.91 
 
.86 

.53 
 
.50 
 
.51 
 
.49 

.37 
 
.35 
 
.40 
 
.49 

.98 
 
.96 
 
.93 
 
.90 

R1 
 

.48 .50 .85 .44 .39 .90 

R2 
 

.53 .45 .88 .48 .36 .93 

R3 
 

.49 .33 .97 .40 .25 1.0 

R4 
 

.43 .41 .83 .37 .30 .88 
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S9.  
a) ENE identification performance among lymph nodes with short-axis diameter ≥10 

mm (n=204 nodes) 
 

AUC (95% CI) Sensitivity Specificity Accuracy 

DLA .74 (.67 - .81) .63 .72 .66 

R1 .61 (.54 - .68) .46 .76 .66 

R2 .62 (.55 - .69) .63 .61 .62 

R3 .55 (.51 - .59) .96 .14 .43 

R4 .55 (.48 - .62) .45 .65 .58 
Sensitivity, Specificity, and Accuracy scores for DLA reflect use of threshold with the 
highest Youden Index. 
 

b) ENE identification performance among lymph nodes with short-axis diameter 
≥20 mm (n=131 nodes) and ≥30 mm (n=23 nodes) 

 
AUC (95% CI) 

 SAD ≥20 mm SAD ≥ 30 mm 

DLA .65 (.55 - .74) .78 (.58 - .97) 

R1 .58 (.49 - .66) .61 (.40 - .82) 

R2 .59 (.50 - .67) .57 (.39 - .75) 

R3 .50 (.48 - .53) .50 [na – na]* 

R4 .50 (.42 - .59) .54 (.34 - .73) 
*For R3, all nodes were predicted ENE in this subgroup 

 
S10. Partial AUCs for ENE Prediction 
Max False Positive Rate Partial AUC 

.50 .81 

.40 .78 

.30 .74 

.20 .69 

.10 .62 
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S11. Simulated patient-level ENE prediction based on analysis of only the largest 
positive node (n=178 nodes and patients). Scan-level ENE performance for 
radiologists (R1-4) was based on the overall impression of likelihood of ENE at 
the scan-level.  
 

AUC (95% CI) 

DLA .68 (.60 - .76) 

R1 .59 (.51 - .66) 

R2 .62 (.55 - .69) 

R3 .54 (.50 - .58) 

R4 .54 (.46 - .61) 
 
 
S12. ENE predictive performance on the largest node for each scan (n=178 
nodes). 
 

AUC (95% CI) 

DLA .70 (.62 - .78) 

R1 .57 (.50 - .64) 

R2 .63 (.55 - .70) 

R3 .54 (.50 - .58) 

R4 .55 (.47 - .62) 
 
 
S13. ENE predictive performance for ENE < 1 mm (excluding nodes with 
unspecified or ≥ 1 mm ENE) (n=262 nodes). 
 
 

AUC (95% CI) 

DLA .81 (.73 - .88) 

R1 .61 (.50 - .72) 

R2 .61 (.50 - .72) 

R3 .64 (.56 - .73) 

R4 .60 (.49 - .72) 
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Figure S14. Confusion matrices demonstrating specificity (top left), false positive rate 
(top right), false negative rate (bottom left), and sensitivity (bottom right) results for ENE 
prediction for the DLA and R1-4, with percentages (A) and raw results (B). 
 
 
S15. Radiologist performance for ENE prediction before and after DLA-assistance. 

ENE Overall 
 

AUC Sensitivity Specificity 

 Original  With DLA 
Assistance 

Original With DLA 
Assistance 

Original With DLA 
Assistance 

R1 .66 .81 .46 .90 (+.47) .86 .72 (-.14) 

R2 .71 .81 .63 .90 (+.27) .78 .71 (-.07) 

R3 .70 .80 .96 .90 (-.06) .43 .71 (+.28) 

R4 .63  .80 .45 .89 (+.44) .81 .72 (-.09) 
In this simulated experiment, DLA predictions were use in place of radiologist predictions 
only when nodes were assigned an uncertain Likert score of 2 or 3. Generally, sensitivity 
was increased (+47%, +27%, -6%, +44% for R1-4, respectively), at the expense of 
specificity (-14%, -7%, +28%, -9% for R1-4, respectively), with the exception being R3. 
Kappa inter-rater agreement improved from 0.32 to 0.97. 
 
S16. Sensitivity analysis for >1 mm ENE excluding nodes with uncertain extent of 
ENE (n=301 nodes). 
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S17. Robustness and Adversarial Experiments 
S17A. Robustness Studies. Ten tests were performed iteratively for each adversarial 
input experiment, contour variation (1) and Gaussian noise input (2). Contours were 
varied randomly throughout the periphery from 1-10 mm. Guassian noise in a range of 
+/- 5 HU max was added to each voxel, which had been previously shown to degrade 
performance in medical imaging deep learning applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
S17B. Representative examples of contour variation. Left column represents the original 
lymph node region of interest (segmented lymph node plus a uniform dilation of 10 mm). 
Columns 2-4 represent random contour variance to mimic a real-world scenario of inter-
operator variability in contour input. 

 
 

Test 
No. 

ENE AUC 
Contour 
Variance 

ENE AUC 
Gaussian Noise (+/- 5 HU) 

1 0.861 0.854 
2 0.857 0.852 
3 0.856 0.851 
4 0.859 0.854 
5 0.867 0.852 
6 0.864 0.853 
7 0.865 0.853 
8 0.858 0.853 

9 0.860 0.852                               
10 0.856 0.853 
Mean 0.860 +/- 

.004 
0.853 

Original Test AUC: 0.857 
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S17C. DLA and Radiologist Performance with Scan Slice Thickness Variation 
 

 
 
 
 
 
S17D. DLA and Radiologist Performance by Scanner Manufacturer  
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Figure S18. Gradient-weighted Class Activation Maps (GradCAMs) for two representative lymph 
nodes.GradCAMs generate a heat map, whereby the “hottest” pixels (red: hot; blue: cold) represent 
regions that are most influential in determining a particular image class - in this case - extranodal extension. 
These representative cases demonstrate importance of the nodal periphery in DLA ENE classification.  

SmallNet Input	 BoxNet Input	

Node 2 

BoxNet Input	 SmallNet Input	

Node 1 
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S18. Educational Tool for Radiologists with Visual and Descriptive CT Features 
Associated with ENE 
 

CT Feature and Description Example 
1. Perinodal fat stranding  
 
Metastatic lymph node (N) with infiltration 
into adjacent fat anteriorly (solid arrow) 
and muscle posteriorly (dashed arrow). 
Note multiple regions of hypoattenuating 
central necrosis. A primary tumor (T) at the 
left base of tongue is also noted. 

 
2. Absent perinodal fat planes 

Lymph node (N) with absent perinodal fat 
plane (arrow) to the adjacent muscle (M). 

 

 
3. Lobular contours 

Lymph node (N) with lobular contours 
delineated by indentations at the margins 
(arrows). 
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4. Irregular nodal margins 
 
Lymph	node	(N)	with	margins	that	are	
irregular,	spiculated	and	indistinct	
(arrow).	
 

 
5. Central necrosis 

Lymph node (N) with significant intranodal 
central low attenuation or cystic 
appearance. 

 

 
6. Matted/ conglomerate nodes 

Nodal matting, defined as conglomerate of 
3 or more lymph nodes (N) with an absence 
of internodal fat planes. Note a few also 
demonstrate central necrosis. 

 

 
7.  Size > 30 mm 
 
Measured in greatest axial dimension, from 
outer margin to outer margin (double 
arrows). 
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S19.	Post-Study	Radiologist	Survey	
	

  
1. How many years have you been in practice as a diagnostic radiologist? (including 

fellowship, but excluding residency):  
  

R1: 6 
R2: 4 
R3: 17 
R4: 11 

2. How challenging do you find the task of ENE identification for head and neck cancer 
patients on diagnostic CT scan overall (i.e. on a routine clinical basis)? (1- “not 
challenging at all” to 5- “extremely challenging”): 

R1: 3 
R2: 4 
R3: 3 
R4: 4 

3. How challenging did you find the task of ENE identification on the study patients? (1- 
“not challenging at all” to 5- “extremely challenging”): 

R1: 3 
R2: 4 
R3: 3 
R4: 4 
 

4. Compared to your head and neck radiology peers, do you think you tend to be 
conservative (under-calling) or aggressive (over-calling) in your identification of ENE 
on CT? (1-“conservative/under-calling” to 5-“aggressive/over-calling”; 3=neutral):  

R1: 1 
R2: 2 
R3: 4 
R4: 2 

5. Do you think the educational tool provided for the study helped improve your ability 
to predict ENE for the study (i.e. improved your accuracy)? (1- “not at all” to 5- 
“extremely helpful”): 
R1: 4 
R2: 2 
R3: 3 
R4: 1 
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S20. E3311 Trial Arm Assignment for Study Cohort 
E3311 Arm Study Cohort 

N = 178 patients 
E3311 Total Population 

N = 359 
A (low-risk, T1-2N0-1) 2 (1%) 38 (11%) 
B (intermediate-risk; de-
escalated radiotherapy) 

56 (31%) 100 (28%) 

C (intermediate-risk; 
standard radiotherapy) 

63 (35%) 108 (30%) 

D (high-risk, ≥1 mm ENE, 
positive margin, or >4 
metastatic lymph nodes) 

57 (32%) 113 (31%) 

 


