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Figure S1. Fibroblasts reprogrammed to hiTSCs with GOKM undergo MET and express hTSC markers. (a)
gPCR analysis of the indicated transgenes in hiTSC colonies and negative controls. The highest sample for
each transgene was set to 1. Results were normalized to an intronic region of GAPDH and are shown as
fold change. For each sample two replicates (n=2) were used. Dashed lines mark the negative threshold
of the various transgenes based on uninfected cells. (b) Graph depicting the differences in the
proliferation rate of early (~5) and late passage (~30) hbdTSCs in 3 independent hiTSC clones (n=3) over 8
days. Although we observed differences in the proliferation rate between clones, only mild differences
were seen between early and late passage. (c) gPCR analysis of mMRNA levels of the indicated transgenes
in various hiTSC colonies and in GOKM or OSKM transduced fibroblasts following 3 days of dox. The highest
sample for each transgene was set to 1. Results were normalized to the mRNA levels of GAPDH and are
shown as fold change. For each sample two replicates (n= 2) were used. hiTSC colonies were derived from
3 independent reprogramming experiments (n= 3). (d) Graph showing an average number of hiTSC
colonies generated by OKM or GOKM in the indicated fibroblast lines. Error bars indicate standard
deviation between 4 independent experiments/replicates (n= 4, for GM2 n=8). **** indicates p-value <
0.0001 (95% confidence interval -107.3 to -87.18 for Fib (KEN) vs Fib (GM2) and -81.12 to -62.88 for Fib
(KEN) vs Fib (PCS), using 2-tailed unpaired t test calculated by GraphPad Prism (8.3.0). Mean values (from
left to right) are: 0.000, 107.8, 82.50, 10.50. (e-g) qPCR analysis of mRNA levels of trophoblast markers
GATA2 and TFAP2A (e), epithelial markers EPCAM, OCLN, KRT18, CDH1 (f) and HLA-A (g) in the indicated
samples. The highest sample for each gene was set to 1. Results were normalized to the mRNA levels of
GAPDH and are shown as fold change. For each sample two replicates (n =2) were used. (h) Flow
cytometry histogram of HLA-A/B/C in the indicated samples using W6/32 antibody. Source data are

provided as a Source Data file.
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Figure S2. RNA-seq analysis indicates that hiTSCs have a transcriptome enriched for gene ontology terms
related to placental development. (a) Scatter plots displaying pairwise correlations of gene expression
levels for hbdTSC#2 vs KEN fibroblasts, hbdTSC#2 vs hESCs, hbdTSC#2 vs hbdTSC#9, hbdTSC#2 vs hiTSCH4,
hbdTSC#2 vs hiTSCH#11, and hbdTSCH#2 vs hiTSC#16. Two RNA-seq replicates were generated for
differential gene expression analyses (log2FC in absolute value >1, p.adj < 0.05, and raw counts > 30 in at
least one of the samples). Representative genes from each cell type are marked. R? value was calculated
for each pairwise comparison, demonstrating a high degree of similarity between hiTSCs and hbdTSCs. (b-
e) Bar graph showing the highest enriched GO terms for top 1000 most differentially expressed genes
between hiTSCs and fibroblasts using different categories within EnrichR. adjusted p-value was calculated

using Benjamini-Hochberg. Source data are provided as a Source Data file.
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Figure S3. ATAC-seq analysis on GOKM and OSKM-transduced cells following 3 days of transgene
induction. (a) Venn diagram of ATAC-seq peaks for fibroblasts, hbdTSCs, and hESCs demonstrating the
number of peaks that are unique (FDR< 0.05) to each cell type. (b-d) Scatter plots displaying pairwise
correlations of differentially accessible peaks between hESCs vs hbdTSCs (b), fibroblasts vs hbdTSCs (c),
and fibroblasts vs hESCs (d) (FDR< 0.05). Differential accessible peaks along the horizontal axes or the
vertical axes are labeled by dark blue and dark orange, respectively. Peaks associated with genes that are
expressed in the corresponding cell type along the horizontal axes are labeled with light blue, while peaks
associated with genes that are specific to the vertical axes are labeled with light orange. The total number
of exclusive peaks and representative genes for each cell type are depicted. (e-f) Venn diagrams of ATAC-
seq peaks showing the overlap between ‘GOKM D3’ or ‘OSKM D3’-unique peaks with hbdTSC-unique
peaks (e) or hESC-unique peaks (f) (FDR< 0.05). (g) Heatmap showing the 3,211 GOKM and the 983 OSKM-
unique peaks that overlap with the 38,689 hESC-unique peaks (after subtracting ‘fibroblasts’ peaks, FDR<
0.05). (h) Scatter plot displaying pairwise correlation of differentially accessible peaks between ‘GOKM
D3’ and ‘OSKM D3’. GOKM and OSKM exclusive peaks are labeled by dark blue and dark orange,
respectively, while peaks that are associated with the same hbdTSC-expressed genes are marked by light
blue (GOKM) and light orange (GOKM). The total number of exclusive peaks for each combination and the
number of their shared associated genes (marked by green) are indicated. Representative genes and their
corresponding peaks are depicted. (i) HOMER analysis on the peaks associated with the 128 shared
hbdTSC genes from (g) reveals binding site enrichment for GATA3, KLF5 and OCT4 for GOKM and SOX2,
TEAD4 and OCT4-SOX17 for OSKM. P-value was calculated using the binomial distributions. (j) Bar graphs
showing the highest enriched GO terms and their p-value for the 128 shared hbdTSC genes from (g) using
different categories within EnrichR. p-value was calculated using Fisher exact test. Source data are

provided as a Source Data file.
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Figure S4. GOKM and OSKM open and close different regions along the chromatin at early stages of
reprogramming. (a) Venn diagram of ATAC-seq peaks for fibroblasts, ‘GOKM D3’, and ‘OSKM D3’ showing
peaks that are unique (FDR< 0.05) to each group. Each set of peaks was defined as follows: closed in
fibroblasts but open in induced cells (CO- closed open), open in fibroblasts but closed in induced cells (OC-
open closed), open in fibroblasts and remains open in induced cells (OO- open open). Note that OO in
GOKM is OC for OSKM, and vice versa. (b-k) Left- HOMER analysis on the corresponding peak set showing
the most enriched motifs and their p-value. p-value was calculated using the binomial distributions. Right-
Bar graphs showing the highest enriched GO terms and their p-value for each group of genes that is
associated with its corresponding peak set. p-value was calculated using Fisher exact test. The number of
genes that are associated with each peaks set is depicted. Enriched transcription factors motifs from the
same family are depicted above each motif. Transcription factor binding motifs marked by red represent

the shown motifs. Source data are provided as a Source Data file.
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Figure S5. ChIP-seq analysis for H3K4me2 on GOKM and OSKM-transduced cells. (a) Venn diagram of
ChlP-seq for H3K4me2 showing peaks that are unique to ‘fibroblasts’, ‘hbdTSCs’, and ‘hESCs’ (FDR< 0.05).
(b-d) Scatter plots displaying pairwise correlations of differentially deposited peaks between ‘hESCs’ vs
‘hbdTSCs’ (b), ‘fibroblasts’ vs ‘hbdTSCs’ (c), and ‘fibroblasts’ vs ‘hESCs’ (d) FDR< 0.05). Differential
deposited peaks along the horizontal axes or the vertical axes are labeled by dark blue and dark orange,
respectively. Peaks associated with genes that are expressed in the corresponding cell type along the
horizontal axes are labeled with light blue. Peaks associated with genes that are specific to samples along
the vertical axes are labeled with light orange. The total number of exclusive peaks and representative
genes for each cell type are depicted. (e) Venn diagram of ‘GOKM D3’ and ‘OSKM D3’-unique H3K4me2
peaks after subtracting ‘fibroblasts’ peaks (FDR < 0.05). (f-g) Venn diagrams of H3K4me2 peaks showing
the overlap between ‘GOKM D3’ or ‘OSKM D3’-unique peaks with ‘hbdTSC’-unique peaks (f) or ‘hESC'-
unique peaks (g) (FDR< 0.05). (h) Scatter plot of differentially accessible peaks between ‘GOKM D3’ and
‘OSKM D3’ (FDR< 0.05). Peaks that are exclusive to GOKM or OSKM are labeled with dark blue and dark
orange, respectively. Peaks associated with ‘hbdTSC’-expressed genes are labeled with light blue (GOKM)
and light orange (OSKM). The total number of exclusive peaks, the number of their associated genes and
representative genes are depicted. (i) HOMER analysis on OSKM or GOKM exclusive peaks reveals motif
enrichment for each combination. P-value was calculated using the binomial distributions. (j) Bar graphs
showing the most enriched GO terms, and their p-value, for the 241 or 51 genes from (h) using EnrichR.
P-value was calculated using Fisher exact test. (k) Scatter plot displaying pairwise correlations of
differentially deposited peaks between ‘GOKM D3’ and ‘OSKM D3’. GOKM/OSKM exclusive peaks are
labeled by dark blue and dark orange, respectively. Peaks that are associated with the same hbdTSC-
expressed genes are marked by light blue (GOKM) and light orange (GOKM). Source data are provided as

a Source Data file.
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Figure S6. hiTSCs can maintain normal karyotype and differentiate into STs and EVTs. Both hbdTSC#2
and hbdTSC#9 were isolated from PGD embryos (see Methods). Geneic examination of the two lines
reveals that hbdTSCH2 is heterozygous for RB mutation and hbdTSC#9 is heterozygous for RB and Marfan
mutations (a) Plots displaying the karyotype of hbdTSC and hiTSC lines. Two hbdTSC lines, hbdTSC#2 and
hbdTSC#9, and four hiTSC clones (n=4), hiTSC#1, hiTSC#2, hiTSC#4 and hiTSC#11, were subjected to
karyotyping analysis using Affymetrix CytoScan 750K array. 50% of hbdTSC lines and 50% of hiTSC lines
displayed an intact chromosomal karyotype. The other 50% of the colonies exhibited few aberrations in a
fraction of the cells. The specific aberrations and the relevant affected fraction of the cells are specified
below each plot. (b) gPCR analysis of relative mRNA levels of ST marker genes PSG1 and CHSY1 at days O,
2 and 6 in ST differentiation protocol. Results were normalized to the mRNA levels of the housekeeping
control gene GAPDH and are shown as fold change relative to day O control cells (hbdTSCs). Error bars
indicate standard deviation between two duplicates. (c) Immunofluorescence staining for the EVT-specific
markers HLA-G and ITGAS and DAPI nuclear staining in PFA-fixated hiTSC#16 and OSKM-hiTSC#1 following
14 days of EVT differentiation. (d, left) Bright field images of isolated hiTSC clones derived using the
indicated episomes, delivered through electroporation. (d, right) Immunofluorescence staining for the
EVT-specific markers HLA-G and ITGAS and DAPI nuclear staining in PFA-fixated hiTSC®P*°™!#7 following

14 days of EVT differentiation. Source data are provided as a Source Data file.
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Figure S7. hiTSCs engrafted into NOD-SCID mice form trophoblastic lesions and hiTSCs are negative to
pluripotency-specific markers. For lesion formation approximately 4x10® hbdTSCs or hiTSCs were
subcutaneously injected into NOD-SCID mice. Lesions were collected nine days after injection and
analyzed by immunohistochemistry for specific markers. (a) Immunohistochemically stained sections of
human placenta and trophoblastic lesions extracted from SCID-NOD mice showing strong KRT7 staining
(top) and scattered staining for the EVT marker HLA-G (middle) and ST marker CSH1 (bottom). White
arrows point to positive staining for the indicated markers. Three independent lesions were stained for
each clone (n=3) (b) hiTSCs are negative to pluripotent-specific markers. Fluorescent images displaying
high expression levels of OCT4, SOX2 and TRA-1-60 in pluripotent stem cells (hESCs, GOKM-hiPSCs and
OKM-hiPSCs, bottom panel) and none (OCT4 and TRA-1-60) to very low expression (SOX2) in 3

independent hiTSC clones (n=3, upper panel).
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Figure S8. GOKM do not acquire pluripotency during hiTSC formation. (a) Graph showing an average
number of hiPSC colonies generated by either OKM or OSKM. Error bars indicate standard deviation
between independent experiments/replicates (OKM n=4, OSKM n=5). **** indicates p-value< 0.0001
(95% confidence interval 27.87 to 47.33), using 2-tailed unpaired t test calculated by GraphPad Prism
(8.3.0). Mean values (from left to right) are: 0.000, 37.60. (b) Bright field images of plates which were
reprogrammed with OKM or OSKM using hiPSC (top) or hiTSC (bottom) reprogramming protocol. (c-e)
gPCR analysis of mRNA levels of KRT7 (c), endogenous GATA3 (d) and endogenous OCT4 (e) in plates (4=
4) transduced with OKM, GOKM or OSKM following hiPSC or hiTSC reprogramming protocols. Fibroblasts
and hbdTSCs were used as controls. The highest sample for each gene was set to 1. Results were
normalized to the mRNA levels of GAPDH and are shown as fold change. Two replicates were used from
each sample (n=2). (f) qPCR analysis for the relative DNA enrichment of GOKM transgene integration in
the indicated samples. The highest sample for each transgene was set to 1. Results were normalized to
GAPDH genomic regions and are shown as fold change. Two replicates (n= 2) were used for each sample.
(g) Graph displaying the average number of TRA-1-60-positive cells that were sorted during GOKM-
mediated hiTSC or hiPSC reprogramming protocols at the indicated time points, and the number of hiPSC
colonies that emerged in each plate. Two biological replicates (n= 2) were used for each condition. (h)
gPCR analysis of mRNA levels of the indicated genes and samples. The highest sample for each gene was
set to 1. Results were normalized to GAPDH and are shown as fold change. Two replicates (n= 2) were
used for each sample. (1) gPCR analysis for the relative DNA enrichment of the human SOX2 genomic locus
in six OKM+ mouse SOX2 (OS™KM)-derived hiPSC colonies and six GOKM-derived hiTSC colonies in either
WT or “SOX2 KO” fibroblasts. The highest sample for each gene was set to 1. Results were normalized to
genomic region of GAPDH and are shown as fold change. Two replicates (n=2) were used for each sample.
(j-1) gPCR analysis for the relative DNA enrichment of the mouse Sox2 transgene (J), mRNA levels of mouse
Sox2 gene (k) and mRNA levels of human SOX2 gene (l) in the indicated samples. The highest sample for
each gene was set to 1. Results were normalized to GAPDH and are shown as fold change. Two replicates
(n=2) were used for each sample (m) Graph displaying the number of hiPSC colonies that were generated
by OSKM or GOKM factors in WT or double knockout (DKO, for NANOG and PRDM14) fibroblasts. Error
bars indicate standard deviation between 3 independent experiments/replicates (n=3). ** indicates p-
value of 0.0054 (95% confidence interval -16.06 to -5.270), using 2-tailed unpaired t test calculated by
GraphPad Prism (8.3.0). Mean values (from left to right) are: 12.67, 2.000, 0.000, 0.000. Source data are

provided as a Source Data file.
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Figure S9. GOKM do not activate OSKM nor pluripotency gene signatures. (a-c) Principal component
analysis for top 1000 variable genes among all samples showing no overlap in gene expression between
OSKM and GOKM reprogramming samples (a, PC1 vs PC2; b, PC1 vs PC3; ¢, PC2 vs PC3). (d) Correlation
heatmap based on RNA-seq data portraying comparisons of whole transcriptome of two biological
duplicates of the indicated samples. (e) Principal component analysis for top 1000 variable genes among
all samples showing clear overlap between OSKM and GSKM reprogramming samples. (f) Heatmap and
clustering tree for 289 unique pluripotency genes along the reprogramming process (day 3, 6, 12, 18 and
24) of OSKM, GSKM and GOKM. Pluripotency gene signature was defined by selecting genes that are
uniquely expressed (logFC>6) in pluripotent cells when compared to hbdTSCs and fibroblasts. (g) Violin
plots showing the average expression of the 289 pluripotency genes (n= 289) in the indicated samples.
Two biological replicates (n=2) are used for each sample or condition. The center line denotes the median
value (50th percentile), and box limits contain the dataset's 25th to 75th percentiles. The black whiskers
mark the 5th and 95th percentiles. Trendline (black) for clusters 1 and 3 is depicted for each
reprogramming combination. (h) Heatmap and clustering tree for 201 unique hTSC genes along the
reprogramming process (day 3, 6, 12, 18 and 24) of OSKM, GSKM and GOKM. hTSC gene signature was
defined by selecting genes that are uniquely expressed (logFC>6) in hbdTSCs when compared to hiPSCs

and fibroblasts.
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Figure S10. GATA3 and OCT4 activate a unique set of genes to achieve the hTSC state. Clustering analysis
of genes that showed differential expression (LogFC>3) between OSKM and GOKM in at least one-time
point during the reprogramming process. Gap statistics analysis on the identified 706 differentially
expressed genes resulted in 10 defined clusters with unique specificity to cell types and transcription

factors.
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Supplementary Fig. 11. Gating strategy for HLA-A/B/C and TRA-1-60. To remove dead cells, all samples
were initially gated using the FSC-A/SSC-A gating to identify the live cell population (below 200 FS Area
for beckman coulter and 50 for FACSAria Ill). To remove cell doublets, single cells were selected by gating
forward scatter height vs area. The positively fluorescent cells were gated based on the fluorescent
intensity of positive control cells (Fibroblasts for HLA-A/B/C or iPSCs for TRA-1-60) as compared to
negative control cells (secondary only and hbdTSCs for HLA-A/B/C or fibroblasts for TRA-1-60). For TRA-1-

60, one time point (day 12) is shown but the same parameters were used for all time points.
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: TGTGAAACTGCCACAGAACG

: GTGTTTGGCATAGGAATCTGG

: GTCATGACCGCCCAGAAATA

: TCCCAGGAATTGTCTTGGAC

: TTGGGAAGAGGAGACACGGAACAC

: CTCCTTTGTTCAGCCACATTGGCC

: TGGCACCCATTTACACCTACAC

: ATGTCAGGAGAGGCCCCATAGA

: GAGCCTATGATTGGAATGGA

: GGTTGTGTTTCGAGGGATTA

: CAACATCTGTGTGCCTGACC

: CCAGGTACACATGGTTCTGC

: CTGCTGCACCTTGAGTCAGA

: ATGTTCAGCAGGGCCTCATA

: CTCGACACCCGATTCAAAGT

: GGCGTAGACCAAGAAATGGA

: ACAAATGGACCTCTCCTCCA

: ATGGCAATGCACATCACAATA

: GCAGCTCAGGAAGAATGTGTC

: TGAAGTACACTGGCATTGACG

: CCAGAACGTCACAGTGCTCA

: AGGTGTTCTGAGCCAGCAG
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Supplementary Table 1. primer list

e

M

: TGGTGATGCTGAAAGAGACG

: CCGACACTCCTACAAGATTTAGA

: CAAAGATTTATTGAAGCAGAACC

: GTGACGAAGCACAGAGCAAA

: TGGTGATGATGCCATGTTCT

: TCTTGGCTCCATGGGTTCG

: GGGAGGAAGAGGTAACCACA

: GCTGGGCTCCATGGGCTCT

: GGGAGGAAGAGGTAACCACG

: TGTACAACATGATGGAGACGGA

: GCTTGCTGATCTCCGAGTTG

: GGGCGGCGGCGGCAACTCCACC

: GGGACCACACCATGAAGG

: CACCGTGGGCCGCTTGACGCGGTC

: AAACGACCGCGTCAAGCGGCCCAC

: CACCGAGTCGGATGCTTCAAAGCA

: AAACTGCTTTGAAGCATCCGACTC

: CACCGACCAGGGCAGATCGTAGAG

: AAACCTCTACGATCTGCCCTGGTC



