Template-jumping prime editing enables large insertion and exon rewriting in vivo

Chunwei Zheng^{1#}, Bin Liu^{1#}, Xiaolong Dong¹, Nicholas Gaston¹, Erik J. Sontheimer^{1-3*}, Wen Xue^{1-4*}

¹RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.

²Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.

³Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.

⁴Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.

Equal contributions to this study

*Corresponding author: Erik J. Sontheimer (erik.sontheimer@umassmed.edu), Wen Xue (wen.xue@umassmed.edu)

Genomic se	equence	500 bp insertion	
aacctctaaggtttgctt	acgatggagccagagagga	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACG	Reference Precise insertion 9
		тт	Indel 1
			Indel 1
			Indel 1
GCGACGTAAACGGCCACA	AGTTCAGCGTGTCCGGCG	AGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAG	
•••••	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •		
••••••••••••••••••			
CTGCCCGTGCCCTGGCCC	ACCCTCGTGACCACCCTG	ACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAA	
•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • • • • • • • • • • • • • •		
GTCCGCCATGCCCGAAGG	CTACGTCCAGGAGCGCACO	CATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACA	
•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	·····		1
	••••••		
CCCTGGTGAACCGCATCG	AGCTGAAGGGCATCGACTT	CAAGGAGGTAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCTCAG	
		Genomic sequence	
TTGGGGGGATTGTTATAA	CTTCGTATAGCATACAT	TATACGAAGTTAT <mark>cccagaacctgagctgctctgacgcggctgtctggtgcgtttcac</mark>	
•••••	••••••	•••••••••••••••••••••••••••••••••••••••	
	TCCCCACCO		
	IGGCCACCC	0000	

d

Supplementary Fig. 1. TJ-pegRNA achieved accurate large insertion at AAVS1 locus. a, Schematic showing procedure for determining accuracy of 200-, 300-, and 500-bp insertions at the AAVS1 locus. Insertion bands were cut out of the agarose gel and purified for Sanger sequencing and TA cloning. b-d, Sanger sequencing of single clone of b, 200 bp insertion c, 300 bp insertion d, 500 bp insertion at AAVS1 locus. Deleted bases were indicated by blue box and mismatches relative to reference are in red.

HEK3 200 bp insertion

Supplementary Fig. 2. TJ-PE mediates insertions at multiple genomic loci and cell lines. a, New control nicking sgRNA designed to nick at the same position as nicking sgRNA, but on the opposite strand at the *HEK3* locus. The insertion band of the expected size was observed following TJ-PE treatment (arrow), but not controls. Experiments were done three times, and one is shown. b, Insertion of a 200-bp DNA fragment with concomitant deletion of 72 bp at *PRNP* locus in HEK293T cells. The insertion bands of expected size are indicated with arrows. The nonspecific bands are indicated with asterisk. Experiments were done three times, and one is shown. c, Insertion of a 200-bp DNA fragment with concomitant deletion of 70 bp at *IDS* locus. The insertion bands of the expected size are indicated with arrows. Experiments were done three times, and one is shown. c, Insertion bands of the expected size are indicated with arrows. Experiments were done three times, and one is shown. d, Insertion of a 200-bp DNA fragment measured by ddPCR at multiple loci in U-2 OS cells. PE plasmid served as negative control. e, Insertion of a 200-bp DNA fragment measured by ddPCR at multiple loci in A549 cells. PE plasmid served as control. Results were obtained from three independent experiments, shown as mean \pm s.d.

Supplementary Fig. 3. Comparison of the insertion efficiencies of the different lengths of PBS2 sequence or secondary structure. a, Agarose gel shows the insertion band of the expected size for TJ-pegRNA with 13, 17 or 35-bp RC-PBS2 at the *HEK3* locus (arrow). b, Insertion efficiency of a 200-bp DNA fragment with various lengths of PBS2 measured by ddPCR. c, Comparing insertion of GFP fragments without or with a hairpin (LoxP) at the HEK3 locus. Insertion efficiency was quantified by ddPCR. Results were obtained from three independent experiments, shown as mean \pm s.d.

Supplementary Fig. 4. NK-TJ-pegRNA enables comparable insertion efficiency with TJ-pegRNA. a, Illustration of nicking-TJ-pegRNA (NK-TJ-pegRNA), which contains PBS1, RC-PBS2 and an insertion sequence. Compared to TJ-pegRNA, the PBS1 sequence of NK-TJ-pegRNA first hybridizes to the DNA flap generated by the nicking sgRNA. The newly synthesized PBS2 hybridizes to the second nicked site generated by NK-TJ-pegRNA to initiate the second strand synthesis. **b**, Agarose Gel shows insertion bands of expected sizes (200 bp and 300 bp) at *AAVS1* locus. **c**, Insertion efficiency quantified by ddPCR.

Supplementary Fig. 5. TJ-pegRNA with 3'-RNA aptamer. a, Diagram of pegRNA with 3'-RNA aptamer. **b**, Structure of the MCP and PE fusion protein. Schematic representations of PE-MCP fusion proteins. **c**, Insertion efficiency quantified by ddPCR at *HEK3* locus. Results were obtained from two independent experiments.

Supplementary Fig. 6. Comparison of insertion efficiencies mediated by GRAND and TJ-PE. a, Illustration of TJ-pegRNA and GRAND pegRNAs. b, Insertion of 200-bp DNA fragment with TJ-PE or GRAND editing at *HEK3*, *IDS* and *PRNP* loci in HEK293T cells. c, Agarose gel shows insertion bands of expected sizes (arrows). d, Insertion of DNA fragment at *AAVS1* (500bp), *CCR5* (400-bp), *PRNP* (400-bp) and *IDS* (400-bp) loci. Insertion efficiency was quantified by ddPCR. Results were obtained from three independent experiments, shown as mean \pm s.d.

Supplementary Fig. 7. TJ-pegRNA mediates GFP reporter repair and functional gene insertion. a, Flow cytometry plots show the gating of TLR-MCV1 cells in control, PE3 and TJ-PE treated groups. b, Flow cytometry plots show the gating of GFP expression cells. c, Sanger sequence of SA-GFP and SA-Puro insertion. The insertion bands of predicted size were gel purified. Sanger sequencing shows precise insertions.

а

b

Full-length TJ-pegRNA

▼ Cut site GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG	Insertion reference ^{0.4%} Precise
GGATCCTGGGAGGGAGAGCTTGGCAGGGGGGGGGGGGGG	WT reference 0.43% Indels

Split circular TJ-petRNA

✓ Cut site Cut site GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAG GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAA GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAA GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACA GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACA GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCCCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCTCCCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCCAACTGGGGTAACCTTTGAGTTCCTCAGTTGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTATCCCAGAACCTGAG GGATAGGGATAACAGGGTAATGTGCCCCAACTGGGGTAACCTTTGAGTTCCTCAGTTGGGGGGATTGTTATAACTTCGTATAGCATACATTATACGAAGTTACCCCAGAACCTGAG	Insertion reference 41.8% Precise edits 0.9% 0.7% 0.7% 0.5% 0.4% 0.4% 0.4% 0.3% 0.3% 0.3% 0.2% 0.2%
GGATCCTGGGAGGGAGGCTTGGCAGGGGGGGGGGGGGGG	WT reference

Supplementary Fig. 8. Split circular TJ-PE mediates insertion at AAVS1 a, Illustration of the circularization pathway to generate split circular TJ-PE. Yellow: circularization sequence. b, Sequencing analysis of the 100-bp insertion. All alleles observed with frequency $\geq 0.2\%$ are shown. Green: Insertion sequence. Red: Indels.

Fig.S9 b а Saline TJ (D14, NTBC on) 0.15 % of FAH⁺ hepatocytes 0.10 0.05 0 ΤJ Saline d TJ (D35, NTBC off) С Saline Precise editing 5 Imperfect editing H&E Indels Editing efficiency (%) 3 2 Fah IHC 1 0 е тJ Saline Cut site GAACAGATTCGGAGAGCCAATCCCCATTTCC<u>AAA</u>GCC<u>CAT</u>GAACACA<u>TT</u>TTC<u>GGG</u>ATG<u>GTC</u>CTCATGAACGACTGGAGCAGTA 87.7% WΤT..A..C..T......G..T..C..G....A..T..A....TT.G.........G... 3.5% Precise edits 2.1% Imperfect 1.6%G.... editsG... 0.3% 0.3% Indels 0.2% f TJ-Nicking pegRNA sgRNA RT (497 aa) NLS polyA NLS N-Cas9 Intein_N polyA Intein C-Cas9 \vdash

Supplementary Fig. 9. TJ-PE rewrites a correction exon in mouse liver. a, IHC staining of liver sections from *Fah*-mutant mice 14 days after TJ-PE treatment. FAH+ hepatocytes are indicated by arrows; scale bar, 100 µm. The lower panel of TJ is a high-magnification view (box with black line). Experiments were done two times, and one is shown. **b**, Quantification of FAH+ hepatocytes by IHC two weeks after hydrodynamic injection. (n=2 mice). **c**, Hematoxylin and eosin (H&E) staining and FAH Immunohistochemistry (IHC) staining of mouse liver sections 35 days after NTBC withdrawal. Experiments were done three times, and one is shown. Scale bar, 100 µm. **d**, Amplicon sequencing of exon 8 from TJ-PE-treated mouse livers two months after NTBC withdrawal. Results were obtained from three independent experiments, shown as mean \pm s.d. **e**, Allele frequencies of a representative liver in **d**. All alleles \ge 0.2% are shown. Green: Genomic sequence. Codons are underlined. Black: synonymous mutations in the correction exon. Red: correction G. Blue: indel. **f**, Schematic of the splitintein dual AAV8.

Supplementary Fig. 10. FACS gating examples for GFP-positive or Cherry-positive cells.

Supplementary Table 1. Sequences of pegRNAs and sgRNAs used in this study. sgRNA scaffold GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGGACCGA GTCGGTCC RC-PBS2-Insertion-PBS1-Tevopreq1

	spacer	
pegRNA	3')	3' extension
		GCAGCTCAGGTTCTGGGATAACTTCGTATAATGTATGCTATACGA
		AGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCCA
		GTTGGGGCACATTACCCTGTTATCCCTACCTCGCCGGACACGCTG
		AACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGC
AAVS1 200 bp	GATGGAGC	ACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATTCCTCTC
insertion TJ-	CAGAGAG	GGCTCTCTCTCTCTGACGCGGTTCTATCTAGTTACGCGTTAAACC
pegRNA	GATCC	AACTAGAAATTTTTTT
		CCGGGCAGGTCACGCATATAACTTCGTATAATGTATGCTATACGA
		AGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCCA
		GTTGGGGCACATTACCCTGTTATCCCTACCTCGCCGGACACGCTG
		AACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGC
AAVS1 200 bp	GATGGAGC	ACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACCATTCCTCTC
insertion	CAGAGAG	GGCTCTCTCTCTCTGACGCGGTTCTATCTAGTTACGCGTTAAACC
pegRNA	GATCC	AACTAGAAATTTTTTT
		GCAGCTCAGGTTCTGGGATAACTTCGTATAATGTATGCTATACGA
		AGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCCA
		GTTGGGGCACATTACCCTGTTATCCCTATAGGTCAGGGTGGTCAC
		GAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGA
AAVS1 300 bp	GATGGAGC	ACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCTCGC
insertion TJ-	CAGAGAG	CGGACACGCTGAACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGA
pegRNA	GATCC	CCAGGATGGGCACCACCCGGTGAACAGCTCCTCGCCCTTGCTCA

		CCATTCCTCTCGGCTCTCTCTCTCTCTGACGCGGTTCTATCTA
		ACGCGTTAAACCAACTAGAAATTTTTTT
		CCGGGCAGGTCACGCATATAACTTCGTATAATGTATGCTATACGA
		AGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCCA
		GTTGGGGCACATTACCCTGTTATCCCTATAGGTCAGGGTGGTCAC
		GAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTGGTGCAGATGA
		ACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCTCGC
		CGGACACGCTGAACTTGTGGCCGTTTACGTCGCCGTCCAGCTCGA
AAVS1 300 bp	GATGGAGC	CCAGGATGGGCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCA
insertion	CAGAGAG	CCATTCCTCTCGGCTCTCTCTCTCTGACGCGGTTCTATCTA
pegRNA	GATCC	ACGCGTTAAACCAACTAGAAATTTTTTT
		GCAGCTCAGGTTCTGGGATAACTTCGTATAATGTATGCTATACGA
		AGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCCA
		GTTGGGGCACATTACCCTGTTATCCCTACCTCCTTGAAGTCGATG
		CCCTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTTC
		ACCTCGGCGCGGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATG
		GTGCGCTCCTGGACGTAGCCTTCGGGGCATGGCGGACTTGAAGAA
		GICGIGCIGCIICAIGIGGICGGGGIAGCGGCIGAAGCACIGCAC
1 1 US1 500 hr	GATGGAGC	
insertion TI	CAGAGAG	
nisertion 1J-	GATCC	TTTT
pegnina	GATGGAGC	
	CAGAGAG	AGTTATAACAATCCCCCAACTGAGAGAACTCAAAAGGTTACCCCA
	GATCC	GTTGGGGCACATTACCCTGTTATCCCTACCTCCTTGAAGTCGATG
	Gillee	CCCTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTTC
		ACCTCGGCGCGGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGATG
		GTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAA
		GTCGTGCTGCTTCATGTGGTCGGGGTAGCGGCTGAAGCACTGCAC
		GCCGTAGGTCAGGGTGGTCACGAGGGTGGGCCAGGGCACGGGCA
		GCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGCCGTAGG
		TGGCATCGCCCTCGCCCGGGACACGCTGAACTTGTGGCCGT
		TTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTGA
AAVS1 500 bp		ACAGCTCCTCGCCCTTGCTCACCATTCCTCTCGGCTCTCTCT
insertion		TTGACGCGGTTCTATCTAGTTACGCGTTAAACCAACTAGAAATTT
pegRNA		TTTT
	GGCCCAGA	GTCAACCAGTATCCCGGATGGTGAGCAAGGGCGAGGAGCTGTTC
	CTGAGCAC	ACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA
	GTGA	CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
		CCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGC
<i>HEK3</i> 200 bp		TGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGTGC
insertion IJ-		
pegRNA		
UEV_{2} 200 hr		
insertion	GGCCCAGA	
antrol DDS2		
pegRNA	GTGA	
PRNP 200 hn	GCAGTGGT	GCATGTTTTCACGATAGATGGTGAGCAAGGCGAGGAGCACCTCTTC
insertion TL	GGGGGGGCC	
negRNA	TTGG	CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
Pegitina	1100	COUCCACITICAUCUTUTUCUAUUUUUAUUUUUAUUUUUATUUUA

		CCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGC
		TGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTAAGGCC
		ACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA
		CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
		CCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGC
PRNP 200 bp	GCAGTGGT	TGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTAAGGCC
insertion	GGGGGGGCC	CCCCACCATCTCTCTCTGACGCGGTTCTATCTAGTTACGCGTTAA
pegRNA	TTGG	ACCAACTAGAAATTTTTTT
		ACTGAGGGATGTCTGAAATGGTGAGCAAGGGCGAGGAGCTGTTC
		ACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA
		CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
		CCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGC
IDS 200 hp	GCATTTTC	TGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACACGG
incontion TI	CATTCCCT	
Insertion 1J-	GATICUU	
pegrina	UAUI	
		CGGATCUTUTUCAAGTATGGTGAGCAAGGGCGAGGAGCTGTTCA
		CCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAAC
		GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCAC
		CTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCT
<i>IDS</i> 200 bp	GCATTTTC	GCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACACGGA
insertion	GATTCCGT	ATCGAAATCTCTCTCTGACGCGGTTCTATCTAGTTACGCGTTAAA
pegRNA	GACT	CCAACTAGAAATTTTTTT
		GGTACCTATCGATTGTCATGGTGAGCAAGGGCGAGGAGCTGTTCA
		CCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAAC
		GGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCAC
		CTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCT
		GCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGT
		GCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTT
		CTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCAT
CCR5400 hp	CTCACTAT	AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGTA
Incertion TI	GCTGCCGC	GCGATAACAGCGTAATGCCCCCACCATACTCTCTCTCTCACGCG
msertion 1J-		
pegrinA	CCAU	
		CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
		CCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGC
		TGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCG
		TGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACT
		TCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA
		TCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTG
<i>IDS</i> 400 bp	GCATTTTC	AAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGT
Insertion TJ-	GATTCCGT	AGGGATAACAGGGTAATCACGGAATCGAAATCTCTCTCTTGACGC
pegRNA	GACT	GGTTCTATCTAGTTACGCGTTAAACCAACTAGAAATTTTTT
		GCATGTTTTCACGATAGATGGTGAGCAAGGGCGAGGAGCTGTTC
		ACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA
		CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCA
		CCTACGGCAAGCTGACCCTGAAGTTCATCTCCACCACCCCCAAGC
<i>PRNP</i> 400 bp	GCAGTGGT	TUTTUAAGTCUGCUATGCUUGAAGGCTACGTCUAGGAGCGCACCA
Insertion TJ-	GGGGGGGCC	TCITCITCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTG
pegRNA	TTGG	AAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGT

		AGGGATAACAGGGTAATAGGCCCCCCACCATCTCTCTTGACGC
		GGTTCTATCTAGTTACGCGTTAAACCAACTAGAAATTTTTTT
		GTCAGGGTGGTCACGAGCGTAGGCCAGGGAACAGGCAGCTTACC
GFP 89 bp	AGTTCAGC	CGTTGTGCAAATGAATTTGAGTGTGAGTTTCCCATAGGTGGCATC
replacement	GTGTCCGG	GCCCTCGCCCGGACACGCTGATAAATATCTTGACGCGGTT
TJ-pegRNA	CTT	CTATCTAGTTACGCGTTAAACCAACTAGAAATTTTTTT
		GCAGCTCAGGTTCTGGGTCAGGCACCGGGCTTGCGGGTCATGCAC
		CAGGTGCGCGGTCCTTCGGGCACCTCGACGTCGGCGGTGACGGTG
		AAGCCGAGCCGCTCGTAGAAGGGGAGGTTGTGGGGCGCGGAGGT
		CTCCAGGAAGGCGGGCACCCCGGCGCGCTCGGCCGCCTCCACTCC
		GGGGAGCACGACGGCGCTGCCCAGACCCTTGCCCTGGTGGTCGG
		GCGAGACGCCGACGGTGGCCAGGAACCACGCGGGCTCCTTGGGC
		CGGTGCGGCGCCAGGAGGCCTTCCATCTGTTGCTGCGCGGCCAGC
		CGGGAACCGCTCAACTCGGCCATGCGCGGGCCGATCTCGGCGAA
		CACCGCCCCGCTTCGACGCTCTCCGGCGTGGTCCAGACCGCCAC
		CGCGGCGCAGTCGTCCGCGCGACCCACACCTTGTCGATGTCGAGCCC
		GACGCGCGTGAGGAAGAGTTCTTGCAGCTCGGTGACCCGCTCGAT
		GTGGCGGTCCGGATCGACGGTGTGGCGCGTGGCGGGGTAGTCGG
		CGAACGCGGCGGCGAGGGTGCGTACGGCCCTGGGGACGTCGTCG
		CGGGTGGCGAGGCGCACCGTGGGCTTGTACTCGGTCATTGGGCCA
		GGATTCTCCTCGACGTCACCGCATGTTAGCAGACTTCCTCTGCCCT
SA-Puro	GATGGAGC	CTCCGCTGCCAGATCTCTCGAGGCCCTGTGGGAGGAAGAGAAGA
insertion	CAGAGAG	GGTCAGAAGCTTTCCTCTCTGGCTCTCTCTCTCTCTGACGCGGTTCT
TJ-pegRNA	GATCC	ATCTAGTTACGCGTTAAACCAACTAGAAATTTTTTT
	1	GCAGCTCAGGTTCTGGGCTCAGAATTCCTTGTACAGCTCGTCCAT
		GCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCAGGACCA
		TGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGGACTGGG
		TGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCG
		ATGGGGGTGTTCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCG
		TCCTCGATGTTGTGGCGGATCTTGAAGTTCACCTTGATGCCGTTCT
		TCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGTAGTTGTA
		CTCCAGCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGAT
		GCCCTTCAGCTCGATGCGGTTCACCAGGGTGTCGCCCTCGAACTT
		CACCTCGGCGCGGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGAT
		GGTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGA
		AGTCGTGCTGCTTCATGTGGTCGGGGTAGCGGCTGAAGCACTGCA
		CGCCGTAGGTCAGGGTGGTCACGAGGGTGGGCCAGGGCACGGGC
		AGCTTGCCGGTGGTGCAGATGAACTTCAGGGTCAGCTTGCCGTAG
		GTGGCATCGCCCTCGCCCGGACACGCTGAACTTGTGGCCG
		TTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTG
		AACAGCTCCTCGCCCTTGCTCACTGGGCCAGGATTCTCCTCGACG
		TCACCGCATGTTAGCAGACTTCCTCTGCCCTCTCCGCTGCCAGATC
SA-GFP	GATGGAGC	TCTCGAGGCCCTGTGGGAGGAAGAGAGAGAGGTCAGAAGCTTTCC
insertion	CAGAGAG	TCTCTGGCTCTCTCTCTCTGACGCGGTTCTATCTAGTTACGCGTT
TJ-pegRNA	GATCC	AAACCAACTAGAAATTTTTTT
		AGACCCTCGACCGTCGATTGTCCACTGGTCAACAATAGATGACTT
		ACAACTAATCGGAAGGTGCAGAGACTCGACGGGAGCTACCCTAA
		CGTCAAGACGAGGGTAAAGAGAGAGTCCAATTCTCAAAGCCAAT
		AGGCAGTAGCGAAAGCTGCAAGAGAATGAAAATCCGTTGACCTT
		AAACGGTCGTGTGGGTTCAAGTCCCTCCACCCCACGCCGGAAAC
		GCAATAGCCGAAAAACAAAAAAGCACATGAGGATCACCCATGTG
		CGCAGCTCAGGTTCTGGGATAACTTCGTATAATGTATGCTATACG
		AAGTTATAACAATCCCCCAACTGAGAGAACTCAAAGGTTACCCC
AAVS1 split		AGTTGGGGCACATTACCCTGTTATCCCTATCCTCTGGCTCCATC
circular TJ-		GTAAGCAAACCTTAGAGGTTCTGGCAAGCAAAAAAAAAA
pegRNA		CTATTATGCGTTACCGGCGAGACGCTACGGACTTAAATAATTGAG

		CCTTAAAGAAGAAATTCTTTAAGTGGATGCTCTCAAACTCAGGGA AACCTAAATCTAGTTATAGACAAGGCAATCCTGAGCCAAGCCGA
		AGTAGTAATTAGTAAGACCAGTGGACAATCGACGGATAACAGCA
		TATCTAG
		TAAGAACAGAACATCAGAGGAAGCTGGGCCACCAGGCATTACCG
		CTCCAGTCGTTCATCAAAACCATTCCAAATATGTGCTCGTGAGCC
	GTAGGCCC	TTGGAAATGGGAATGGGTTCACCGAATCTGTTCCCAGGGCTATAT
Fah TJ-	TGGGAACA	ATCTAGACGCGGTTCTATCTAGTTACGCGTTAAACCAACTAGAAT
pegRNA-1	GATT	TTTTTT
		TCAGAGGAAGCTGGGCCACCACATTACCGCTCCAATCATTCAT
	GTAGGCCC	AAACCATTCCAAATATATGCTCGTGAGCCTTGGAGATCGGAATGG
Fah TJ-	TGGGAACA	GTTCACCAAACCTGTTCCCAGGGCTATATATCTAGACGCGGTTCT
pegRNA-2	GATT	ATCTAGTTACGCGTTAAACCAACTAGAATTTTTTT

Nicking sgRNA	spacer sequence (5'-3')
AAVS1 nicking sgRNA	GCAGCTCAGGTTCTGGGAGA
HEK3 nicking sgRNA	GTCAACCAGTATCCCGGTGC
HEK3 control nicking sgRNA	GCACATACTAGCCCCTGTCT
PRNP nicking sgRNA	GCATGTTTTCACGATAGTAA
IDS nicking sgRNA	ACTGAGGGATGTCTGAAGGC
TLR reporter nicking sgRNA	TAGGTCAGGGTGGTCACGA
Fah nicking sgRNA-1	CCCTAAGAACAGAACATCAG
Fah nicking sgRNA-2	CAGAGGAAGCTGGGCCACC

Supplementary Table 2. Sequences of primers used for genomic DNA amplification.

	F (5'-3')	R (5'-3')
AAVS1	CTTGCCAGAACCTCTAAGGT	CCAGGATCAGTGAAACGCAC
HEK3	TCTGCTGCAAGTAAGCATGCATTTG	GCCCCTTCCAGGGACCTC
PRNP	AGTAAGCCAAAAACCAACATG	CTGTACTCATCCATGGGCCT
IDS	ACGTTGAGCTGTGCAGAGAA	GTGCGTATGGAATAGCCCAT

Supplementary Table 3. Sequences of primers used for ddPCR.

Gene	F (5'-3')	R (5'-3')	Probe
AAVSI	CTTGCCAGAACCTCT AAGGT	GCTGAACTTGTGGCC GTTT	Ins CACCACCCCGGTGAACAGCTC
HEK3	GCATGCATTTGTAGG CTTGATG	CAGCCAAACTTGTCA ACCAG	WT CCTGGCCTGGGTCAATCCTTGG Ins CACGGGCAGCTTGCCGGTGG Ins CACCACCCCGGTGAACAGCTC
PRNP	F GTCAGTGGAACAA GCCGAGT F TAGGTCAGGGTGG TCACGAG	ACTTGGTTGGGGTAA C GGTG	WT TGAAGCACATGGCTGGTGCTGC Ins CACGGGCAGCTTGCCGGTGG Ins CACCACCCCGGTGAACAGCTC
IDS	F GCTGAACTTGTGG CCGTTT F TAGGTCAGGGTGG TCACGAG	GTGCGTATGGAATAG CCCAT	Ins CACCACCCCGGTGAACAGCTC Ins CACGGGCAGCTTGCCGGTGG

	TAGGTCAGGGTGGT	TTCCTGGGAGAGACG	Ins CACGGGCAGCTTGCCGGTGG
CCR5	CACGAG	CAAAC	

Supplementary Table 4. Sequences of primers used for high throughput sequencing.

Gene	F (5'-3')	R (5'-3')
	AGACGTGTGCTCTTCCGATCTCTTGCC	CTACACGACGCTCTTCCGATCTCCAGGAT
AAVS1	AGAACCTCTAAGGT	CAGTGAAACGCAC
	CTACACGACGCTCTTCCGATCTACCAA	AGACGTGTGCTCTTCCGATCTTGTCCCAT
Fah	CTTTCTCCATGGCAG	ACCCAACTCCTG