Supplementary information

Single-site Decorated Copper Enables Energy- and Carbon-efficient CO₂ Methanation in Acidic Conditions

Mengyang Fan^{1†}, Rui Kai Miao^{1†}, Pengfei Ou^{2†}, Yi Xu^{1†}, Zih-Yi Lin³, Tsung-Ju Lee³, Sung-Fu Hung³, Ke Xie², Jianan Erick Huang², Weiyan Ni², Jun Li¹, Yong Zhao¹, Adnan Ozden¹, Colin P O'Brien¹, Yuanjun Chen², Yurou Celine Xiao¹, Shijie Liu¹, Joshua Wicks², Xue Wang², Jehad Abed², Erfan Shirzadi², Edward H. Sargent²* & David Sinton¹*

¹Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.

²Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.

³Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

[†]*These authors contributed equally.*

*Corresponding email: ted.sargent@utoronto.ca and sinton@mie.utoronto.ca and sinton@mie.utoronto.ca

Supplementary Note 1 | Energy assessment of the CO₂R system. Energy assessment was performed using an energy assessment model adopted from that reported in ref^{1,2}. This section provides a brief description of the model along with the assumptions. The model uses the performance metrics of the CO₂R system to estimate the energy intensity of producing CH₄ from CO₂. These metrics include full-cell potential, single pass CO₂ conversion efficiency, Faradaic efficiency and current density – all towards CH₄. The energy assessment was performed at various flow rates of feedstock CO₂ by using the associated performance metrics. H₂ produced from competing hydrogen evolution reaction (HER) was considered the only by-product at the cathodic stream, besides the unreacted CO₂ and CH₄. Meanwhile, O₂ produced from oxygen evolution reaction (OER) was considered only product at the anodic stream, as the system enables local regeneration of CO₂, and thereby blocking the CO₂ crossover to the anodic stream. To recover CH₄ from the unreacted CO₂ and H₂, a pressure swing adsorption (PSA) module is modelled to be at the cathodic downstream. The CO₂ recovered from the cathodic stream is modelled to be recirculated to the cathode inlet for utilization in CO₂R. Further details of the model and assumptions can be found in ref.^{1,2}. An example energy cost calculation for the electrolyzer electricity, cathode separation, and anode separation is provided in Supplementary Note 2.

Supplementary Note 2 | Example energy cost calculation for CO₂-to-CH₄ conversion. This section describes the energy cost associated with electrolyzer electricity, cathode separation, and anode separation in the acidic BP-MEA system. The calculation details are based on the performance metrics that enable the lowest energy intensity of producing CH₄ in the acidic BP-MEA system. These metrics include a full-cell voltage of 3.56 V, a CH₄ Faradaic efficiency of 71%, a CO₂-to-CH₄ SPCE of 14%, and a current density of 100 mA cm⁻² (Table 1).

Electrolyzer electricity. We first calculate the production capacity of CH_4 on a molar basis for a constant production capacity of 100 tonne CH_4 per day.

$$Production \ rate \ \left[\frac{mol}{s}\right] = \frac{Production \left[\frac{g}{day}\right]}{molecular \ weight_{CH4} \left[\frac{g}{mol}\right] \times 86400 \left[\frac{s}{day}\right]}$$
(1a)

Production rate
$$\left[\frac{mol}{s}\right] = \frac{100 \times \frac{10^6 g}{day}}{\frac{16 g}{mol} \times \frac{86400s}{day}} = 72.3 \frac{mol}{s}$$
 (1b)

Then, we calculate the current needed to electroproduce CH₄ at this productivity by using a CH₄ FE of 71%:

$$Total current required [A] =
production rate $\left[\frac{mol}{s}\right] \times No. e^{-} transferred \times Faraday's constant
FE_{CH_4}$
(2a)$$

Total current needed
$$[A] = \frac{72.3 \frac{mol}{s} \times 8 \times 96485 \frac{sA}{mol}}{71\%} = 78\ 642\ 573\ A$$
(2b)

Then, we calculate the power consumption by multiplying the current with the cell potential of 3.56 V:

$$Power \ Consumed \ [W] =$$

$$Total \ current \ needed \ [A] \times Cell \ voltage \ [V] = 78 \ 641 \ 526 \ A \times 3.56 \ V = 279 \ 968 \ kW$$
(3)

Then, we find the energy required to meet the production capacity of 100 tonne per day:

$$Electricity \ Energy \ Requirement \ \left[\frac{GJ}{tonne_{CH_4}}\right] = \frac{Power \ Consumed \ [W] \times 24[h]}{daily \ production \ [tonne]} = \frac{279\ 968\ kW \times 24\ h \times 0.0036\ GJ/kWh}{100\ tonne} = 241.9\ \frac{GJ}{tonne_{CH_4}}$$
(4)

Cathode separation. To estimate the energy cost associated with the recovery of CH₄ from the cathodic downstream, we assumed a pressure swing adsorption (PSA) separation module. The capital and operational energy cost of the PSA unit is hinged on a model built for biogas separation. The cathodic stream considers the presence of CH₄, unreacted CO₂ and H₂ at the cathodic downstream. The model takes a cost of \$1 989 043 into account for a flow rate of 1000 m³ h⁻¹ and uses a scaling factor of 0.7 and energy demand of 0.25 kWh m⁻³. According to this, we estimate the energy requirement:

$$PSA operating energy \left[\frac{kWh}{tonne_{CH_4}}\right] = 0.25 \frac{kWh}{m^3} \times flow rate \left[\frac{m^3}{h}\right] \times 24 \frac{h}{day}$$
(5a)

Prior to using this correlation, we estimate the flow rate at the cathodic stream. Assuming operation under the ideal conditions, we estimated the flow rate of CH₄:

$$Output CH_4 flow rate \left[\frac{m^3}{h}\right] = \frac{100 \times 10^6 \frac{g}{day} \times 8.314 \, Jmol^{-1}K^{-1} \times 298K}{16 \frac{g}{mol} \times 101 \, 300 \, Pa \times 24 \frac{h}{day}} = 6369 \, \frac{m^3}{h} \tag{6}$$

We then estimate the flow rates of CO_2 , CH_4 , and H_2 at the cathodic stream. The flow rate of CO_2 at the cathodic stream is calculated by using the experimentally achieved SPCE at a constant pressure. We note that this SPCE relates to the amount of CO_2 converted to that of unreacted CO_2 . We then calculate the output CO_2 flow rate considering a SPCE of 14%:

$$Output \ CO_2 \ flow \ rate \ \left[\frac{m^3}{h}\right] =$$

$$CH_4 \ flow \ rate \ \left[\frac{m^3}{h}\right] \times molar \ ratio \ \left[\frac{CO_2}{CH_4}\right] \times \left(\frac{1 - SPCE}{SPCE}\right)$$
(7a)

Output
$$CO_2$$
 flow rate $\left[\frac{m^3}{h}\right] = 6369 \frac{m^3}{h} \times 1 \times \frac{1 - 0.14}{0.14} = 39124 \frac{m^3}{h}$ (7b)

We then calculate the current toward H₂:

Current toward
$$H_2[A] = Total current needed[A] \times \frac{1 - FE_{methane}}{1}$$
 (8a)

Current toward
$$H_2[A] = 78\ 642\ 573\ A \times \frac{1-0.71}{1} = 22\ 806\ 346\ A$$
 (8b)

The production rate of H_2 can also be calculated as follows.

$$H_2 \text{ production } \left[\frac{mol}{h}\right] = \frac{Current \text{ toward } H_2[A] \times 3600 \frac{s}{h}}{2\frac{electrons}{H_2 \text{ product}} \times Faraday's \text{ constant}}$$
(9a)

$$H_2 \ production \left[\frac{mol}{h}\right] = \frac{22\ 806\ 346\ A \times 3600\ \frac{s}{hour}}{2\frac{electrons}{H_2\ product} \times 96485\ \frac{sA}{mol}} = 425\ 463\ \frac{mol}{h} \tag{9b}$$

Assuming an ideal gas under standard conditions, the flow rate of H₂ can be calculated:

$$flow \ rate_{H2}\left[\frac{m^3}{h}\right] = \frac{H_2 \ production\left[\frac{mol}{h}\right] \times 8.314 \frac{J}{mol \times K} \times 298K}{101.3 \times 10^3 Pa}$$
(10a)

$$flow \ rate_{H2}\left[\frac{m^3}{h}\right] = \frac{425\ 463\ \frac{mol}{h} \times 8.314\ \frac{J}{mol \times K} \times 298K}{101.3 \times 10^3 Pa} = 10\ 405\ \frac{m^3}{h} \tag{10b}$$

The total flow rate of the cathodic stream can then be calculated by using the flow rates of CH_4 , unreacted CO_2 , and H_2 using:

flow rate
$$\left[\frac{m^3}{h}\right] = (6369 + 39124 + 10405)\frac{m^3}{h} = 55\,898\frac{m^3}{h}$$
 (11)

Next, we can calculate the energy required per tonne of CH₄ produced by using:

$$PSA \ Energy \left[\frac{GJ}{tonne_{CH_4}}\right] = 0.25 \ \frac{kWh}{m^3} \times 55 \ 898 \frac{m^3}{h} \times 24 \frac{h}{day} \times \frac{0.0036 \ GJ \ kWh^{-1}}{100 \ tonne_{CH_4}}$$
$$= 12.1 \ \frac{GJ}{tonne_{CH_4}}$$
(12)

In alkaline flow cell and neutral MEA, CO_2 loss to crossover and/or carbonates reduces cathodic CO_2 flow rate, and therefore, must be considered to correctly estimate CO_2 flowrate at cathodic outlet. A crossover factor (CO_2 crossover/ CO_2 reduced) of 4 and a carbonate loss factor (CO_2 loss to carbonate/ CO_2 reduced) of 20 are considered for MEA and alkaline flow cell, respectively. The cathodic CO_2 flow rate can be found using the equation below^{3,4}:

$$Output \ CO_2 \ flow \ rate \ \left[\frac{m^3}{h}\right] =$$

$$\frac{CH_4 flow rate\left[\frac{m^3}{h}\right] \times molar ratio\left[\frac{CO_2}{CH_4}\right]}{\left(\frac{SPCE}{1}\right)} \times \left(1 - \frac{SPCE}{\frac{1}{loss factor + 1}}\right)$$
(13)

Supplementary Note $3 \mid CO_2$ loss to carbonate and energy cost calculation for CO_2 regeneration in alkaline flow cells. In alkaline flow cell, input CO_2 is rapidly consumed by the excess of hydroxides in the catholytes according to Eq. 1.

$$CO_2 + 2OH^- \to CO_3^{2-} + H_2O$$
 Eq. 1

Prior reports had found that more than 20 CO₂ is lost to carbonates for every CO₂ reduced to product^{3,4}. Current regeneration of CO₂ from carbonate solutions relies on calcium caustic loop, which requires a thermal energy input of 5.25 GJ/tonne CO₂⁵. CO₂ loss to carbonates in alkaline electrolytes per tonne of CH₄ can be calculated as:

$$CO_{2} loss \left[\frac{tonne CO_{2}}{tonne CH_{4}}\right] =$$

$$1 tonne_{CH_{4}} \times \frac{molecular \ weight_{CO_{2}}}{molecular \ weight_{CH_{4}}} \left[\frac{g}{mol}\right]} \times molar \ ratio \left[\frac{CO_{2}}{CH_{4}}\right] \times carbonate \ loss \ factor =$$

$$1 \ tonne_{CH_{4}} \times \frac{44 \ \frac{g}{mol}}{16 \ \frac{g}{mol}} \times 1 \times 20 = 55 \ \frac{tonne \ CO_{2}}{tonne \ CH_{4}}$$

$$(14)$$

The thermal energy required to regenerate CO₂ from carbonate solutions can be found:

Carbonate regeneration
$$\left[\frac{GJ}{tonne_{CH_4}}\right] = 5.25 \left[\frac{GJ}{tonne\ CO_2}\right] \times CO_2 loss \left[\frac{tonne\ CO_2}{tonne\ CH_4}\right]$$

= 5.25 $\frac{GJ}{tonne\ CO_2} \times 55 \frac{tonne\ CO_2}{tonne\ CH_4} = 288.8 \frac{GJ}{tonne_{CH_4}}$ (15)

Recovering CO_2 from carbonate solutions costs 288.8 GJ/tonne CH_4 – more than five times of CH_4 heating value. Considering calcium caustic loop relies on high grade (>900°C) thermal input, this implies that regenerating loss CO_2 from alkaline flow cell requires consuming five times more fuels (typically CH_4) than it is produced through electrolysis, making these systems unviable going forward.

Supplementary Note 4 | CO_2 loss to crossover and energy cost calculation for CO_2/O_2 separation in neutral MEAs. CO_2 loss to carbonate is less severe in neutral MEAs compared to alkaline flow cell. In neutral MEAs, both CO_2R and the competing HER generates hydroxides, and these hydroxides consumes CO_2 to form carbonates. Negatively charged carbonates migrate through the anion-selective membrane and revert back to CO_2 at the anode where oxygen evolution takes place, resulting a mixture of CO_2/O_2 . This CO_2/O_2 mixture could not be directly recirculated back to the cathode; rather, further separation is necessary. For CO_2 -to-CH₄ conversion, producing each CH₄ (or consuming each CO₂) generates eight hydroxides (Eq. 2). These eight hydroxides consume at least four CO_2 (Eq. 3 or Eq. 4), limiting the maximum single-pass CO_2 conversion efficiency to 20% in neutral MEAs.

$$CO_2 + 6H_2O + 8e^- \rightarrow CH_4 + 8OH^-$$
 Eq. 2

$$8CO_2 + 8OH^- \rightarrow 8HCO_3^{2-}$$
 Eq. 3

$$4CO_2 + 80H^- \rightarrow 4CO_3^{2-} + 4H_2O$$
 Eq. 4

Separating this CO_2/O_2 mixture currently require amine-based capture estimated at 4 GJ/tonne CO_2^6 . CO_2 crossover per tonne of CH₄ (ideal case: 100% CH₄ FE) can be calculated as:

$$CO_{2} loss \left[\frac{tonne CO_{2}}{tonne CH_{4}}\right] = \frac{1 tonne_{CH_{4}} \times \frac{molecular \ weight_{CO_{2}} \left[\frac{g}{mol}\right]}{molecular \ weight_{CH_{4}} \left[\frac{g}{mol}\right]} \times molar \ ratio \left[\frac{CO_{2}}{CH_{4}}\right] \times crossover \ factor = \frac{FE_{methane}}{1 \ tonne_{CH_{4}} \times \frac{44 \frac{g}{mol}}{16 \frac{g}{mol}} \times 1 \times 4}{1 \ \frac{1 \ tonne \ CO_{2}}{1}} = 11 \frac{tonne \ CO_{2}}{tonne \ CH_{4}}$$
(16)

The energy input to separate CO₂ from anodic mixture can be found:

Anode separation
$$\left[\frac{GJ}{tonne_{CH_4}}\right] = 4 \left[\frac{GJ}{tonne\ CO_2}\right] \times CO_2 loss \left[\frac{tonne\ CO_2}{tonne\ CH_4}\right]$$

= $4 \frac{GJ}{tonne\ CO_2} \times 11 \frac{tonne\ CO_2}{tonne\ CH_4} = 44 \frac{GJ}{tonne_{CH_4}}$ (17)

Therefore, at 100% CH₄ FE, separating CO₂ from anodic CO₂/O₂ mixture requires 44 GJ/tonne CH₄. State-of-the-art CH₄ producing CO₂ electrolyzers have selectivity ranged from 60-80%, corresponding to an anode separation cost of 55-73 GJ/tonne CH₄. This energy exceeds CH₄ heating value, implying that more thermal energy is required to recover CO₂ in neutral MEAs than that can be acquired from the produced CH₄.

Parameters	CO2-to-CH4 (Scenario 1) ⁷	CO2-to-CH4 (Scenario 2) ⁸	CO2-to-CH4 (This work)	
Systems	Neutral	Alkaline	Acidic microchannel-MEA	
	MEA	flow cell		
Cell voltage (V)	4.0	4.0	3.56	4.12
Faradaic efficiency (%)	62	82	71	64
Current density (mA cm ⁻²)	220	480	100	200
Single pass conversion CH ₄	1.6	3.7	14	14
Electrolyzer electricity	311.2	235.3	241.9	310.5
Cathode separation (GJ/tonne)	20.6	3.0	12.1	12.9
Anode separation (GJ/tonne)	71.0	0.0	0.0	0
Carbonate regeneration	0.0	288.8	0.0	0
Overall energy (GJ/tonne)	402.8	527.1	254.0	323.4

Table S1 Electrolyzer energy distribution comparison of different systems

High energy efficiency scenario (Flow rate of CO_2 in Scenario 1. is 80 sccm, flow rate of CO_2 in Scenario 2 is 20 sccm, and flow rate of CO_2 in this work is 1.4 sccm) and performance metrics used as the input corresponding to those achieved with the flow rates listed above.

Figure S1 Comparison of anodic CO₂ loss. The neutral MEA used an AEM as membrane, and circulated 10 mM KHCO₃ as anolyte. The acidic MEA used the AEM/channeled CEM combination and circulated 5 mM H_2SO_4 as anolyte. The applied current density was 100 mA cm⁻².

Figure S2 CO₂R performance comparison in different system. The catalysts used here were all CuPc with a loading of 0.1 mg cm⁻². The CO₂R performances were tested under the same current density of 100 mA cm⁻². In the acidic MEA, 5 mM H₂SO₄ was used as the anolyte. In the neutral MEA, 10 mM KHCO₃ was used as anolyte.

Figure S3 Schematic illustration of the acidic channeled-MEA system. The channeled CEM has a pore path of 75μ m. The analyte was circulated with 5 mM H₂SO₄.

Figure S4 CO₂R performance comparison of different type of ionomer binders. The catalysts used here were all CuPc with a loading of 0.1 mg cm⁻². The CO₂R performances were tested under the same current density of 100 mA cm⁻². The cation exchange Nafion binder shows slightly higher H₂ FE compared to the other anion exchange binders.

Figure S5 Product distribution at different CuPc/CNP ratios. Ionomer binder used in all cases was PiperIon. The tests were performed at a constant current of 100 mA cm⁻². 5 mM H₂SO₄ was circulated as anolyte.

Figure S6 FE performance of CuPc/CNP. The optimal ratio of 1.5:1 was used for CuPc/CNP catalyst. The tests were performed at a constant current of 100 mA cm⁻². 5 mM H_2SO_4 was circulated as anolyte.

Figure S7 CV characterization of Cu redox peaks. Ethylenediamine (ED), ethylenediamine-N,N'-diacetic acid (EDDA), and ethylenediaminetetraacetic acid (EDTA) provide bidentate, tetradentate and hexadentate coordinated sites, respectively. 1 mM CuSO₄ was added to 10 mM ED, EDDA and EDTA, respectively, to form the Cu complex by bonding Cu ion with multidentate coordination sites. The EDDA presented a much lower Cu redox peak compared with the ED, indicating more intensive bonds between Cu and EDDA. For EDTA, barely Cu redox peaks were observed, demonstrating a stronger interaction between Cu and EDTA. Pt foil and Pt gauze were used as working and counter electrodes. The tests were performed at a scan rate of 100 mV s⁻¹.

Figure S8 FE performance of CuPc/CNP samples with and without decoration at the initial 1 hour of electrolysis. The optimal ratio of 1.5:1 was used for CuPc/CNP catalyst. The ratio between CuPc/CNP and each molecule keep constant at 1:4. The tests were performed at a constant current of 100 mA cm⁻². 5 mM H₂SO₄ was circulated as anolyte.

Figure S9 CV characterization of Cu redox peaks. The ratio between CuPc/CNP and each molecule keep constant at 1:4. We fabricated the ED, EDDA and EDTA decorated CuPc/CNP composite catalysts by spray-coating the mixture onto the gas diffusion layers (GDLs). The tests were performed at a scan rate of 100 mV s^{-1} in a 5 mM H₂SO₄ electrolyte. The molecules decorated CuPc/CNP GDLs were used as the working electrode. ED decorated sample showed an obvious Cu redox peak, indicating a weak interaction between Cu(II) and ED. EDTA decorated samples presented minimal Cu redox peaks, indicating a strong interaction between Cu and hexadentate coordination sites that constrain Cu(II) from the CuPc/CNP precursor.

Figure S10 Product distribution of the CuPc/CNP/EDTA samples with various EDTA mass loadings. The CuPc/CNP ratio was constant at 1.5:1. The applied current density was at a constant value of 100 mA cm⁻². Values are means, and error bars indicate SD (n = 3 replicates)

Figure S11 FE performance of EDTA decorated CuPc/CNP. The ratio between EDTA and CuPc/CNP was 1:4. The tests were performed at a constant current of 100 mA cm⁻². 5 mM H_2SO_4 was circulated as anolyte.

Figure S12 CH₄ selectivity of the pristine CuPc. The CuPc loadings ranged from 0.1 to 0.5 mg cm⁻². There is no CNP and EDTA addition in this pristine CuPc. Ionomer binder was PiperIon. The tests were performed at a constant current of 100 mA cm⁻². 5 mM H₂SO₄ was circulated as anolyte.

Figure S13 Liquid products distribution of different samples. (a) EDTA/CuPc/CNP, (b) EDTA/CNP and (c) EDTA/CuPc at current range from 50 to 200 mA cm⁻². Values are means, and error bars indicate SD (n = 3 replicates)

Figure S14 FE performance under Ar conditions. The samples EDTA/CuPc/CNP was used as cathode and reduction reaction was performed at different current densities ranging from 50 to 200 mA cm⁻². The Ar flow rate was 20 sccm cm⁻². Values are means, and error bars indicate SD (n = 3 replicates)

Figure S15 CO₂R performance comparison of acidic, neutral and alkaline MEA systems. The tests were performed at a constant current of 100 mA cm⁻². The cathode used was the optimized EDTA/CuPc/CNP sample.

Figure S16 Single pass conversion of CO₂ at different flow rates. (a) In the neutral MEA system, a neutral 0.5 M KHCO₃ was used as the anolyte and (b) In the alkaline MEA system, 0.5M KOH was used as the anolyte. The anolyte flow rate was 5mL min⁻¹. The cathode and anode were separated by an anion exchange membrane. The SPC results were obtained at a constant current density of 100 mA cm⁻².

Figure S17 CO₂ single pass conversion towards CH₄. (a) Acidic MEA system, (b) neutral MEA system. In the neutral system, 0.5 M KHCO₃ was used as anolyte with a constant flow rate of 5 mL min⁻¹. An anion exchange membrane was used in the neutral MEA to separate the cathode and anode. The SPC results were obtained at a constant current density of 100 mA cm⁻².

Figure S18 *In-situ* **Fourier-transformed Cu EXAFS spectra of CuPc/CNP.** Spectra collected at 100 mA cm⁻² under CO₂R conditions. Metallic Cu, and Na₂[Cu(EDTA)] samples are shown as references.

Figure S19 Fourier-transformed Cu K-edge EXAFS spectra fitting lines for the CuPc/CNP sample. Fitting lines for samples (a) before and (b) during CO₂R. The spectrum was taken under 100 mA cm⁻² during 120 min of CO₂R.

Figure S20 *In-situ* **Fourier-transformed Cu EXAFS spectra of EDTA decorated CuPc/CNP.** Spectra collected at 100 mA cm⁻² under CO₂R conditions. Metallic Cu, and Na₂[Cu(EDTA)] samples are shown as references.

Figure S21 Fourier-transformed Cu K-edge EXAFS spectra fitting lines for the EDTA decorated CuPc/CNP sample. Fitting lines for samples (a) before and (b) during CO₂R. The spectrum was taken under 100 mA cm⁻² during 120 min of CO₂R.

	8					
	Path	C.N.	R	dE	DW	R factor
Metallic Cu	Cu-Cu	12.0	2.54(2)	3.3(7)	0.007(1)	0.007
CuPc/CNP	Cu-N/O	3.8(1)	1.91(3)	-3.5(2)	0.007(3)	0.007
before CO ₂ R						
CuPc/CNP	Cu-N/O	0.6(3)	1.91(1)	-9.0(4)	0.003(1)	0.006
during CO ₂ R	Cu-Cu	6.7(2)	2.50(3)	-9.0(4)	0.009(4)	_
EDTA/CuPc/CNP	Cu-N/O	3.6(1)	1.94(3)	-4.8(4)	0.003(1)	0.008
before CO ₂ R						
EDTA/CuPc/CNP	Cu-N/O	2.5(1)	1.89(1)	-2.4(3)	0.006(5)	0.006
during CO ₂ R	Cu-Cu	5.4(2)	2.56(3)	-2.4(3)	0.009(4)	_

 Table S2 Fitting parameters for the samples using metallic Cu-Cu and Cu-N/Cu-O paths

 as three-path fitting.

Table S3 XPS integration areas for Cu 2p peaks and peak ratios of Cu(II):Cu(0)/(I)								
	Cu(II) 2p _{3/2}	Cu(0)/(I) 2p _{3/2}	Cu(II) $2p_{1/2}$	Cu(0)/(I) $2p_{1/2}$	Peak ratio 2p _{3/2} Cu(0)/(I): Cu(II)	Peak ratio $2p_{1/2}$ Cu(0)/(I) Cu(II)		
CuPc/CNP before CO ₂ R	20184.6	-	13841.7	-	-	-		
CuPc/CNP after CO ₂ R	24201.5	41486.2	10368.8	22726.9	1.7	2.2		
EDTA/CuPc/CNP before CO ₂ R	11611.8	_	5412.6	-	-	-		
EDTA/CuPc/CNP after CO ₂ R	9590.1	11155.5	5116.0	5663.3-	1.2	1.1		

Figure S22 X-ray photoelectron spectra (XPS) high-resolution N 1s spectra of the CuPc/CNP samples. (a) Before CO₂R and (b) after CO₂R. For the post-electrolysis sample, we used N₂ to protect the cell when the current was cut off, and transferred the cell to a glove box. We disassembled the cell and stored the sample in a glove box to avoid contacting with O₂.

Figure S23 X-ray photoelectron spectra (XPS) high-resolution N 1s spectra of the EDTA decorated CuPc/CNP samples. (a) Before CO₂R and (b) after CO₂R. For the post-electrolysis sample, we used N₂ to protect the cell when the current was cut off, and transferred the cell to a glove box. We disassembled the cell and stored the sample in a glove box to avoid contacting with O₂.

	Pyridinic N	Pyrrolic N	Cu-N	N-(C) ₃	Quaternary N	Cu-N normalized value	Cu-N lost ratio
CuPc/CNP before CO ₂ R	18011.5	10011.5	2511.5	-	2011.5	0.14	570/
CuPc/CNP after CO ₂ R	12070.4	9047.6	770.6	-	6238.3	0.06	51%
EDTA/CuPc/ CNP before CO ₂ R	12649.1	6780.6	5295.4	7558.6	8101.1	0.42	250/
EDTA/CuPc/ CNP after CO ₂ R	4483.1	1875.8	1193.5	679.8	1889.2	0.27	33%

Table S4 XPS integration areas for N 1*s* peaks. The Cu-N peak area normalized by the inert pyridinic peak area (which is assumed to not change during the reaction)

Figure S24 Scanning electron microscopy (SEM) and images of the CuPc/CNP sample. (a) before CO_2R , (b) after CO_2R . The CO_2R condition was under 100 mA cm⁻² in an acidic MEA cell. All post-electrolysis samples were protected with N₂ before characterizations.

EDTA/CuPc/CNP before CO₂R

EDTA/CuPc/CNP after CO₂R

Figure S25 Scanning electron microscopy (SEM) and images of the EDTA decorated CuPc/CNP sample. (a) before CO_2R , (b) after CO_2R . The CO_2R condition was under 100 mA cm⁻² in an acidic MEA cell. All post-electrolysis samples were protected with N₂ before characterizations.

References

- 1 Ozden, A. *et al.* Cascade CO₂ electroreduction enables efficient carbonate-free production of ethylene. *Joule* **5**, 706-719 (2021).
- 2 Xie, K. *et al.* Bipolar membrane electrolyzers enable high single-pass CO₂ electroreduction to multicarbon products. *Nat Commun* **13**, 3609 (2022).
- 3 Ma, M. *et al.* Insights into the carbon balance for CO₂ electroreduction on Cu using gas diffusion electrode reactor designs. *Energy Environ. Sci.* **13**, 977-985 (2020).
- 4 Sisler, J. *et al.* Ethylene electrosynthesis: A comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO₂–CO–C₂H₄ tandems. *ACS Energy Lett.* **6**, 997-1002 (2021).
- 5 Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO₂ from the atmosphere. *Joule* **2**, 1573-1594 (2018).
- Gao, H. *et al.* Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO₂ capture using monoethanolamine. *Int. J. Greenh. Gas Control.* 24, 87-97 (2014).
- 7 Xu, Y. *et al.* Low coordination number copper catalysts for electrochemical CO₂ methanation in a membrane electrode assembly. *Nat. Commun.* **12**, 2932 (2021).
- 8 Zhang, L. *et al.* Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO₂ to CH₄. *J. Am. Chem. Soc.* **143**, 3808-3816 (2021).