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Table S1. Datasets analyzed in this paper. 
 

Species Tissue Data source Dataset 
dimensions 

Protocol Spot 
diameter by 
pixels 

Human Invasive 
ductal 
carcinoma 

10x Genomics 
(https://supp
ort.10xgenom
ics.com/spatia
l-gene-
expression/da
tasets/1.2.0/V
1_Human_Inv
asive_Ductal_
Carcinoma)  
 

4,727 spots 
36,601 genes 

 10x Visium 172 pixels 

Human Cutaneous 
squamous cell 
carcinoma 

Ji et al.  
GSE144240  

646 spots 
17,344 genes 

 10x Visium 200 pixels 

Human Cutaneous 
squamous cell 
carcinoma 

Ji et al.  
GSE144240 

6,824 cells 
32,738 genes 

10X Chromium 
3' v2  

NA 

Human Cutaneous  
malignant 
melanoma 

Thrane et al.  
(https://www.
spatialresearc
h.org/resourc
es-published-
datasets/doi-
10-1158-
0008-5472-
can-18-0747/) 

293 spots 
16,148 genes 

Spatial 
Transcriptomics  

350 pixels 

Human Melanoma 
tumor 

Tirosh et al. 
(https://scien
ce.sciencema
g.org/content
/352/6282/18
9) 
GSE72056 

4,139 cells 
23,686 genes 

Smart-Seq2 NA 
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Human HER2+, ER+ 
and PR- 
breast cancer 

10x Genomics 
(https://supp
ort.10xgenom
ics.com/spatia
l-gene-
expression/da
tasets/1.1.0/V
1_Breast_Can
cer_Block_A_
Section_1)  

3,798 spots 
36,601 genes 

 10x Visium 172 pixels 

Human HER2+ breast 
tumor 

Andersson et 
al.  
(https://githu
b.com/almaa
n/her2st) 

295 spots 
15,109 genes 

Spatial 
Transcriptomics  

146 pixels 

Mouse Posterior 
brain (sagittal) 

10x Genomics 
(https://supp
ort.10xgenom
ics.com/spatia
l-gene-
expression/da
tasets/) 

3,355 spots 
32,285 genes 

10x Visium 80 pixels 

Mouse Kidney 
(coronal) 

10x Genomics 
(https://supp
ort.10xgenom
ics.com/spatia
l-gene-
expression/da
tasets/) 

1,438 spots 
32,285 genes 

10x Visium 80 pixels 

Human Clear cell 
renal cell 
carcinoma 
primary 
tumors 

Meylan et al.  
GSE175540 

4,359 spots 
36,945 genes 

10x Visium 24 pixels 

Human Breast cancer 10X Genomics 
(https://www.
10xgenomics.
com/products
/xenium-in-
situ/preview-
dataset-
human-
breast)  

167,782 cells, 
313 genes 

10x Xenium NA 
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Table S2. Overlaps with curated gene sets included in the Molecular Signature Database by performing 
gene set enrichment analysis using region-specific DEGs in the cutaneous squamous carcinoma dataset. 
 

Tumor core enriched genes, n=300 
Name Description n FDR q-

value 
Genes 

REACTOME_META
BOLISM_OF_LIPID
S 

Metabolism of 
lipids 

26 2.46e-07 AGPAT3, LPIN3, TAZ, PLD1, PNPLA8, 
LCLAT1, PISD, PLBD1, PITPNM3, MTM1, 
PI4K2B, HADH, MMUT, PCCB, MECR, 
MCAT, DECR2, ELOVL6, ALOX12B, FDXR, 
TBL1X, MTF1, NFYC, HSD17B1, DHRS7B, 
MED21 

REACTOME_GLYC
EROPHOSPHOLIPI
D_BIOSYNTHESIS 

Glycerophospholipi
d biosynthesis 

9 0.000589 AGPAT3, LPIN3, TAZ, PLD1, PNPLA8, 
LCLAT1, PISD, PLBD1, PITPNM3 

REACTOME_PHOS
PHOLIPID_METAB
OLISMREACTOME
_PHOSPHOLIPID_
METABOLISM 

Phospholipid 
metabolism 

11 0.000589 AGPAT3, LPIN3, TAZ, PLD1, PNPLA8, 
LCLAT1, PISD, PLBD1, PITPNM3, MTM1, 
PI4K2B 

REACTOME_MITO
CHONDRIAL_FATT
Y_ACID_BETA_OXI
DATION 

Mitochondrial 
Fatty Acid Beta-
Oxidation 

5 0.00463 HADH, MMUT, PCCB, MECR, MCATHADH, 
MMUT, PCCB, MECR, MCAT 

REACTOME_VESIC
LE_MEDIATED_TR
ANSPORT 

Vesicle-mediated 
transport 

18 0.00475 AGPAT3, TUBB4A, KIF23, RAB8A, KIF20B, 
NBAS, BET1L, SYS1, EPGN, VPS37A, 
DENND2C, DENND1B, MON1A, EPS15L1, 
AP1M2, COPS7A, FCHO2, EXOC3 

REACTOME_SIGN
ALING_BY_RETIN
OIC_ACID 

Signaling by 
Retinoic Acid 

5 0.00704 DHRS4, PDHB, PDK2, DHRS3, RDH14 

REACTOME_CELL_
CYCLE_MITOTIC 

Cell Cycle, Mitotic 15 0.00768 LPIN3, TUBB4A, KIF23, RAB8A, LIG1, 
FEN1, CENPF, SEH1L, ZWINT, DHFR, 
CDC23, ANAPC15, TFDP2, CKS1B, 
PPP2R3B 

REACTOME_FATT
Y_ACID_METABOL
ISM 

Fatty acid 
metabolism 

8 0.0155 HADH, MMUT, PCCB, MECR, MCAT, 
DECR2, ELOVL6, ALOX12B 

REACTOME_CELL_
CYCLE 

Cell Cycle 16 0.0178 LPIN3, TUBB4A, KIF23, RAB8A, LIG1, 
FEN1, CENPF, SEH1L, ZWINT, DHFR, 
CDC23, ANAPC15, TFDP2, CKS1B, 
PPP2R3B, MLH1 

REACTOME_META
BOLISM_OF_AMI
NO_ACIDS_AND_
DERIVATIVES 

Metabolism of 
amino acids and 
derivatives 

11 0.0248 PDHB, PXMP2, GSTZ1, CKB, ALDH9A1, 
BBOX1, ALDH4A1, PYCR3, SLC25A10, 
GPT2, ASPG 

---     
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Tumor edge enriched genes, n=106 
Name Description n FDR q-

value 
Genes 

REACTOME_INNA
TE_IMMUNE_SYS
TEM 

Innate Immune 
System 

18 5.19e-07 PTPN6, C2, FPR1, C3, PTAFR, FCGR1A, 
LILRB2, LAIR1, PTPRJ, FCER1G, MME, 
RHOF, BIN2, STK10, FCGR3A, FYN, DUSP4, 
CLU 

HALLMARK_INTER
FERON_GAMMA_
RESPONSE 

Genes up-
regulated in 
response to IFNG 
GeneID=3458 

9 1.8e-06 PTPN6, IL2RB, IRF8, FPR1, FCGR1A, GBP4, 
ST3GAL5, CMPK2, ZNFX1PTPN6, IL2RB, 
IRF8, FPR1, FCGR1A, GBP4, ST3GAL5, 
CMPK2, ZNFX1 

REACTOME_NEUT
ROPHIL_DEGRAN
ULATION 

Neutrophil 
degranulation 

12 2.46e-06 PTPN6, FPR1, C3, PTAFR, LILRB2, LAIR1, 
PTPRJ, FCER1G, MME, RHOF, BIN2, STK10 

REACTOME_ADAP
TIVE_IMMUNE_SY
STEM 

Adaptive Immune 
System 

14 1.23e-05 PTPN6, CD3D, CD3E, FYB1, C3, AKT3, 
FCGR1A, LILRB2, LAIR1, PTPRJ, FCGR3A, 
FYN, LILRB4, TRIM39 

REACTOME_CYTO
KINE_SIGNALING_
IN_IMMUNE_SYST
EM 

Cytokine Signaling 
in Immune system 

12 0.00011 CCR1, PTPN6, IL2RB, IRF8, FPR1, PTAFR, 
AKT3, FCGR1A, PTPRJ, FYN, DUSP4, GBP4 

KEGG_CHEMOKIN
E_SIGNALING_PAT
HWAY 

Chemokine 
signaling pathway 

7 0.000156 CCR1, CXCL13, CX3CL1, CCR7, CXCL12, 
AKT3, CCL18 

PID_TCR_PATHW
AY 

TCR signaling in 
native CD4+ T cells 

5 0.000156 PTPN6, CD3D, CD3E, FYB1, FYN 

HALLMARK_INFLA
MMATORY_RESP
ONSE 

Genes defining 
inflammatory 
response 

7 0.000187 IL2RB, FPR1, PTAFR, CX3CL1, CCR7, 
GPR183, RGS16 
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Table S3. Overlaps with curated gene sets included in the Molecular Signature Database by performing 
gene set enrichment analysis using region-specific DEGs in the cutaneous malignant melanoma dataset. 
 

Tumor core enriched genes, n=300 
Name Description n FDR q-

value 
Genes 

REACTOME_SIGNA
LING_BY_RHO_GTP
ASES_MIRO_GTPAS
ES_AND_RHOBTB3 

Signaling by Rho 
GTPases, Miro 
GTPases and 
RHOBTB3. 

23 6.96e-06 STAM, CKAP4, AAAS, H2AC19, PTK2, 
DOCK7, FNBP1L, ARHGEF12, PLXNA1, 
BAIAP2, SCRIB, ARHGAP32, STARD8, 
ALDH3A2, LRRC1, EMD, BAIAP2L1, 
ANKFY1, PAFAH1B1, DVL3, TRAK2, NF2, 
CENPT 

PID_MET_PATHWA
Y 

Signaling events 
mediated by 
Hepatocyte 
Growth Factor 
Receptor (c-Met) 

8 9.39e-05 RAB5A, PTK2, MET, RANBP10, RANBP9, 
BCAR1, PXN, EIF4EBP1 

REACTOME_SIGNA
LING_BY_MET 

Signaling by MET 8 9.39e-05 STAM, USP8, PTK2, DOCK7, MET, 
RANBP10, RANBP9, ITGA3 

REACTOME_RHO_
GTPASE_CYCLE 

RHO GTPase cycle 16 0.000132 STAM, CKAP4, AAAS, DOCK7, FNBP1L, 
ARHGEF12, PLXNA1, BAIAP2, SCRIB, 
ARHGAP32, STARD8, ALDH3A2, LRRC1, 
EMD, BAIAP2L1, ANKFY1 

REACTOME_SIGNA
LING_BY_RECEPTO
R_TYROSINE_KINA
SESREACTOME_SIG
NALING_BY_RECEP
TOR_TYROSINE_KI
NASES 

Signaling by 
Receptor Tyrosine 
Kinases 

15 0.00158 STAM, USP8, PTK2, DOCK7, BAIAP2, MET, 
RANBP10, RANBP9, BCAR1, PXN, ITGA3, 
ATP6V1C1, TRIB3, COL9A3, ID4 

REACTOME_MET_
ACTIVATES_RAS_SI
GNALING 

MET activates RAS 
signaling 

3 0.0121 MET, RANBP10, RANBP9 

REACTOME_SIGNA
LING_BY_WNT 

Signaling by WNT 10 0.026 H2AC19, USP8, PSME3, AXIN1, SCRIB, 
DVL3, ASH2L, WLS, LGR4, SOX13 

---     
Tumor edge enriched genes, n=155 
Name Description n FDR q-

value 
Genes 

HALLMARK_EPITHE
LIAL_MESENCHYM
AL_TRANSITION 

Genes defining 
epithelial-
mesenchymal 
transition, as in 
wound healing, 
fibrosis and 
metastasis 

14 6.66e-11 THY1, CAPG, VCAM1, SDC1, LUM, LOXL1, 
LOXL2, PCOLCE, FBLN1, BGN, IL32, TGFBI, 
FSTL1, SFRP4 
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REACTOME_EXTRA
CELLULAR_MATRIX
_ORGANIZATION 

Extracellular 
matrix 
organization 

15 7.62e-10 ITGAL, MMP9, VCAM1, SDC1, LUM, 
LOXL1, LOXL2, PCOLCE, FBLN1, BGN, 
PECAM1, VWF, COL6A1, LTBP2, LAMB2 

BIOCARTA_TCYTOT
OXIC_PATHWAY 

T Cytotoxic Cell 
Surface Molecules 

5 3.36e-07 THY1, ITGAL, CD8A, CD2, CD3E 

REACTOME_ADAPT
IVE_IMMUNE_SYST
EM 

Adaptive Immune 
System 

18 1.43e-06 ITGAL, CD8A, HLA-DOA, CD3E, PRKCB, 
FYB1, VCAM1, CD22, C3, PLCG2, TAB2, 
FCGR1B, SLAMF7, LILRB2, LAIR1, BLK, 
ANAPC2, LAG3 

REACTOME_CYTOK
INE_SIGNALING_IN
_IMMUNE_SYSTEM 

Cytokine Signaling 
in Immune system 

16 5.79e-06 MMP9, IL4R, IL2RB, CCL19, IRF8, VCAM1, 
SDC1, IL32, TAB2, FCGR1B, IL10RA, 
CEBPD, LGALS9, TNFSF13B, CD27, 
SAMHD1 

REACTOME_IMMU
NOREGULATORY_I
NTERACTIONS_BET
WEEN_A_LYMPHOI
D_AND_A_NON_LY
MPHOID_CELL 

Immunoregulator
y interactions 
between a 
Lymphoid and a 
non-Lymphoid cell 

9 1.35e-05 ITGAL, CD8A, CD3E, VCAM1, CD22, C3, 
SLAMF7, LILRB2, LAIR1 

BIOCARTA_THELPE
R_PATHWAY 

T Helper Cell 
Surface Molecules 

4 2.03e-05 THY1, ITGAL, CD2, CD3E 

REACTOME_SIGNA
LING_BY_INTERLEU
KINS 

Signaling by 
Interleukins 

11 0.000247 MMP9, IL4R, IL2RB, CCL19, VCAM1, 
SDC1, IL32, TAB2, IL10RA, CEBPD, LGALS9 

PID_CD8_TCR_DO
WNSTREAM_PATH
WAY 

Downstream 
signaling in native 
CD8+ T cells 

5 0.000649 CD8A, CD3E, PRKCB, IL2RB, GZMB 

KEGG_CYTOKINE_C
YTOKINE_RECEPTO
R_INTERACTION 

Cytokine-cytokine 
receptor 
interaction 

8 0.00105 IL4R, IL2RB, CCL19, IL10RA, TNFSF13B, 
CD27, CCL21, CXCL14 

HALLMARK_INTERF
ERON_GAMMA_RE
SPONSE 

Genes up-
regulated in 
response to IFNG  

7 0.00139 IL4R, IL2RB, IRF8, VCAM1, SLAMF7, 
IL10RA, SAMHD1 
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Table S4. Marker genes used for cell type, tumor region and protein detection. 
 

Target region Marker genes 
B cell CD19, CD79A, CD79B, MS4A1, CD22 

CD8+ T cell CD8A, CD8B 
Follicular helper T cells CD3E, CD3D, CD3G, CD4, PDCD1, CXCR5 

Dendritic cell CD1A, CD1B, CD1E, CLEC10A, CLIC2, WFDC21P 
CXCL13 CXCL13 

Melanoma MITF, CSPG4, MAGEA1, MLANA, TYR, SOX10 
Squamous cell carcinoma BUB1B, KIF1C, TOP2A, CD151, MMP10, PTHLH, 

FEZ1, IL24, KCNMA, INHBA, MAGEA4, NT5E, 
LAMC2, SLITRK6 

Breast Cancer ERBB2, CNN1, CDH1, KRT5, KRT7, KRT14, KRT18, 
CDNND1, GATA3, FOXA1, PIP, SCGB2A2 

HER2+ tumor subtype ERBB2 
ER+ tumor subtype ESR1 

PgR+ tumor subtype PGR 
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Table S5. Software compared with TESLA. 
 

Method Version URL 
BayesSpace 1.0.0 https://github.com/edward130603/BayesSpace 

SpaGCN 1.2.0 https://github.com/jianhuupenn/SpaGCN 
RCTD 1.2.0 https://github.com/dmcable/RCTD 
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Fig. S1. Enhanced gene expression by TESLA can better retain the original expression pattern at the spot 
level than BayesSpace. We randomly selected 10 genes in which BayesSpace’s correlation with the 
observed spot-level gene expression was less than 0.5. 
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Fig. S2. Boxplot of number of cells in the pseudo Visium spots generated using the Xenium data. Each 
point in the boxplot represents a pseudo spot. The median equals 7 (n=3847). The lower and upper 
hinges correspond to the first and third quartiles, and the center refers to the median value. The upper 
(lower) whiskers extend from the hinge to the largest (smallest) value no further (at most) than 1.5 × 
interquartile range from the hinge. Data beyond the end of the whiskers are plotted individually. 
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Fig. S3. Tumor marker gene images for the cutaneous squamous cell carcinoma tissue section generated 
by TESLA. 
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Fig. S4. Total UMI counts for the cutaneous squamous cell carcinoma tissue section. 
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Fig. S5. Examples of TESLA identified genes that are highly enriched in the tumor core or edge in the 
human cutaneous squamous cell carcinoma dataset of the skin.  
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Fig. S6. Marker gene images for clinical melanoma diagnosis for the cutaneous malignant melanoma tissue 
section. 
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Fig. S7. Examples of TESLA identified genes that are highly enriched in the tumor core or edge in the 
human cutaneous malignant melanoma dataset. 
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Fig. S8. Cell type distributions in tumor edge and core based on deconvolution results obtained from RCTD. 
CAF stands for cancer associated fibroblast. 
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Fig. S9. Marker gene images for B cells, CD4+ T cells, dendritic cells, and CXCL13 in the squamous cell skin 
carcinoma dataset. 
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Fig. S10. Marker gene images for B cells, CD4+ T cells, dendritic cells, CD8+ T cells, and CXCL13 in the 
human cutaneous malignant melanoma dataset.  
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Fig. S11. Cell type deconvolution results for the CSCC data using RCTD.  
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Fig. S12. Cell type deconvolution results for the human cutaneous malignant melanoma data using 
RCTD. 
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Fig. S13. Distribution of follicular helper T cells in the CSCC and Melanoma data from TESLA, using 
markers CD3E, CD3D, CD3G, CD4, PDCD1, CXCR5.  
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Fig. S14. Tumor marker gene images in the human breast cancer datasets. 
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Fig. S15. Super-resolution meta gene from TESLA is able to correct artifact in protein 
immunofluorescence staining image. 
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Note S1. Tissue coverage rate of different ST technologies. 
 
For each dataset, we separated the whole tissue area into same sized grids where each grid unit contains 
the same number of spots with the same pattern as shown in Fig. S16. We then calculated the theoritical 
coverage rate using the area of spots inside the grid unit divided by the area of the grid. For 10x Visium, 
there are two spot layouts (10x Visium type1: invasive ductal carcinoma data; 10x Visium type2: squamous 
cell skin cancer cacinoma data), whose theoritical coverage rates are 25.6% and 45.8%, respectively, while 
for Spatial Transcriptomics (melanoma data; HER2+ breast cancer data), it has a theoritical coverage rate 
of 34.9%.  
 
Additionally, we calculated the exact coverage rate for each analyzed dataset. We first detected the whole 
tissue region and calculated its area. Next, we derived the covered tissue area by multiplying the number 
of measured spots and the unit spot area. The coverage rate is computed as the ratio of covered tissue 
area to the whole tissue area. The invasive ductal carcinoma data from 10x Visium with pattern 1 has a 
coverage rate of 27.2% while the squamous cell skin cancer carcinoma data from 10x Visium with pattern 
2 has a coverage rate of 48.5%. The melanoma and HER2+ breast cancer data from Spatial Transcriptomics 
have coverage rates of 21.4%, 20.4% (patient B), 20.3% (patient G), and 20.4% (patient H), respectively. 
 
Fig. S16. Spot layout in different ST technologies. 
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Note S2. TESLA’s gene expression enhancement will not blur the tumor boundary. 
We provide some examples to show how the original gene expression and H&E image affect the region 
boundary in TESLA’s enhanced gene expression. As shown in Fig. S17, in the melanoma dataset, the tumor 
(left), normal (middle), and lymphoid aggregate (upper-right) have very different morphology features in 
the H&E image. MIFT is a marker gene for tumor, and after TESLA’s enhancement, the tumor-normal 
boundary is still clear. Similarly, CD19 is a marker gene for B cells, and its enhanced gene expression still 
reveals the detailed structure of the lymphoid aggregate. An opposite example is PMEL, which is also a 
marker gene for tumor. However, this gene has blurred normal-tumor boundary after TESLA’s 
enhancement. By checking the original spot-level data, we found that the boundary in the original data is 
not as clear as MITF, which led to the blurred boundary after enhancement. Based on these results, we 
think TESLA will not blur tissue boundaries or add artificial boundaries that are not present in the original 
gene expression.  
 
Fig. S17. H&E, original and TESLA enhanced gene expression of MITF, CD19 and PMEL for the human 
cutaneous malignant melanoma data. 
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Note S3. Comparison of TESLA with XFuse using the CSCC data. 
We compared TESLA with XFuse using the CSCC data in two aspects: 1)Run time: The gene expression 
enhancement step in TESLA only took less than 5 minutes on a CPU machine, while it took XFuse 17 days 
(408.5 hours) on the same machine. 2)The Pearson correlation between the original spot level and the 
enhanced gene expression for tissue region that overlaps with spots. This comparison is to ensure that 
the enhanced gene expression retains the original expression pattern and does not generate artificial 
patterns. XFuse automatically filtered out 7376 genes. Among the remaining 9968 genes that it predicted, 
we selected the top 2000 highly expressed genes for evaluation. We calculated the Pearson correlation 
between the spot-level enhanced gene expression and the original gene expression for TESLA and XFuse. 
As shown in Fig. S18, the median Pearson correlation for TESLA is 0.74 while the median Pearson 
correlation for XFuse is only 0.20. As admitted by the XFuse authors, their method may perform well only 
for a limited number of genes. This is not surprising as XFuse’s performance is highly dependent on the 
histology image. For genes whose expression patterns are not similar to histology image, XFuse does not 
perform well. Given how slow XFuse is, its lack of flexibility in generating super-resolution gene expression 
in a transparent manner, and its poor performance in our evaluations, we think it is not necessary to run 
XFuse for the remaining datasets included in this paper. 
 
Fig. S18. Boxplot of Pearson correlations between the original spot-level gene expression and “spot-level” 
gene expression obtained from the enhanced expression generated from TESLA and XFuse for the top 
2,000 highly variable genes (n=2000). The lower and upper hinges correspond to the first and third 
quartiles, and the center refers to the median value. The upper (lower) whiskers extend from the hinge 
to the largest (smallest) value no further (at most) than 1.5 × interquartile range from the hinge. Data 
beyond the end of the whiskers are plotted individually 
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Note S4. The cellular and molecular spatial structure of tumor cannot be revealed with original spot-
level data. 
 
To showcase the strength and necessity of TESLA’s super-resolution annotation, we analyzed the CSCC 
and melanoma datasets using their original spot-level data and compared with results obtained from 
TESLA. We first performed spatial clustering analysis using SpaGCN, a spatial clustering method that we 
previously developed for spatial domain detection in spatial transcriptomics. SpaGCN operates at the 
spot-level. We performed spatial clustering analysis with different resolution parameter values, leading 
to different number of clusters, i.e., spatial domains. As shown in Fig. S19 and S20, using spot-level gene 
expression data as input, clustering analysis cannot identify spatial domains that capture the tumor edge 
and core structure for both datasets, regardless how many clusters were specified in the clustering 
analysis. 
 
Next, we show that the edge and core enriched genes can only be detected at the super-resolution level. 
To demonstrate this point, we first assigned the identity of each spot based on the tumor edge and core 
separation obtained from TESLA for both CSCC and cutaneous malignant melanoma data (Figure S21 a,b). 
Then, we performed core vs edge differential expression (DE) analysis at the spot level using the same 
filtering criteria as we did for the super-resolution gene expression data. 
 
For the CSCC, we detected 3,665 genes enriched in tumor core and 106 genes enriched in tumor edge 
when using the super-resolution gene expression data as input, but when using the spot-level gene 
expression data as input, we only detected 1,023 enriched genes for the tumor core (765 genes overlap 
with super-resolution detection) and 0 enriched genes for the tumor edge. Similarly, for the melanoma 
dataset, we detected 3,510 genes enriched in tumor core and 155 genes enriched in tumor edge when 
using super-resolution gene expression data as input for DE analysis. But when using the spot-level gene 
expression as input, we only detected 1,632 genes enriched for the core (1509 genes overlap with super-
resolution detection) and 1 gene (“BGN”) enriched for the edge (1 gene overlaps with super-resolution 
detection). 
 
The above results show that the super-resolution gene expression data are needed to identify tumor core 
and tumor edge enriched genes, especially for the tumor edge. We think the failure of detecting tumor 
edge enriched genes at the spot level is due to two reasons. First, the number of observations is much 
smaller when considering spot as the analysis unit, and the reduced sample size in DE analysis will lead to 
less power. Second, the spot-level data do not have single-cell resolution. Indeed, the diameter size of 
each spot is 100um in Spatial Transcriptomics, which is much larger than a single cell. Since each spot may 
contain many cells, the mixture of cells from different cell types will dilute the differential expression 
signal, especially when the immune cells are rare. Therefore, we believe that until the sequencing-based 
spatial transcriptomics technologies reach to single-cell resolution, gene expression resolution 
enhancement will be needed when the goal is to detect gene expression changes that occur only in a small 
region of the tissue. 
 
 
 
 
 
 
 
Fig. S19. Spatial domains detected using SpaGCN with different numbers of domains for the CSCC data. 
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Fig. S20. Spatial domains detected using SpaGCN with different numbers of domains for the melanoma 
data. 

 
Fig. S21. Spatial domains detected using SpaGCN with different numbers of domains for the melanoma 
data. 

 
 

Supplementary Note S5. Annotation of mouse posterior brain using TESLA. 
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TESLA is a generic framework and can be applied to any tissue as long as high-resolution histology images 
are available. To show the flexibility of our method, we performed spatial domain annotation for a 10X 
Visium mouse brain dataset using TESLA. We picked Spatially Variable Genes (SVGs) for different brain 
regions reported in our previous publication SpaGCN 1. Next, we used these SVGs to identify brain regions 
at super-resolution using TESLA. As shown in Fig. S22, TESLA can successfully identify distinct 
neuroanatomic subregions in the brain with “granular cell layer of the cerebellum” shown on the left and 
“molecular layer of the cerebellum” shown on the right.  The clear boundaries between these two 
neuroanatomic subregions indicate the high accuracy of TESLA in spatial domain annotation in non-cancer 
tissues. 
 
Fig. S22. Distinct neuroanatomic subregions, granular cell layer of the cerebellum (left) and molecular 
layer of the cerebellum(right), detected by TESLA. 
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Note S6. Computation cost of TESLA, BayesSpace on the IDC dataset. 
 
TESLA is computationally fast and memory efficient. To showcase the computational advantage of TESLA, 
we recorded its run time and memory usage for the IDC data and compared with BayesSpace. All analyses 
were conducted on Mac OS 10.13.6 with single Intel® Core(TM) i5-8259U CPU @2.30GHz and 16GB 
memory. As shown in Fig. S23, TESLA completed gene expression enhancement in 19 minutes, whereas 
the computing time was more than 11 hours for BayesSpace. Furthermore, TESLA only required 10.0GB 
of memory, whereas BayesSpace required 12.9 GB of memory. 
 
Fig. S23. TESLA and BayesSpace time and memory usage comparison using the IDC dataset. 
 

 


