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1 Case study into comorbidities of severe COVID-19
Owing to the known comorbidities of severe COVID-19 with hypertension, diabetes mellitus,
and coronary heart disease, Feng et al. (2022) identified eleven candidate genes that seem to
play a role in all four conditions (TLR4, NLRP3, MBL2, IL6, IL1RN, IL1B, CX3CR1, CCR5,
AGT, ACE, and F2). To elucidate potential mechanisms underlying these comorbidities, we ran
ROBUST-Web with the genes identified by Feng et al. (2022) as input seeds. We configured
ROBUST-Web to use the in-built BioGRID protein-protein interaction (PPI) network (Oughtred
et al., 2019), bait-usage-based study bias scores with γ = 1 (note that this is the default in the web
interface), and all other hyper-parameters set to their default values.

Supplementary Figure 1. COVID-19 disease module computed by ROBUST-Web.

The resulting module is shown in Supplementary Figure 1. In addition to the eleven seeds, it
contains 60 newly discovered proteins. Running DIGEST (Adamowicz et al., 2022) on the newly
discovered targets to assess the functional coherence of the computed module, we obtained highly
significant empirical P-values, indicating that the discovered targets might indeed be involved in
a joint mechanism (Supplementary Figure 2).

Subsequently, we ran the TrustRank algorithm available via ROBUST-Web’s “Drug Search”
function to uncover potential drug repurposing candidates targeting the newly discovered pro-
teins. Among the top 20 returned drugs, six drugs target the tissue-type plasminogen activator
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(A) Empirical P-values obtained from DIGEST
when run on targets discovered by ROBUST-
Web.

(B) Distribution mean Jaccard indices of GO cel-
lular component annotations of discovered tar-
gets (red bar) in comparison to a random back-
ground distribution (yellow bars).

Supplementary Figure 2. Results of DIGEST (Adamowicz et al., 2022) validation of functional
coherence of the newly discovered targets contained in the COVID-19 disease module shown in
Supplementary Figure 1.

(PLAT): ximelagatran, melagatran, dabigatran, dabigatran etexilate, argatroban, and aminocaproic
acid. Except for aminocaproic acid, all of these drugs also target prothrombin (F2), which is one
of the input seeds.

PLAT is associated with the breakdown of blood clots. Zuo et al. (2021) have reported strong
correlations between elevated PLAT levels and COVID-19-related hospitalizations, worse respira-
tory status, mortality and ex vivo clotlysis, and spontaneous fibrinolysis. The protein prothrombin
encoded by F2 is associated with blood coagulation in humans (Royle et al., 1987; Degen and
Davie, 1987). A closer look at the five drugs which target PLAT and F2 further strengthens the
link to thrombosis and coagulation: Dabigatran etexilate is an FDA-approved oral thrombin in-
hibitor administered for the prevention of stroke in patients with atrial fibrillation (Legrand et al.,
2011; Connolly et al., 2009). Ximelagatran is an oral thrombin inhibitor mostly used for the pre-
vention of venous thromboembolism after hip or knee replacement (Evans et al., 2004; Eriksson
et al., 2002b,a; Heit et al., 2001). Argatroban is a direct thrombin inhibitor used to treat a wide
range of thrombotic disorders (McKeage and Plosker, 2001; Dhillon, 2009; Lewis et al., 2003;
Yeh and Jang, 2006).

We performed gene set enrichment analysis (GSEA) via ROBUST-Web’s inbuilt g:Profiler
(Raudvere et al., 2019) interface on the seven neighboring nodes of PLAT and F2 in the computed
module (selected nodes with black border in Supplementary Figure 1). Among the top three
most significantly enriched terms, two denote pathways related to coagulation (see Supplementary
Figure 3). Together, these results suggest that ROBUST-Web can identify potentially actionable
coagulation disease mechanisms shared by severe COVID-19 and comorbid disorders.

Results of GO GSEA for COVID-19 disease modules Mb and Mu generated by running RO-
BUST with, respectively, bait-usage-based (γ = 1) and uniform edge costs are presented in Sup-
plementary Figure 4, along with GSEA results for their set differences Mb \Mu and Mu \Mb.
Significantly (adjusted P < 0.05) enriched terms were obtained using the GSEApy interface of
the Enrichr API (Kuleshov et al., 2016). While there is a rather large overlap between the signifi-
cantly enriched terms found for Mb and Mu, significantly enriched terms obtained for genes found
exclusively with, respectively, bait-usage-based and uniform edge costs are close to disjoint. For
instance, the GO Molecular Function term “endopeptidase inhibitor activity” was found only
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Supplementary Figure 3. GSEA results for the module neighbors of F2 and PLAT (CPB2, SER-
PINB6, F5, SERPINB2, DEFA1, FGL1, LAMA1; marked nodes in the left part of Supplementary
Figure 1) obtained by calling g:Profiler via the ROBUST-Web interface.

with bait-usage-based but not with uniform edge costs. Abdel-Aziz et al. (2021) have shown a
correlation between high expression of endopeptidases and COVID-19 severity (especially in pa-
tients with asthma) and various studies have investigated the use of endopeptidase inhibitors for
COVID-19 treatment (Luan et al., 2020; Bojkova et al., 2020; Redondo-Calvo et al., 2022). On
the other hand, the top ten GO Molecular Function terms obtained upon performing GSEA on the
Mu \Mb genes include very generic terms such as kinase and phosphatase binding.

3



0 762

Mb

Mu

GO
Molecular Function

0 261

Mb

Mu

GO
Cellular Component

9 4136

Mb

Mu

GO
Biological Process

(A)

1 801

Mb\Mu

Mu\Mb

GO
Molecular Function

1 20
Mb\Mu

Mu\Mb

GO
Cellular Component

10 4483

Mb\Mu

Mu\Mb

GO
Biological Process

(B)

0 1 2 3
-log10(Adjusted P-value)

endopeptidase inhibitor activity (GO:0004866)

serine-type endopeptidase inhibitor activity (GO:0004867)

GO_Molecular_Function_2021

(C)

0 2 4 6 8 10 12
-log10(Adjusted P-value)

phosphatase binding (GO:0019902)
disordered domain specific binding (GO:0097718)

ephrin receptor binding (GO:0046875)
histone deacetylase binding (GO:0042826)

protein homodimerization activity (GO:0042803)
tau protein binding (GO:0048156)

protein kinase binding (GO:0019901)
ubiquitin-like protein ligase binding (GO:0044389)

ubiquitin protein ligase binding (GO:0031625)
kinase binding (GO:0019900)

GO_Molecular_Function_2021

(D)

Supplementary Figure 4. Results of GO GSEA for COVID-19 use case with both uniform and
bait usage-based edge costs. (A) Numbers of significanctly enriched GO terms (adjusted P-value
below 0.05) for COVID-19 disease modules obtained with bait-usage-based edge costs (Mb) and
uniform edge costs (Mu). (B) Significantly enriched GO terms for set differences Mb \Mu and
Mu \Mb. (C) Significantly enriched GO Molecular Function terms obtained for Mb \Mu. (D)
Significantly enriched GO Molecular Function terms obtained for Mu \Mb.
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2 Case study into precocious puberty
Precocious puberty (PP) is a condition where the onset of puberty occurs prematurely in children
(before age of 8 in girls and age of 9 in boys, according to Oerter Klein (1999)). The cause of PP
is unknown, and treatment is largely symptomatic (Carel and Léger, 2008).

Supplementary Figure 5. Precocious puberty disease module computed by ROBUST-Web to-
gether with targeting drugs.

Starting with eight PP-associated proteins obtained from OMIM (Amberger et al., 2019) and
DisGeNET (Piñero et al., 2020) (UniProt IDs: P63092, P35354, P01229, P01148, Q5JWF2,
P84996, O95467 and P05019), we ran ROBUST-Web using the in-built BioGRID protein-protein
interaction (PPI) network (Oughtred et al., 2019), bait-usage-based study bias scores and all
hyper-parameters set to their default values. The computed module together with targeting drugs
is shown in Supplementary Figure 5. Of the eight input seeds, only three are contained in the
computed module, since ROBUST filters seed nodes that are too weakly connected in the PPI
network (see Bernett et al. (2022) for details). The module contains six newly discovered pro-
teins, including insulin-degrading enzyme (IDE, UniProt ID: P14735). IDE is responsible for the
degradation of insulin and natriuretic peptides (Affholter et al., 1990; Ralat et al., 2011) and mul-
tiple studies (Chen et al., 2013; Burstein et al., 1987; Sørensen et al., 2012; Hur et al., 2017) have
reported elevated levels of both insulin and natriuretic peptides in PP. This leads us to hypothesize
that an impairment of IDE might be causally involved in the development of PP.

While most drugs uncovered by ROBUST-Web target the seed protein prostaglandin G/H syn-
thase 2 (UniProt ID: P35354), we find two drugs targeting IDE — biotin and thonzonium. Biotin
is a vitamin B7 supplement obtained naturally from different dietary sources. Biotin starvation,
although rare, is connected to several clinical conditions including insulin pathway impairment
(Salvador-Adriano et al., 2014). Thonzonium is known to play a vital role in bone anti-resorption
(Zhu et al., 2016) and Hur et al. (2017) have reported a decline in bone mineral density and bone
strength and an increase in bone resorption markers in PP. This suggests that both biotin and thon-
zonium are potential drug repurposing candidates in PP, which encourages further investigation
into their effects on insulin homeostasis through IDE control.

Subsequently, we performed enrichment analysis on the six newly discovered targets, using
ROBUST-Web’s in-built g:Profiler interface (Raudvere et al., 2019). The analysis returned endo-
plasmic reticulum (ER) organization as the only significantly enriched term (see Supplementary
Figure 6). In mice, Linz et al. (2015) have linked ER stress during puberty to impaired bone de-
velopment, which further corroborates the functional relevance of the disease module computed
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Supplementary Figure 6. GSEA results for the discovered PP targets shown in Supplementary
Figure 5 obtained by calling g:Profiler via the ROBUST-Web interface.

by ROBUST-Web.
Results of GO GSEA for PP disease modules Mb and Mu generated by running ROBUST

with, respectively, bait-usage-based (γ = 1) and uniform edge costs are presented in Supplemen-
tary Figure 7, along with GSEA results for their set differences Mb \Mu and Mu \Mb. Both Mb
and Mu were computed as for the COVID-19 use case and significantly enriched terms were again
obtained using GSEApy. Again, significantly enriched terms for Mu and Mb overlap significantly,
whereas significantly enriched terms for Mb \Mu and Mu \Mb are close to disjoint. An interesting
example of a term that was found only with bait-usage-based edge costs is GO Cellular Compo-
nent term “mitochondrial intermembrane space bridging (MIB) complex”. MIB-1, which is part
of the MIB complex, is one of the main markers of cell proliferation (Spyratos et al., 2002; Quer-
zoli et al., 1996; Tortori-Donati et al., 1999; Ramsay et al., 1995; Scalzo et al., 1998; Diebold
et al., 2017), which is a critical component of puberty (particularly relating to testicular growth
in males and breast development in females) (Naccarato et al., 2000; Koskenniemi et al., 2017;
Marshall and Plant, 1996). On the other hand, the top ten most significantly enriched GO Celu-
lar Component terms for Mu \Mb genes include very generic terms such as such as “transferase
complex, transferring phosphorus-containing groups”, “axon”, “intracellular membrane-bounded
organelle”, “protein kinase complex”, “nuclear envelope lumen”, and “endoplasmic reticulum
lumen”. That is, genes obtained with uniform edge costs only lead to very generic enrichment
results.
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Supplementary Figure 7. Results of GO GSEA for PP use case with both uniform and bait
usage-based edge costs. (A) Numbers of significanctly enriched GO terms (adjusted P-value
below 0.05) for PP disease modules obtained with bait-usage-based edge costs (Mb) and uniform
edge costs (Mu). (B) Significantly enriched GO terms for set differences Mb \Mu and Mu \Mb.
(C) Significantly enriched GO Molecular Function terms obtained for Mb \Mu. (D) Significantly
enriched GO Molecular Function terms obtained for Mu \Mb.
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3 Further supplementary information
Association between bait usage scores and functional enrichment. In both the COVID-19
and the PP case study (see Supplementary Figures 4 and 7), we obtained much fewer significantly
enriched GO terms when running ROBUST with bait-usage-based rather than with uniform edge
costs. A likely explanation for this is that genes with large bait usage scores are over-represented
in gene annotation databases, as suggested by Haynes et al. (2018). To assess the plausibility
of this explanation, we collected the top 20 genes with the largest bait usage scores f (u) and the
bottom 20 genes with the smallest scores bait usage f (u). From each of the two sets, we then sub-
sampled 100 random subsets of size 10 and carried out GO GSEA for all of them. Distributions
of the numbers of obtained significantly enriched terms are shown in Supplementary Figure 8.
Indeed, for all three GO annotation types, significantly more enriched terms are obtained for the
subsets of the top 20 genes than for the subsets of the bottom 20 genes.
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Supplementary Figure 8. Distributions of significantly enriched GO terms obtained for 100
random size-10 subsets of the top 20 genes with the largest bait usage scores and the bottom 20
genes with the smalles scores. (A) Numbers of GO Molecular Function terms. (B) Numbers of
GO Cellular Component terms. (C) Numbers of GO Biological Process terms.
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Supplementary Table 1. Details on data used for functional relevance validation. Gene expres-
sion data was obtained from Gene Expression Omnibus (GEO) (Barrett et al., 2013), using the
GEO2R R interface (https://www.ncbi.nlm.nih.gov/geo/geo2r/). DisGeNET (v7.0) associations
were obtained using nDEx (Pratt et al., 2015). The KEGG pathways were obtained from the
KEGG DISEASE Database (https://www.genome.jp/kegg/disease/).

Disease Accession code KEGG pathway DisGeNET identifier

Huntington’s disease GSE3790 hsa05016 C0020179
Chron’s disease GSE75214 hsa04621

hsa04060
hsa04630
hsa05321
hsa04140

C0021390

Ulcerative colitis GSE75214 hsa04060
hsa04630
hsa05321

C0009324

Lung cancer GSE30219 hsa05223 C1737250
Amyotrophic lateral sclerosis GSE112680 hsa05014 C0002736
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Supplementary Figure 9. Effect of varying γ with bait-usage-based edge costs on DisGeNET
overlap (A), KEGG GSEA P-values (B), mean node degree (C), mean bait usage (D), and mean
study attention (E) of proteins contained in the returned modules. Analyses were carried out using
the gene expression datasets, KEGG pathways, and DisGeNET identifiers detailed in Supplemen-
tary Table 1.
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Supplementary Figure 10. Effect of varying γ with study-attention-based edge costs on Dis-
GeNET overlap (A), KEGG GSEA (B), mean node degree (C), mean bait usage (D), and mean
study attention (E) of proteins contained in the returned modules. Analyses were carried out using
the gene expression datasets, KEGG pathways, and DisGeNET identifiers detailed in Supplemen-
tary Table 1.

Supplementary Table 2. Databases queried by the Drugst.One plugin used for result exploration
in ROBUST-Web.

Database Version Association type

ChEMBL 27 protein-drug
DGIdb 4.2.0 protein-drug
DrugCentral Feb 2023 protein-drug & drug-disease
DisGeNET Feb 2023 protein-disease
CTD Feb 2023 drug-disease
DrugBank Feb 2023 protein-drug & drug-disease
OMIM (via NeDRex) Dec 2022 protein-disease
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