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Supplementary Methods 

Ethical Approval 

This study was approved by the Ethical Committee of Tongji Medical College, Huazhong 

University of Science and Technology (S253) and the Ethical Committee of the Leiden 

University Medical Center (#P16.229). Sample collection in Gdańsk (Poland) was approved 

by the Independent Ethics Committee of the Medical University of Gdańsk 

(NKBBN/434/2017). Sample collection at the Amsterdam University Medical Center was 

approved by the local Medical Ethics Committee of the hospitals. Sample collection from 

Catharina hospital was approved by the medical research ethics committees united 

(W16.063). 

Total RNA extraction and RNA-sequencing library preparation 

Platelet isolation and RNA extraction for samples derived from nine medical centers were 

conducted using the same protocol.[1, 2] Strictly same sample processing and storage 

procedures before sequencing were followed in the central laboratories in China, the 

Netherlands, and the Poland to preclude the regional differences that may influence the 

classification performance. Peripheral venous blood was drawn from treatment-naïve 

participants in 6mL purple-capped BD Vacutainers containing the EDTA anticoagulant. All 

blood samples were processed within 48 hours of sampling. Specifically, platelets were 

isolated from whole blood using a standard gradient centrifugation method. The resulting 

platelet pellets were gently resuspended in RNAlater (Thermo Fisher Scientific, Waltham, 

℃ ℃MA, USA) and incubated at 4  overnight and then transferred to −80  after sharp freezing 

overnight in liquid nitrogen until being sequenced. The platelet separation method ensured the 

purity of platelets (Supplementary Figure S2) and was confirmed not to have caused platelet 

activation (Supplementary Figure S3). Total RNA of samples with low quality (RNA integrity 

number＜7) or quantity (＜10 picogram) were excluded. 

For samples with total RNA ≥ 50 nanogram, total RNA was extracted from the platelets 

using TRIzol reagent (Invitrogen; Thermo Fisher Scientific, Inc.) in accordance with the 

manufacturer’s instructions. The mix was centrifuged at 12 000 × g for 5 min at 4℃. The 
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supernatant was transferred into a new Eppendorf tube with 0.3 mL chloroform/isoamyl 

alcohol (24:1). The mix was shaken vigorously for 15 s and then centrifuged at 12 000 × g for 

10 min at 4 . The upper aqueous phase containing RNA was transferred in℃ to a new tube with 

an equal volume of isopropyl alcohol and centrifuged at 12 000 × g for 20 min at 4 . After ℃

discarding the supernatant, the RNA pellet was washed twice with 1 mL 75% ethanol, and the 

mix was centrifuged at 12 000 × g for 3 min at 4  to co℃ llect residual ethanol, followed by 

air-drying of the pellet for 5–10 min in the biosafety cabinet. Finally, 25~100 μL of 

DEPC-treated water was added to dissolve the RNA pellet. Subsequently, total RNA was 

qualified and quantified using a Nano Drop spectrophotometer and an Agilent 2100 

bioanalyzer (Thermo Fisher Scientific, MA, USA). 

For samples with total RNA＜50 nanogram, total RNA was extracted from platelets using 

the RNeasy Micro Kit (QIAGEN, 74004) in accordance with the manufacturer’s instructions. 

Appropriate platelets were ground to powder with liquid nitrogen and then transferred into a 

new tube with an appropriate volume of Buffer RL and 1 volume 70% ethanol. The mixture 

was transferred into a RNeasy MinElute spin column and centrifuged at ≥ 8000 × g for 15 s. 

After discarding the flow-through, Buffer RW1, DNase I, Buffer RPE, and 80% ethanol were 

added and then sequentially centrifuged. The RNeasy MinElute spin column containing RNA 

was placed in a new 2-mL collection tube and centrifuged with lid opened at 12 000 × g for 5 

min to dry the membrane and then transferred to a new 1.5-mL tube with 14 μL RNase-free 

water. Finally, the tubes were centrifuged for 1 min at 12 000 × g to elute the RNA. Total 

RNA was qualified and quantified using a Nano Drop and Agilent 2100 bioanalyzer (Thermo 

Fisher Scientific, MA, USA).  

For samples in the discovery cohort, DNase I was used to digest double- and single-strand 

DNA in total RNA. Thereafter, magnetic beads were purified to recover the reaction products. 

The RNase Hor Ribo-Zero method (human, mouse, plants) (Illumina, San Diego, CA, USA) 

was used to eliminate rRNA. Purified mRNA was fragmented into small pieces using 

fragment buffer. Thereafter, the first-strand cDNA was generated in the First Strand Reaction 

System via PCR, and the second strand of cDNA was also generated. The reaction product 

was purified using magnetic beads. A-Tailing Mix and RNA Index Adapters were added for 
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end repair. The cDNA fragments with adapters were amplified via PCR and the products were 

purified via Ampure XP Beads. The quality and quantity of the library were assessed via two 

methods to ensure the high quality of the sequencing data: one method involved assessing the 

distribution of the fragment sizes using the Agilent 2100 bioanalyzer; the other method 

involved quantifying the library via real-time quantitative PCR. The qualified library was 

amplified on cBot to generate the cluster on the flowcell, and the amplified flowcell would be 

sequenced single-end on the HiSeq4000 platform. 

For samples with total RNA＞50 nanogram, except those in the discovery cohort, 

oligo(dT)-attached magnetic beads were used to purify mRNA. Purified mRNA was 

fragmented with fragment buffer at 94  for 5min. Thereafter, the first strand of cDNA was ℃

generated using the First Strand reaction system via PCR and then the second strand of cDNA 

was generated. The reaction product was purified using Ampure XP Beads and dissolved in 

EB solution. The quality and quantity of the library were assessed via two methods to ensure 

the high quality of the sequencing data: one method involved assessing the distribution of the 

fragment sizes using the Agilent 2100 bioanalyzer; the other method involved quantifying the 

library via real-time quantitative PCR. The qualified library was amplified on cBot to 

generate the cluster on the flowcell. Moreover, the amplified flowcell will be sequenced 

single-end on the HiSeq4000 or HiSeq X-ten platform (BGI-Shenzhen, China). 

For samples with total RNA between 10 picogram and 50 nanogram, the platelet RNA was 

amplified with oligo-dT and dNTPs, incubated at 72 , and immediately placed on ice, ℃

followed by reverse transcription to form cDNA, based on the polyA tail method. The 

template was switched to the 5′ end of the RNA, and full-length cDNA was generated via 

PCR. The Agilent 2100 bioanalyzer instrument (Agilent High Sensitivity DNA Reagents) was 

used to determine the average molecule length of the PCR product. The cDNA library was 

quantified using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, 

USA) for accurate quantification, followed by fragmentation with fragment buffer. Thereafter, 

the A-Tailing Mix and RNA Index Adapters were added for end repair. The cDNA fragments 

with adapters were amplified via PCR. The PCR products were purified using Ampure XP 

Beads and then were size-selected. The final library was quantitated using two methods to 
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ensure the high quality of the sequencing data: one method involved determining the average 

molecule length by using the Agilent 2100 bioanalyzer instrument (Agilent DNA 12000 

Reagents); the other method involved quantifying the library via real-time quantitative PCR 

(qPCR). The qualified libraries were amplified using cBot to generate the cluster on the 

flowcell. The amplified flowcell was sequenced single-end on the HiSeq4000 platform 

(BGI-Shenzhen, China). 

Data normalization and batch effect removal  

In the normalization process, raw read counts of training cohort were subjected to 

“Variance Stabilizing Transformation” with parameter “blind=FALSE” for normalization and 

“Dispersion Function” for dispersion estimation by using R-package DESeq2.[3] For the 

validation cohorts, we assigned the estimated dispersion values from the training cohort as 

their dispersion and used the same method to normalize them. To exclude samples with low 

inter-sample correlation, we used the “Bigcor” function of R-package propagate to perform 

Pearson correlation, yielded one sample with a correlation of < 0.4, which was excluded from 

the training cohort. 

To minimize the influences of age (Supplementary Figure S6A), library size 

(Supplementary Figure 6B), and known batches for further classification, we investigated 

these potential confounding factors with surrogate variables identified via svaseq in 

R-package sva with default parameters.[4] Each estimated surrogate variable was correlated 

with the potential confounding factors in cancer or non-cancer group. The continuous 

variables were correlated to surrogate variables by Pearson correlation and categorical 

variables were compared using a two-sided Student’s t-test. To prevent eliminating a 

surrogate variable probably correlated with the cancer or non-cancer group, the surrogate 

variables with a correlation P-value < 0.05 would not be adjusted. These identified 

confounding factors were used to adjust the normalized data by removeBatchEffect from the 

R-package limma.[5] The P-values between confounding factors and surrogate variables are 

illustrated in Supplementary Figure S6C. We compared the performance before and after 

eliminating confounding factors and plotted the relative log intensity (RLE) using the 

plotRLE function in the R-package EDASeq (Supplementary Figure S6D). 
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Detailed model development procedure 

Four steps were applied to select genes and finally trained SVM model as described 

in Figure S4. In the classifier development based on RNA-Seq data, which contains 

small samples and many features (over 60,000 genes), conventional approach was 

using differential expression genes to select genes between tumour and non-tumour 

with hand-coded fold change > 2 and FDR < 0.05 [6]. We filtered low abundant and 

hypervariable genes with mapping reads and expression inqualilty. LASSO was only 

used to select contributing genes [7] between tumor and non-tumor to reduce high 

dimension as you acknowledged in the following comment. For further application of 

our TEPOC model, we tried to eliminate the number of genes in the model. MRMR 

was used to rank the genes and balance the number of genes and AUC performance 

[8]. Finally, the optimized number of genes was used to train the SVM model. 

 

Sample size estimation 

The sample size calculation was based on the following assumptions. According to the 

previous hospitalized patients in the Department of Obstetrics and Gynecology of Tongji 

Hospital, the ratio of ovarian cancer to non-cancer is about 0.8 (231:289) in the training 

cohort. We designed to achieve the superiority of tumor-educated platelets (AUC=0.9) over 

CA125 (AUC=0.8). Using a two-sided chi-square test, 80% power would be achieved on the 

two-sided significance level α=0.2. The minimum sample size was 66 (40 for ovarian cancer 

and 26 for case control). It was planned to include 74 patients in the validation cohort 

assuming a dropout rate of 10%. All participants that met the inclusion criteria would be 

consecutively enrolled until all cohorts reached the minimum sample size. 

 

Validation method for Quantitative real-time (qPCR)  

Total RNA was extracted using TRIzol reagent (Invitrogen, Thermo Fisher 

Scientific, Inc.) in accordance with standard manufacturer’s protocols. qPCR was 
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performed in triplicate (n = 3) using the Bio-Rad CFX96 system with SYBR Green 

Supermix. The relative mRNA expression levels were calculated using the 

comparative Cq method 2−ΔΔCq) on the basis of ACTB as the loading control. 

Statistical analysis 

The F1-score combines the precision and recall of a classifier into a single metric 

by taking their harmonic mean. It is primarily used to compare the performance of 

two classifiers. The formula for the F1 score is: F1 = 2 * (precision * recall) / 

(precision + recall). Permutation test is a popular technique for testing a hypothesis of 

no effect, when the distribution of the test statistic is unknown. We permutated patient 

label with 5000 times to generate a random AUC distribution to test the p-value of our 

TEPOC AUC [9]. 
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Supplementary Tables  

Supplementary Table S1. Compositions of benign adnexal masses. 

Histology Training cohort Validation cohorts 

Serous cystadenoma, n (%) 16 (8.8) 9 (8.4) 

Mucinous cystadenoma, n (%) 2 (1.1) 1 (0.9) 

Cyst adenofibroma, n (%) 17 (9.3) 10 (9.3) 

Fibroma, n (%) 10 (5.5) 6 (5.6) 

Steroid cell tumor, n (%) 2 (1.1) 1 (0.9) 

Struma ovarii, n (%) 2 (1.1) 1 (0.9) 

Tuberculous granuloma, n (%) 1 (0.6) 0 (0) 

Mature cystic teratoma, n (%) 20 (11.0) 12 (11.2) 

Ovarian endometriotic cysts, n (%) 57 (31.3) 37 (34.6) 

Hydrosalpinx, n (%) 8 (4.4) 5 (4.7) 

Ovarian corpus luteum cyst, n (%) 7 (3.8) 2 (1.9) 

Paraovarian cyst, n (%) 2 (1.1) 0 (0) 

Other cysts, n (%) 38 (20.9) 23 (21.5) 

Total, n (%) 182 (100) 107 (100) 
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Supplementary Table S2. Gene list and description of TEPOC. 

 Ensemble Gene Id Hgnc 

Symbol 

 Ensemble Gene Id Hgnc 

Symbol 

 Ensemble Gene Id Hgnc 

Symbol 

1 ENSG00000003436 TFPI 35 ENSG00000123500 COL10A1 69 ENSG00000167985 SDHAF2 

2 ENSG00000005249 PRKAR2B 36 ENSG00000125354 SEPTIN6 70 ENSG00000168385 SEPTIN2 

3 ENSG00000008018 PSMB1 37 ENSG00000125503 PPP1R12C 71 ENSG00000169567 HINT1 

4 ENSG00000037042 TUBG2 38 ENSG00000125534 PPDPF 72 ENSG00000169762 TAPT1 

5 ENSG00000065534 MYLK 39 ENSG00000127540 UQCR11 73 ENSG00000171314 PGAM1 

6 ENSG00000067167 TRAM1 40 ENSG00000128311 TST 74 ENSG00000175063 UBE2C 

7 ENSG00000071127 WDR1 41 ENSG00000130475 FCHO1 75 ENSG00000175387 SMAD2 

8 ENSG00000080371 RAB21 42 ENSG00000131389 SLC6A6 76 ENSG00000177169 ULK1 

9 ENSG00000087053 MTMR2 43 ENSG00000131966 ACTR10 77 ENSG00000177565 TBL1XR1

10 ENSG00000087470 DNM1L 44 ENSG00000132300 PTCD3 78 ENSG00000177697 CD151 

11 ENSG00000089009 RPL6 45 ENSG00000132475 H3-3B 79 ENSG00000177868 SVBP 

12 ENSG00000091592 NLRP1 46 ENSG00000132718 SYT11 80 ENSG00000178562 CD28 

13 ENSG00000100266 PACSIN2 47 ENSG00000136205 TNS3 81 ENSG00000181690 PLAG1 

14 ENSG00000100614 PPM1A 48 ENSG00000138758 SEPTIN11 82 ENSG00000184226 PCDH9 

15 ENSG00000100644 HIF1A 49 ENSG00000140450 ARRDC4 83 ENSG00000184602 SNN 

16 ENSG00000100722 ZC3H14 50 ENSG00000140455 USP3 84 ENSG00000184640 SEPTIN9 

17 ENSG00000102158 MAGT1 51 ENSG00000142168 SOD1 85 ENSG00000184838 PRR16 

18 ENSG00000105499 PLA2G4C 52 ENSG00000143033 MTF2 86 ENSG00000185305 ARL15 

19 ENSG00000108100 CCNY 53 ENSG00000145335 SNCA 87 ENSG00000197601 FAR1 

20 ENSG00000110090 CPT1A 54 ENSG00000146731 CCT6A 88 ENSG00000198626 RYR2 

21 ENSG00000110324 IL10RA 55 ENSG00000148481 MINDY3 89 ENSG00000212907 MT-ND4L

22 ENSG00000110799 VWF 56 ENSG00000149308 NPAT 90 ENSG00000226950 DANCR 

23 ENSG00000110848 CD69 57 ENSG00000151789 ZNF385D 91 ENSG00000233822 H2BC15 

24 ENSG00000111328 CDK2AP1 58 ENSG00000151838 CCDC175 92 ENSG00000233954 UQCRHL 

25 ENSG00000112651 MRPL2 59 ENSG00000152926 ZNF117 93 ENSG00000234231 ANAPC1P4

26 ENSG00000114127 XRN1 60 ENSG00000163220 S100A9 94 ENSG00000236304 * 

27 ENSG00000114867 EIF4G1 61 ENSG00000163320 CGGBP1 95 ENSG00000240497 * 

28 ENSG00000116717 GADD45A 62 ENSG00000163812 ZDHHC3 96 ENSG00000249936 RAC1P2 

29 ENSG00000117054 ACADM 63 ENSG00000165698 SPACA9 97 ENSG00000251562 MALAT1 

30 ENSG00000118276 B4GALT6 64 ENSG00000166165 CKB 98 ENSG00000253819 LINC01151

31 ENSG00000118418 HMGN3 65 ENSG00000166887 VPS39 99 ENSG00000253982 * 

32 ENSG00000119801 YPEL5 66 ENSG00000167005 NUDT21 100 ENSG00000254893 RAP1BL 

33 ENSG00000122008 POLK 67 ENSG00000167740 CYB5D2 101 ENSG00000255364 SMILR 

34 ENSG00000122643 NT5C3A 68 ENSG00000167912 * 102 ENSG00000257365 FNTB 

* Novel transcripts.  

For gene descriptions, please see the attached Excel file named Expanded Supplementary 

Table S2. 
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Supplementary Table S3. Performance of TEPOC and CA125 to detect ovarian cancer in HGSOC cohort. 

 AUC (95% CI) ACC (95% CI), % SN (95% CI), % SP (95% CI), % PPV (95% CI), % NPV (95% CI), % Kappa F1 AUC 

P value 

TEPOC 0.903 (0.856–0.951) 83.1 (76.9–88.1) 91.5 (83.2–96.5) 76.6 (67.5–84.3) 75.0 (65.3–83.1) 92.1 (84.5–96.8) 0.664 0.824 P = 0.11 

CA125 0.839 (0.776–0.902) 78.3 (71.6–84.1) 85.0 (75.3–92.0) 73.0 (63.2–81.4) 71.6 (61.4–80.4) 85.9 (76.6–92.5) 0.569 0.777 - 

TEPOC+CA125 0.934 (0.893–0.974) 88.9 (83.4–93.1) 92.5 (84.4–97.2) 86.0 (77.6–92.1) 84.1 (74.8–91.0) 93.5 (86.3–97.6) 0.777 0.881 P = 0.009 

Predictions of TEPOC and the combination were compared with those of CA125 using a two-sided DeLong’s test. Abbreviations: TEPOC, tumor-educated 

platelet-derived gene panel of ovarian cancer. CA125, cancer antigen 125. HGSOC, high grade serous ovarian cancer. TEPOC+CA125, a combinatory 

diagnosis of TEPOC and CA125. AUC, area under the curve. ACC, accuracy. SN, sensitivity. SP, specificity. PPV, positive predictive value. NPV, negative 

predictive value. CI, confidence interval.
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Supplementary Table S4. Performance of TEPOC and CA125 to detect ovarian cancer with pre-specified specificity at 90% with all non-OC as 

controls. 

 AUC (95% CI) ACC (95% CI), % SN (95% CI), % SP (95% CI), % PPV (95% CI), % NPV (95% CI), % Kappa F1 

Early-stage          

TEPOC 0.893 (0.842–0.944) 86.7 (81.9–90.7) 70.7 (54.5–83.9) 90.0 (85.0–93.6) 58.0 (43.2–71.8) 94.0 (89.7–96.8) 0.449 0.561 

CA125 0.745 (0.657–0.832) 75.2 (67.6–81.7) 31.7 (18.1–48.1) 90.0 (83.7–95.2) 54.2 (32.8–74.4) 78.9 (71.0–85.5) 0.335 0.540 

TEPOC+CA125 0.883 (0.820–0.946) 85.4 (78.8–90.5) 73.2 (57.1–85.8) 90.0 (82.6–94.5) 71.4 (55.4–84.3) 90.4 (83.5–95.1) 0.559 0.682 

Borderline         

TEPOC 0.946 (0.917–0.975) 89.7 (85.1–93.2) 88.2 (72.5–96.7) 90.0 (85.0–93.6) 58.8 (44.2–72.4) 97.9 (94.7–99.4) 0.542 0.627 

CA125 0.773 (0.682–0.863) 78.0 (70.5–84.3) 35.3 (19.7–53.5) 90.0 (83.7–95.2) 52.2 (30.6–73.2) 82.7 (75.0–88.8) 0.371 0.549 

TEPOC+CA125 0.953 (0.922–0.984) 90.0 (84.0–94.3) 91.2 (76.3–98.1) 90.0 (82.6–94.5) 72.1 (56.3–84.7) 97.2 (92.0–99.4) 0.668 0.756 

Non-epithelial         

TEPOC 0.921 (0.873–0.970) 87.8 (80.9–92.9) 78.3 (56.3–92.5) 90.0 (82.5–94.8) 62.1 (42.3–79.3) 95.1 (88.9–98.4) 0.463 0.585 

CA125 0.741 (0.643–0.838) 78.6 (70.6–85.3) 26.1 (10.2–48.4) 90.0 (82.5–94.8) 35.3 (14.2–61.7) 85.1 (77.2–91.1) 0.243 0.418 

TEPOC+CA125 0.929 (0.881–0.976) 88.5 (81.8–93.4) 82.6 (61.2–95.0) 90.0 (82.5–94.8) 63.3 (43.9–80.1) 96.0 (90.2–98.9) 0.575 0.667 

High grade         

TEPOC 0.927 (0.892–0.962) 88.1 (83.9–91.6) 83.9 (74.5–90.9) 90.0 (85.0–93.6) 77.7 (67.9–85.6) 93.0 (88.6–96.1) 0.672 0.782 

CA125 0.842 (0.783–0.900) 75.6 (69.1–81.4) 55.3 (44.1–66.1) 90.0 (83.7–95.2) 81.0 (68.6–90.1) 73.4 (65.4–80.5) 0.576 0.775 

TEPOC+CA125 0.942 (0.907–0.978) 89.1 (83.9–93.0) 88.2 (79.4–94.2) 90.0 (82.6–94.5) 86.2 (77.1–92.7) 91.2 (84.5–95.7) 0.770 0.873 

Abbreviations: TEPOC, tumor-educated platelet-derived gene panel of ovarian cancer. CA125, cancer antigen 125. TEPOC+CA125, a combinatory diagnosis 

of TEPOC and CA125. Non-OC, non-ovarian cancer. AUC, area under the curve. ACC, accuracy. SN, sensitivity. SP, specificity. PPV, positive predictive 

value. NPV, negative predictive value. CI, confidence interval. 
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Supplementary Table S5. Performance of TEPOC and the combination model to detect ovarian cancer in validation cohorts. 

 AUC (95% CI) ACC (95% CI), % SN (95% CI), % SP (95% CI), % PPV (95% CI), % NPV (95% CI), % AUC P value 

All validation        

TEPOC 0.918 (0.889-0.948) 83.8 (79.6-87.4) 85.3 (78.7-90.4) 82.7 (76.9-87.6) 78.7 (71.7-84.6) 88.2 (82.8-92.4) - 

TEPOC+CA125 0.922 (0.889-0.955) 85.9 (81.2-89.8) 86.4 (79.9-91.4) 85.3 (77.6-91.2) 88.7 (82.5-93.3) 82.5 (74.5-88.8) P = 0.870 

VC1        

TEPOC 0.923 (0.855-0.990) 84.9 (74.6-92.2) 95.0 (83.1-99.4) 72.7 (54.5-86.7) 80.9 (66.7-90.9) 92.3 (74.9-99.1) - 

TEPOC+CA125 0.955 (0.912-0.997) 87.7 (77.9-94.2) 92.5 (79.6-98.4) 81.8 (64.5-93.0) 86.0 (72.1-94.7) 90.0 (73.5-97.9) P = 0.058 

VC2        

TEPOC 0.918 (0.872-0.963) 84.0 (77.4-89.2) 86.2 (77.1-92.7) 81.3 (70.7-89.4) 84.3 (75.0-91.1) 83.6 (73.0-91.2) - 

TEPOC+CA125 0.939 (0.901-0.977) 87.7 (81.6-92.3) 89.7 (81.3-95.2) 85.3 (75.3-92.4) 87.6 (79.0-93.7) 87.7 (77.9-94.2) P = 0.011 

VC3        

TEPOC 0.887 (0.813-0.960) 82.9 (75.3-89.0) 69.0 (49.2-84.7) 87.0 (78.8-92.9) 60.6 (42.1-77.1) 90.6 (82.9-95.6) - 

TEPOC+CA125 0.917 (0.824-1.000) 74.3 (56.7-87.5) 66.7 (46.0-83.5) 100.0 (63.1-100.0) 100.0 (81.5-100.0) 47.1 (23.0-72.2) P = 0.623 

Predictions of TEPOC were compared with those of the combination model using a two-sided DeLong’s test. Abbreviations: TEPOC, tumor-educated 

platelet-derived gene panel of ovarian cancer. TEPOC+CA125, the combination of TEPOC and CA125. AUC, area under the curve. ACC, accuracy. SN, 

sensitivity. SP, specificity. PPV, positive predictive value. NPV, negative predictive value. CI, confidence interval.
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Supplementary Table S6. List of the primer sequences. 

Gene Forward sequence Reverse sequence 

ACTB TTAGTTGCGTTACACCCTTTC GCTGTCACCTTCACCGTTC 

COL10A1  GATACCAAATGCCCACAGG CCTCTTACTGCTATACCTTTACTC 

EIF4G1 AAACCCAGGACCTATTCCG CTTGCTTCATCAGCTGCTG 

VWF CACTGAAGCGTGATGAGAC CCCAGAAGTACTCTCCTCTC 

NPAT ACTTTCTCAGATCAGGAGCA TCTGCAATTCCAGTTCTCG 

 


