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Supplementary Note 1: MB-pol and DNN@MB-pol potentials

1.1 MB-pol

Since the MB-pol potential of water has already been described in detail in the literature,1–3 we only

overview here its salient features. MB-pol was derived from the many-body expansion (MBE) of

the energy that allows for determining the energy, EN , of an arbitrary system containingN (atomic

or molecular) monomers as the sum of individual n-body energy contributions:

EN (1, . . . , N) =

N∑

i=1

ε1B(i) +

N∑

i<j

ε2B(i, j) +

N∑

i<j<k

ε3B(i, j, k) + · · ·+ εNB(1, . . . , N) (1)

Here, ε1B represents the distortion energy of an isolated monomer, such that ε1B(i) = E(i)−Eeq(i)

where Eeq(i) is the energy of the i-th monomer in its equilibrium geometry. The n-body energies,

εnB, are defined recursively for 1 < n ≤ N according to

εnB = En(1, . . . , n)−
N∑

i=1

ε1B(i)−
N∑

i<j

ε2B(i, j)−
∑

i<j<k

ε3B(i, j, k)− · · ·

· · · −
N∑

i<j<k<...

ε(n−1)B(i, j, k, . . . , n− 1)

(2)

MB-pol approximates Eq. 2 as

EN(1, .., N) =
N∑

i=1

ε1B(i) +
N∑

i<j

ε2B(i, j) +
N∑

i<j<k

ε3B(i, j, k) + EPOL (3)
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In MB-pol, the 1-body term (ε1B) is represented by the potential developed by Partridge and

Schwenke.4 The 2-body term (ε2B) describes four distinct contributions: permanent electrostat-

ics, dispersion, 2-body polarization, and 2-body short-range interactions.1 The 3-body term (ε3B)

describes two distinct contributions: 3-body polarization and 3-body short-range interactions.2 The

2-body and 3-body short-range interactions are represented by 2-body and 3-body permutationally

invariant polynomials (PIPs)5 that were optimized in to reproduce 2-body and 3-body energies

calculated at the CCSD(T) level of theory in the complete basis set (CBS) limit.1, 2 In the actual

implementation of MB-pol,1, 2 the 2-body and 3-body polarization contributions are implicitly in-

cluded in the EPOL term of Eq. 3 which represents many-body interactions at all orders through

a classical polarization term. Further details of the MB-pol potential can be found in the original

references.1–3

By correctly representing both short- and long-range many-body interactions at all orders,6 MB-

pol has been shown to accurately predict structural, thermodynamic, dynamical, and spectroscopic

properties of water,7 from gas-phase clusters8–10 to liquid water11–16 and ice.17–20

1.2 DNN@MB-pol

The deep neural network potential trained on MB-pol data (DNN@MB-pol) was developed with

the smooth edition of the deep potential (DeepPot-SE) toolkit,21 following the procedure reported

in Ref. 22 which is schematically represented in Supplementary Figure 1. Specifically, we used

25, 50, and 100 neurons for the hidden embedding layers, respectively, while the submatrix of the

embedding matrix uses 16 neurons. The distance cutoff was set to 6 Å, with a smoothing region of
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0.5 Å. The DNN@MB-pol potential is represented by a fully connected deep neural network with

three layers of 240 neurons each.

The training set for DNN@MB-pol was constructed from that of the DNN potential introduced in

Ref. 24, which includes configurations collected from MB-pol simulations of supercooled water

carried out at 1 atm,16 as well as configurations selected through active learning iterations that al-

(a) Training set

Ice polymorphs Supercooled liquid+

(b) MB-pol reference

Atomic coordinates

Forces and energies

MBX

(c) DNN@MB-pol model:

Training set

Deep neural network
potential energy surface

+ DNN@MB-pol

20x faster MD
Training

Supplementary Figure 1: Schematic illustrating the development of the DNN@MB-pol po-
tential. (a) The DNN@MB-pol training set includes configurations of ice polymorphs and deeply
supercooled liquid at various thermodynamic conditions extracted from MB-pol simulations as
well as active learning configurations collected from previous iterations of DNN@MB-pol. (b)
The labeling of the training set configurations, i.e., the calculation of MB-pol reference energies
and forces, was perfomed using the MBX software.23 (c) The DNN@MB-pol potential was trained
on the training set defined in (a) using DeePMD-kit. When patched with LAMMPS, DNN@MB-
pol provides a 20x speedup relative to MB-pol.
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Supplementary Table 1: Composition of the DNN@MB-pol training set. The total dataset
contains four subsets: 1) configurations extracted from MB-pol simulations of supercooled water at
different pressures, 2) configurations of liquid water collected from active learning (AL) iterations
in Ref. 24, 3) configurations of 18 different ice phases extracted from MB-pol simulations, and
4) configurations of 18 different ice phases extracted from two AL iterations carried out with
DNN@MB-pol. The total dataset was randomly divided into training, validation, and test sets
with a ratio of 0.80:0.1:0.1. During the training process, each of the four subsets was assigned a
training weight of 25%.

Subset Thermodynamic range Number of configurations
MB-pol liquid 1→ 4000 atm, 198→ 500 K 37755
MB-pol, 18 ice phases −10000→ 100000 atm, 100→ 400 K 6812
AL, Liquid 1 atm, 198→ 368 K 8223
AL, 18 ice phases −10000→ 100000 atm, 100→ 400 K 14824
Total 51203

low the DNN potential to accurately reproduce various thermodynamic properties of liquid water

calculated with MB-pol at 1 atm. To guarantee full transferability of the DNN@MB-pol potential

over a wider range of thermodynamic conditions, the original DNN training set was expanded by

including configurations of supercooled water at high pressure, as well as configurations of 18 ice

phases spanning a comprehensive set of thermodynamic conditions (Supplementary Figure 1a).

The composition of the training set for the DNN@MB-pol potential is summarized in Supplemen-

tary Table 1, and the training set is deposited at https://dplibrary.deepmd.net/. MB-pol reference

energies and forces for all training set configurations (Supplementary Figure 1b) were calculated

using the MBX software.23

The DNN@MB-pol potential was trained for 4 million steps using the DeePMD-kit (Supplemen-

tary Figure 1c),22 with a learning rate starting at 0.0005 and decreasing linearly every 5000 steps

to 1.8×10−8. The initial weighting factor for the energy was set to 0.2 and increased linearly to

1.0 during the training process. The initial weighting factor for the forces was set to 1000 and

5



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of steps (million)

10 2

10 1

100

101

To
ta

l E
ne

rg
y 

RM
SE

 (k
Jm

ol
1 ) Energy, training

Energy, validation
Force, training
Force, validation

101

3 × 100

4 × 100

6 × 100

2 × 101

Fo
rc

e 
RM

SE
 (k

Jm
ol

1 Å
1 )

Supplementary Figure 2: Learning curves. Learning curves displaying the variation of the
RMSEs associated with DNN@MB-pol calculations of energies and forces for configurations in
the training and validation sets relative to the MB-pol reference values. For visual clarity, we show
values averaged over 200 training steps.

decreased linearly to 1.0 at during the training process. The learning curves shown in Supple-

mentary Figure 2 demonstrate that both energies and forces of the DNN@MB-pol potential reach

well-behaved convergence at the end of the training process. Importantly, training and validation

sets exhibit similar root-mean-square errors (RMSEs), which indicates that the DNN@MB-pol po-

tential is not in the overfitting regime at any stage of the training process. The RMSE associated

with the DNN@MB-pol forces plateaus at ∼0.4 kJ mol−1Å−1, which is of similar magnitude to

RMSEs reported for other state-of-the-art machine-learned potentials.25

Supplementary Figure 3 shows the RMSEs associated with DNN@MB-pol calculations for a test

set containing different water systems. With the exception of ice VII and specific active learning

sets, which contain molecular configurations generated from very high-pressure molecular dynam-

ics (MD) simulations as well as highly distorted configurations, the RMSEs for the various sets of
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configurations are always smaller than 0.1 kJ mol−1. To put the DNN@MB-pol results in con-

text, the most accurate DFT models of water exhibit RMSEs of 0.9 kJ mol−1 and 0.5 kJ mol−1 for

absolute and relative lattice energies of different ice polymorphs, respectively.26
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Supplementary Figure 3: Test set errors. RMSEs associated with DNN@MB-pol calculations
of energies and forces for configurations in the test set relative to the MB-pol reference values. By
definition, test set configuration were not used in training or validation.
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Supplementary Note 2: Molecular dynamics simulations

The MD simulations with the DNN@MB-pol potential were carried out using LAMMPS27 patched

with the PLUMED enhanced-sampling plugin28 and DeePMD-kit29 with model compression.30

DeePMD-kit with model compression provides a speedup of ∼20× relative to MD simulations

carried out with the reference MB-pol potential carried out with LAMMPS patched with MBX.23

We employed a time step of 0.5 fs for the integration of the equations of motion that were propa-

gated according to the velocity-Verlet algorithm. Depending on the ensemble, the temperature was

controlled using the stochastic velocity rescaling algorithm with a relaxation time of 0.1 ps31 and

the pressure was maintained by a Parrinello-Rahman barostat with a relaxation time of 1 ps.32
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Supplementary Figure 4: Correlation between DNN@MB-pol and MB-pol. Correlation plots
for the density (a) and potential energy (b) of liquid water calculated from NPT simulations
carried out with DNN@MB-pol and the corresponding values calculated with the reference MB-
pol potential.
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Supplementary Figure 4 shows the correlation between the average densities and lattice energies

of different ice polymorphs calculated from NPT simulations carried out with the DNN@MB-

pol potential and the corresponding MB-pol values. The low RMSEs exhibited by the energies

per molecule calculated with DNN@MB-pol relative to the corresponding MB-pol values for

the test set shown in Supplementary Figure 3 are reflected in a quantitative agreement between

DNN@MB-pol and MB-pol values for both densities and lattice energies of all ice polymorphs,

indicating that DNN@MB-pol samples the same configurations as MB-pol. Importantly, as shown

in Supplementary Figure 5, the ice densities predicted by DNN@MB-pol are also in excellent

agreement with the corresponding experimental values.
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Supplementary Figure 5: Densities of ice polymorphs. Correlation plot between the densities
of different ice polymorphs calculated with the DNN@MB-pol potential and the corresponding
experimental values.33
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Supplementary Figure 6 shows that DNN@MB-pol also closely reproduces the temperature de-

pendence of the density and isothermal compressibility of liquid water calculated with MB-pol at

1 atm from the boiling point down to the supercooled regime.16
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Supplementary Figure 6: Supercooled water. Temperature dependence of the density (a)
and isothermal compressibility (b) calculated from the NPT simulations carried out with the
DNN@MB-pol potential at 1 atm (green) compared to the reference MB-pol values from Ref. 16
(blue). The associated error bars indicate 95% confidence intervals of the averages. To account
for the correlation between MD frames, the error bars were computed 95% confidence intervals
by blocking the time series into four blocks and then multiplying the standard deviation associated
with the average values calculated for each block by 1.96. Open black symbols correspond to
the experimental values from Refs. 34 and 35 for the density, and Refs. 36, 37 and 38 for the
isothermal compressibility.
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Supplementary Note 3: Phase diagram of water: Algorithms

We calculated the phase diagram of water at the classical level using the DNN@MB-pol and MB-

pol potentials, and at the quantum-mechanical level (i.e., including nuclear quantum effects) us-

ing the MB-pol potential. These calculations were carried out following a four-stage procedure

as illustrated in Supplementary Figure 7: (a) we determined the classical melting points from

Enhanced sampling

(a) DNN@MB-pol

µliq→ice

(b) Classical

DNN@MB-pol sampling

− kBT

NH2O

〈
exp

[
−UMB-pol − UDNN@MB-pol

kBT

]〉

µDNN@MB-pol→MB-pol

(c) Quantum
MB-pol

y = 0

y = 1

2

∫ ⟨Ek(y)⟩P,T

y
dy

µClassical→Quantum

(d) Gibbs-Duhem integration

µliq→ice = 0 =⇒ Melting point (Tm, Pm) Pm(Tm +∆T ) = Pm + ∆h
Tm∆v∆T

Series of MD simulations

Coexistence lines

Supplementary Figure 7: Calculations of classical and quantum chemical potentials. (a) The
differences in chemical potentials between liquid water and each ice polymorph were initially
calculated using enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
(b) These differences in chemical potential was elevated to the corresponding classical MB-pol
values by performing thermodynamic perturbation calculations. (c) The quantum corrections to the
MB-pol classical chemical potentials were calculated by performing thermodynamic integration
by mass within the path-integral formalism. (d) From the classical and quantum melting points
of each ice polymorph calculated with the DNN@MB-pol and MB-pol potentials, we traced the
corresponding coexistence lines using Gibbs-Duhem integration, for which the integrands were
calculated by performing a series of MD simulations at different temperatures and pressure to
determine the differences in volume, ∆v, and enthalpy, ∆h.
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the chemical potential differences between liquid water and each ice polymorph using enhanced-

coexistence simulations carried with the DNN@MB-pol potential, (b) starting from the classical

melting points obtained with DNN@MB-pol, we used thermodynamic perturbation theory to de-

termine the classical melting points of MB-pol, (c) starting from the classical melting points of

MB-pol, we performed thermodynamic integration to determine the corresponding quantum melt-

ing points of MB-pol, and (d) we performed Gibbs-Duhem integration to trace the coexistence lines

between the different phases and then determine the DNN@MB-pol and MB-pol phase diagrams.

3.1 Chemical potentials from enhanced-coexistence simulations

To calculate the chemical potential differences between liquid water and each of the ice poly-

morphs, we applied the enhanced-coexistence method introduced in Ref. 39. The enhanced-

coexistence method was inspired by the interface pinning method40 and introduces a bias po-

tential such that the number of ice-like molecules in the system reversibly samples the number

of molecules in one ice layer (Supplementary Figure 7a). This procedure allows for computing

chemical potentials and, thus, coexistence points.

In the enhanced-coexistence simulations, we used the number of ice-like molecules as the order

parameter, which was calculated using the “environment similarity” approach.41 Specifically, we

constructed a set of environments X = χ1, ...., χm for each ice polymorph (Supplementary Fig-

ure 8a shows an example for ice Ih). Environments were centered on the oxygen atoms. The

hydrogen atoms were only included for proton-ordered ice II and not included in the environments

of the other proton-disordered polymorphs to avoid any bias towards a particular configuration.42
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Supplementary Figure 8: Chemical potential difference between liquid water and ice Ih.
a) As order parameter for the enhanced-coexistence simulations we used the number of ice-like
molecules defined by the “environment similarity” approach. For the case of ice Ih, four envi-
ronments were used. b) We monitored the variation in number of ice-like molecules along the
enhanced-coexistence trajectories. c) Using reweighting, we determined the differences in free
energy (∆Gliq→ice) between liquid water and each ice polymorph as a function of the number of
ice-like molecules. d) From the slope of the free-energy differences as a function of the number of
ice-like molecules, we calculated the corresponding differences in chemical potentials (∆µliq→ice)
at difference temperatures. The location of the melting point of each ice polymorph was thus de-
fined by the temperature at which the difference in chemical potential between liquid water and
the ice polymorph is zero.
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The “environment similarity” kernel defined as43, 44

kχl
(χ) =

1

n

∑

i∈χl

∑

j∈χ
exp

(
−|r

l
i − rj|2
4σ2

)
(4)

was then used to compare the atomic environments χl ∈ X with a generic environment χ. In

Eq. 4, the atomic densities are represented by sums of Gaussians, with spread σ, centered on the

neighbors’ positions, n is the number of neighbors in the environment χl, and rli and rj are the

positions of the neighbors in environments χl and χ, respectively. To obtain a single similarity

measure between a given environment and any of the m reference environments of a given ice

polymorph, we used the best-match kernel defined in Eq. 5, which compares the environments χ

to all environments X of a given polymorph,

kX(χ) = max{kχl
(χ) : χl ∈ X}, (5)

Since kX(χ) as defined in Eq. 5 is not continuous and not differentiable, and, therefore, cannot

directly be used in enhanced-coexistence simulations, we used the corresponding smooth version

introduced in Ref. 39. The similarity kernel defined in Eq. 5 allows for determining the compat-

ibility of the environments found in each configuration sampled during an enhanced-coexistence

simulation with the environments of the target ice polymorph. For a system of N water molecules

there are N oxygen environments χ1, χ2, ..., χN . We thus defined a global order parameter nice

14



that represents the number of environments consistent with a given ice polymorph as

nice = {number of χi : kX(χi) > κ}, (6)

Here, κ is a watershed between values of kX(χi) consistent with liquid water and those consistent

with the target ice polymorph.

The bias potential in the enhanced-coexistence simulations was applied using the on-the-fly proba-

bility enhanced sampling (OPES) algorithm,45, 46 which shares several features with metadynamics.47

The bias potential was defined to be a function of nice within a multi-umbrella ensemble,46 pro-

ducing an approximately uniform distribution in the interval from nlowice to nhighice . The limits of the

interval were chosen as integer multiples of the number of molecules in a crystal layer, ∆nlayer,

i.e., nlowice = Nl∆nlayer and nhighice = (Nl + 1)∆nlayer with Nl ∈ N. In the simulations, the spacing

between nλice was one molecule. ∆Fλ was defined as the difference in free energy between the

unbiased system and the system with an umbrella potential at nλice, and was determined iteratively

as described in Ref. 46. In Supplementary Figure 8b, we show an example of the variation of the

number of ice-like molecules along one of the water-Ih enhanced-coexistence simulations carried

out at 270 K. After an initial transient period in which a suitable bias potential is identified, the

simulation proceeds to reversibly sample all of the ice-like molecules that are targeted.

Once the bias potential had converged, we calculated the equilibrium properties of the system by
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reweighting:

P (nice) =
〈δ(nice − nice(R))eβV 〉V

〈eβV 〉V
(7)

Here, 〈·〉V indicates an average over the biased ensemble, and V is the bias potential. In practice,

the application of Eq. 7 corresponds to constructing a histogram with weights eβV . The free-

energy differences between liquid water and each ice polymorph at a given temperature T were

then calculated as a function of nice as

∆G(nice) = − 1

β
logP (nice). (8)

where β = 1/kT . An example of ∆G(nice) between liquid water and ice Ih is shown in Supple-

mentary Figure 8c.

Following Ref. 39, the chemical potential difference between the liquid and each ice polymorph

was determined from the slope of ∆G(nice) with respect to nice over one ice layer according to:

∆G(nice + ∆nlayer)−∆G(nice)

∆nlayer
= µice − µliq. (9)

In practice, we determined µliq→ice = µice− µliq by extracting the slope from ∆G(nice) calculated

using Eq. 8. The slope was obtained by performing an error-weighted linear least-squares fit. From

the chemical potential differences, we calculated the melting points Tm for all ice polymorphs us-

ing the condition that µliq→ice(Tm) = 0 for liquid water and ice in equilibrium at constant pressure.

Tm was obtained by an error-weighted linear least-squares fit to µliq→ice as a function of the tem-
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perature. Supplementary Figure 8d shows an example of the chemical potential difference between

liquid water and ice Ih.

3.2 Thermodynamic perturbation corrections

While the comparisons shown in Supplementary Figures 3-6 demonstrate a high degree of con-

sistency between the DNN@MB-pol and MB-pol potentials, nonnegligible differences still exist,

which ultimately can manifest in shifted coexistence lines in the corresponding phase diagrams.

To elevate the chemical potential differences calculated with DNN@MB-pol to the MB-pol level,

we applied thermodynamic perturbation theory to determine the differences in chemical potentials

between the two potentials according to48

∆µDNN@MB−pol→MB−pol(P, T ) = −kBT

N

〈
exp

[
−UMB−pol − UDNN@MB−pol

kBT

]〉

P,T,DNN@MB−pol

(10)

Here, 〈〉P,T,DNN@MB−pol denotes an ensemble average over molecular configurations of liquid water

and each ice polymorph sampled by MD simulations carried out with the DNN@MB-pol potential

at temperature T and pressure P for simulation boxes containing N molecules, and UMB−pol and

UDNN@MB−pol are the MB-pol and DNN@MB-pol potential energies associated with each config-

uration, respectively.

3.3 Nuclear quantum effects

Due to the light mass of the hydrogen atoms, nuclear quantum effects can play an important role

in determining the properties of water49, 50 and have been shown to lead to significant shifts in
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the coexistence equilibria between liquid water and the ice polymorphs simulated with various

water models.48, 51, 52 To elevate the MB-pol differences in chemical potentials between liquid water

and each ice polymorph calculated at the classical level to the corresponding quantum values, we

applied thermodynamic integration by mass within the path-integral formalism to integrate the

centroid virial kinetic energy, Ek, from infinitely massed molecules (y = 0) to the actual mass of

the H2O molecules (y = 1) according to53

∆µClas.→NQE(P, T ) = 2

1∫

0

〈Ek(y)〉P,T
y

dy,where y =
√
m/m̃ (11)

In practice, we computed the integral in Eq. 11 for all relevant (T , P ) equilibrium state points

between liquid water and each ice polymorph by performing path-integral molecular dynamics

(PIMD) simulations54, 55 to determine Ek for different y values. After discretizing the integration

interval by computing the centroid viral kinetic energy for y = 0, 1/4, 1/2,
√

2/2 and 1, we

calculated the integral using Simpson’s rule.

3.4 Gibbs-Duhem integration

We traced the coexistence lines from the calculated melting points using Gibbs-Duhem integration.56

In practice, we numerically integrated the Clausius-Clapeyron equation:

dP
dT

=
∆h

Tm∆v
, (12)
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where ∆h and ∆v are enthalpy and volume differences per molecule, respectively, between liquid

water and the target ice polymorph in equilibrium, and Tm is the melting point of the target ice

polymorph at pressure P . We integrated Eq. 12 using the fourth-order Runge–Kutta method,57

evaluating the integrand for each integration step by performing one MD simulation for each phase.

We determined the location of all triple points from the intersection between the relevant liquid-

ice coexistence lines. We then carried out a new Gibbs-Duhem simulation for the two ice phases

starting from each liquid-ice-ice triple point. We located new triple points from these coexistence

lines and repeated the procedure until the entire phase diagram was computed.
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Supplementary Note 4: Phase diagram of water: Simulations

4.1 Systems setup

The initial configurations for the different ice polymorphs were prepared using GENICE,58, 59

which ensures that the ice configuration has the correct proton order/disorder and zero total dipole

moment, while satisfying the Bernard-Fowler ice rules.60 Starting from the ice configurations, all

relevant liquid-ice coexistence configurations were generated as follows. For ice Ih, ice III, ice V,

and ice VI, the initial coexistence configurations were taken from analogous simulations carried

out with the TIP4P/Ice model in Ref. 39. First, the ice box was equilibrated in the NPT ensemble

with an anisotropic barostat for 1 ns. This was followed by 300 ps of simulation in the NPxT

ensemble (fluctuating box dimensions in the x-direction and constant area in the yz-directions)

during which the motion of half of the water molecules on one side of the box was kept frozen,

while the water molecules on the other half of the box were melted at 450 K. The whole system was

then equilibrated at 270 K and 1.0133× 10−4 GPa, 230 K and 0.303 GPa, 250 K and 0.5066 GPa,

300 K and 1.0133 GPa for ice Ih, ice III, ice V, and ice VI, respectively.

At each thermodynamic state point used in the corresponding enhanced-coexistence simulations,

the liquid–ice II coexistence system was generated by combining a box of ice II, which was equi-

librated with the DNN@MB-pol potential for 0.5 ns, and a box of liquid water (with a pair of

opposite faces commensurate with the ice II box), which was equilibrated for 1.3 ns with the

DNN@MB-pol potential, using the “modify-cell” functionality available in LAMMPS.
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4.2 Enhanced coexistence simulations

Following best practices for ordinary direct-coexistence simulations,61 we performed enhanced-

coexistence simulations in the NPxT ensemble (fluctuating box dimensions in the x-direction and

constant area in the yz-directions) using the DNN@MB-pol potential. In these simulations, the

box dimensions along the yz-directions were scaled to the average equilibrium values of the ice

polymorph calculated at the corresponding thermodynamic condition of the enhanced-coexistence

simulation.

We first carried out an initial sampling of 0.125 ns, 3 ns, 5 ns, 0.125 ns, and 0.125 ns for Ih, ice II,

ice III, ice V, and ice VI, respectively, in the NPxT ensemble with harmonic wall-bias potentials

at nlowice and nhighice (see Table 2), confining the number ice molecules within these limits. This step

allowed the coexistence system to equilibrate away from any initial biases due to the choice of

the initial configuration, such as the coexistence being created with the TIP4P/Ice model. More

importantly, this step also allowed for relaxation toward the thermodynamically favored outer ice

range, which tends to speed up the convergence of the bias potential. It should be noted that the

Supplementary Table 2: Systems setup for enhanced-coexistence simulations. Total number
of water molecules in the simulation box (NH2O), length of the simulation box vectors, and range
of ice-like molecules sampled in the enhanced-coexistence simulations.

NH2O box sides (nm3) ice range
Liquid-Ih 576 18x45x22 240-288
Liquid-II 864 31x23x35 432-486
Liquid-III 756 47x20x20 351-405
Liquid-V 672 19x47x18 336-392
Liquid-VI 1280 53x25x23 640-720
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coexistence systems involving ice II and ice III were equilibrated for a longer time due to both the

slow dynamics of liquid water in the supercooled regime and the convergence requiring a longer

time than the other ice polymorphs. After this step, enhanced sampling was initiated in the multi-

umbrella ensemble.46 The environments for constructing the collective variables were obtained

using the Environment Finder software.41

For all technical details, we refer the reader to the digital repository that includes all input files nec-

essary to reproduce all of our simulations. The input files to reproduce all the enhanced-coexistence

simulations are available on PLUMED-NEST as part of a collective effort to improve the trans-

parency and reproducibility of enhanced-sampling molecular simulations.62

We determined the DNN@MB-pol melting points of each ice polymorph by carrying out enhanced-

coexistence simulations at different temperatures along isobars. The variation in the number of

ice-like molecules during the enhanced-coexistence simulations is shown in Supplementary Fig-

ures 9-13. The corresponding free-energy differences shown in Supplementary Figures 14-18 are,

for the most part, linear, with some deviations from linearity found for ice VI. Similar deviations

from linearity were also reported in Ref. 39. The differences in chemical potentials between liquid

water and each ice polymorph shown in Supplementary Figures 19-23 are well-fitted by a linear

line, indicating that all estimates are well converged.
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4.3 Corrections to chemical potential differences

The MB-pol corrections to the DNN@MB-pol chemical potentials were calculated in two steps

using thermodynamic perturbation theory. First, at each thermodynamic state point (T, P ), we

carried out NPT simulations for liquid water (2 ns) and the relevant ice polymorph (1 ns) using

the DNN@MB-pol potential. Second, for all molecular configurations extracted every 25 fs from
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Supplementary Figure 9: Liquid water–ice Ih coexistence. Variation in the number of molecules
classified as ice Ih along enhanced-coexistence simulations carried out with the DNN@MB-pol
potential at different thermodynamic state points. In each enhanced-coexistence simulation, the
equilibration time, shown in black, was disregarded in the melting point calculations because the
bias potential changes rapidly during this time.
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Supplementary Figure 10: Liquid water–ice II coexistence. Variation in the number of
molecules classified as ice II along enhanced-coexistence simulations carried out with the
DNN@MB-pol potential at different thermodynamic state points. In each enhanced-coexistence
simulation, the equilibration time, shown in black, was disregarded in the melting point calcula-
tions because the bias potential changes rapidly during this time.
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Supplementary Figure 11: Liquid water–ice III coexistence. Variation in the number of
molecules classified as ice III along enhanced-coexistence simulations carried out with the
DNN@MB-pol potential at different thermodynamic state points. In each enhanced-coexistence
simulation, the equilibration time, shown in black, was disregarded in the melting point calcula-
tions because the bias potential changes rapidly during this time.
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Supplementary Figure 12: Liquid water–ice V coexistence. Variation in the number of
molecules classified as ice V along enhanced-coexistence simulations carried out with the
DNN@MB-pol potential at different thermodynamic state points. In each enhanced-coexistence
simulation, the equilibration time, shown in black, was disregarded in the melting point calcula-
tions because the bias potential changes rapidly during this time.
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Supplementary Figure 13: Liquid water–ice VI coexistence. Variation in the number of
molecules classified as ice VI along enhanced-coexistence simulations carried out with the
DNN@MB-pol potential at different thermodynamic state points. In each enhanced-coexistence
simulation, the equilibration time, shown in black, was disregarded in the melting point calcula-
tions because the bias potential changes rapidly during this time.
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Supplementary Figure 14: Liquid water–ice Ih free-energy differences. Free-energy differ-
ences between liquid water–ice Ih (∆Gliq→ice) calculated as a function of the number of ice Ih-like
molecules from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.

the DNN@MB-pol NPT simulations of each liquid water–ice polymorph pair, we calculated the

corresponding MB-pol energies that were then used in thermodynamic perturbation calculations to

determine the MB-pol corrections to the DNN@MB-pol chemical potentials according to Eq. 10.

The MB-pol corrections to the DNN@MB-pol chemical potentials calculated from thermodynamic

perturbation theory are shown in Supplementary Figure 24. All corrections show low sensitivity

to the thermodynamic conditions and are instead dependent on the specific ice polymorph (as also

shown in Figure 3 of the main text). In general, elevating DNN@MB-pol to MB-pol stabilizes

the ice polymorphs relative to liquid water, pushing the melting line toward higher temperatures.

Interestingly, for ice II, there are minor corrections, which consequently decreases the stability of

ice II relative to all other phases.

Quantum corrections to the classical MB-pol chemical potential differences were calculated by
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Supplementary Figure 15: Liquid water–ice II free-energy differences. Free-energy differ-
ences between liquid water–ice II calculated as a function of the number of ice II-like molecules
from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 16: Liquid water–ice III free-energy differences. Free-energy differ-
ences between liquid water–ice III (∆Gliq→ice) calculated as a function of the number of ice III-like
molecules from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 17: Liquid water–ice V free-energy differences. Free-energy differ-
ences between liquid water–ice V (∆Gliq→ice) calculated as a function of the number of ice V-like
molecules from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 18: Liquid water–ice VI free-energy differences. Free-energy differ-
ences between liquid water–ice VI (∆Gliq→ice) calculated as a function of the number of ice VI-like
molecules from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 19: Liquid water–ice Ih chemical potential difference. Temperature
dependence of the chemical potential difference between liquid water and ice Ih (∆µliq→ice) deter-
mined from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 20: Liquid water–ice II chemical potential difference. Temperature
dependence of the chemical potential difference between liquid water and ice II (∆µliq→ice) deter-
mined from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 21: Liquid water–ice III chemical potential difference. Temperature
dependence of the chemical potential difference between liquid water and ice III (∆µliq→ice) deter-
mined from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 22: Liquid water–ice V chemical potential difference. Temperature
dependence of the chemical potential difference between liquid water and ice V (∆µliq→ice) deter-
mined from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.
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Supplementary Figure 23: Liquid water–ice VI chemical potential difference. Temperature
dependence of the chemical potential difference between liquid water and ice VI (∆µliq→ice) deter-
mined from enhanced-coexistence simulations carried out with the DNN@MB-pol potential.

performing path-integral molecular dynamics (PIMD) simulations54, 55 using the same sets of con-

figurations for liquid water and each ice polymorph used to determine the MB-pol classical cor-

rections to the DNN@MB-pol classical chemical potential differences. Since the centroid kinetic

energy is largely insensitive to the choice of water model,63 due to computational cost considera-

tions, we calculated the centroid kinetic energy with DNN@MB-pol, which enables more efficient

PIMD simulations than MB-pol. The same strategy was adopted in previous studies where the

quantum corrections to the chemical potential differences were calculated using neural network

potentials instead of the reference DFT models.48, 52, 64 The PIMD simulations were carried out us-

ing 32 beads and a time step of 0.25 fs. As in Ref. 52, the temperature was controlled by a PILE-G

thermostat with a time constant of 10 fs for the global centroid thermostat,65 and 100 fs for the

stochastic barostat as detailed in Ref. 66. All PIMD simulations were carried out using i-PI267

interfaced with DeePMD-kit.22

The calculated quantum corrections to the MB-pol classical chemical potential differences are
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Supplementary Figure 24: MB-pol corrections to the DNN@MB-pol chemical potentials.
MB-pol corrections to the DNN@MB-pol differences in chemical potentials between liquid water
and each ice polymorph (∆µliq→ice). The MB-pol corrections were calculated using thermody-
namic perturbation theory.
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shown in Figures 25 and 26. Compared to the MB-pol classical corrections to the DNN@MB-pol

classical chemical potential differences, the quantum corrections exhibit a larger variance. This is

in part due to higher uncertainties associated with the corresponding thermodynamic integration

calculations, which, due to computational cost considerations, were carried out using only five

points to discretize the integration interval. However, as shown in Supplementary Figures 25 and

26, both the integrand and the centroid kinetic virial energy, along with the corresponding quantum

corrections, exhibit clear trends as a function of the (T ,P ) thermodynamic state points, with the

differences being primarily determined by the specific ice polymorph. In general terms, ice Ih and

ice II are destabilized by nuclear quantum effects, while the high-pressure ice polymorphs, ice V

and ice VI, are stabilized by nuclear quantum effects. Ice III is relatively unaffected by nuclear

quantum effects.
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Supplementary Figure 25: Nuclear quantum effects by thermodynamic integration. The
integrands used in thermodynamic integration by mass calculations to determine the quantum cor-
rection to the MB-pol classical chemical potential differences are shown as a function of the in-
tegration variable for all liquid water–ice polymorph coexistence equilibria. Ek is the centroid
virial kinetic energy, while m and m̃ are the mass of the water molecule and the mass used during
integration, respectively.
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Supplementary Figure 26: Quantum corrections to classical chemical potentials. MB-pol
quantum corrections to the MB-pol differences in chemical potentials between liquid water and
each ice polymorph (∆µliq→ice). The quantum corrections were calculated using thermodynamic
integration by mass.

38



4.4 Melting points

The melting points of the ice polymorphs at various pressures calculated from linear fits to the cor-

responding chemical potential differences with liquid water as described in Supplementary Note 2

are listed in Supplementary Tables 3-6. The accuracy of the present calculations can be assessed

through comparisons with analogous results reported in the literature for the MB-pol potential

(Table 3). The melting point of ice Ih calculated at ambient pressure from enhanced-coexistence

simulations is 266.2 K, which is 2.7 K higher than the value reported in Ref. 7 which was obtained

from direct-coexistence simulations. In Ref. 39, a difference of ∼1 K was found between esti-

mates of the melting point of ice Ih obtained from enhanced-coexistence and direct-coexistence

simulations carried out with the TIP4P/Ice model. Given typical errors of∼2 K associated with di-

rect coexistence-simulations,68, 69 which are mainly due to finite-size and interface artifacts,70, 71 the

difference between the enhanced-coexistence and direct-coexistence melting points of ice Ih sim-

ulated with the MB-pol potential is consistent with analogous differences reported in the literature

for other water models.

Supplementary Table 3: Classical and quantum melting point (Tm) and heat of fusion for ice
Ih (Hfus) calculated at 1 atm with the DNN@MB-pol and MB-pol potentials.

Method Tm/K Hfus/kJ mol−1

H2O, experiment 273.15 6.01
D2O, experiment 276.95 6.22
DNN@MB-pol (this work) 262.5 6.33
Classical MB-pol (this work) 266.2 6.42
Quantum MB-pol (this work) 262.3 5.83
Classical MB-pol Ref. 7 263.5 N/A
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Supplementary Table 4: Classical melting points of the ice polymorphs calculated with the
DNN@MB-pol potential.

P /GPa T /K
Ih-Liq 0.0001 262.5
Ih-Liq 0.1013 250.3
II-Liq 0.2026 244.6
II-Liq 0.3040 250.9
II-Liq 0.4053 254.3
II-Liq 0.5066 255.2
II-Liq 0.6079 256.1
III-Liq 0.2026 243.2
III-Liq 0.3040 245.2
III-Liq 0.5066 247.7
III-Liq 0.6079 247.4
V-Liq 0.5066 250.0
V-Liq 0.6079 255.2
VI-Liq 0.7093 263.1
VI-Liq 0.9119 277.0

Supplementary Table 5: Classical melting points of the ice polymorphs calculated with the
MB-pol potential.

P /GPa T /K
Ih-Liq 0.0001 266.2
Ih-Liq 0.1013 255.0
II-Liq 0.2026 244.6
II-Liq 0.3040 251.0
II-Liq 0.4053 254.4
II-Liq 0.5066 255.5
II-Liq 0.6079 256.6
III-Liq 0.2026 247.4
III-Liq 0.3040 249.0
III-Liq 0.5066 250.5
III-Liq 0.6079 250.2
V-Liq 0.5066 255.8
V-Liq 0.6079 260.3
VI-Liq 0.7093 266.1
VI-Liq 0.9119 279.9
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Supplementary Table 6: Quantum melting points of the ice polymorphs calculated with the
MB-pol potential.

P /GPa T /K
Ih-Liq 0.0001 262.4
Ih-Liq 0.1013 250.4
II-Liq 0.2026 243.2
II-Liq 0.3040 249.5
II-Liq 0.4053 252.1
II-Liq 0.5066 252.3
II-Liq 0.6079 254.9
III-Liq 0.2026 247.5
III-Liq 0.3040 248.3
III-Liq 0.5066 250.8
III-Liq 0.6079 249.9
V-Liq 0.5066 257.5
V-Liq 0.6079 262.2
VI-Liq 0.7093 268.4
VI-Liq 0.9119 283.6

10 0 10 20
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Supplementary Figure 27: Chemical potential for Ice Ih. Estimated chemical potentials of ice
Ih compared with experiments as a function of temperature relative to the melting point. The
experimental curve was calculated from the heat capacities reported in Ref. 72.
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Besides the melting points, the chemical potential differences determined from the enhanced-

coexistence simulations provide valuable insights into the thermodynamics of ice Ih melting. Sup-

plementary Figure 27 shows the chemical potential difference between liquid water and ice Ih

calculated with MB-pol as a function of temperature relative to the corresponding melting point

(Tm). Upon accounting for the differences in melting points, MB-pol provides remarkable agree-

ment with the experimental chemical potential difference, which is reflected in highly accurate

estimates for the heats of fusion of both H2O and D2O ice Ih (see main text).

4.5 Triple points and phase diagrams

From the triple points of the liquid–ice coexistence lines, we iteratively performed additional

Gibbs-Duhem integration calculations to determine all triple points, which are listed in Supple-

mentary Tables 7-9. These additional Gibbs-Duhem integration calculations also allowed us to

determine the entire phase diagrams of water at the classical level with the DNN@MB-pol and

MB-pol potentials, and at the quantum-mechanical level with the MB-pol potential, which are

shown in Figure 2 of the main text.

Specifically, a series ofNPT simulations were carried out to perform the Gibbs-Duhem integration

calculations necessary to trace all coexistence lines. For each thermodynamic state point, theNPT

simulations were carried out until the estimated relative error on the volume per molecule was

0.05%, and the first 20% of each NPT trajectory was disregarded as equilibration time where

the bias potential typically changes rapidly. To reduce the required equilibration time, for each

integration point, we used the final configuration of the previous integration step as the starting
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configuration. For steep coexistence lines in the temperature and pressure plane (i.e., liquid–ice II,

liquid–ice III, liquid–ice V, liquid–ice VI, and ice II–ice III), the integration was carried out over the

pressure using an integration step of 0.0253 GPa. For near-flat coexistence lines in the temperature

and pressure plane (i.e., liquid–ice Ih, ice Ih–ice III, ice Ih–ice II, ice II–ice V, ice II–ice VI, ice

III–ice V, and ice V–ice VI), the integration was instead carried out over the temperature, with an

integration step of 5 K. To draw the coexistence lines between the liquid and each ice polymorph,

we used the average of the Gibbs-Duhem lines calculated from each of the melting points. For

the liquid–ice III coexistence, we used a quadratic polynomial fitted to the four melting points. To

ensure sufficient sampling, which can require several tens of nanoseconds for supercooled water,

we carried out the Gibbs-Duhem simulations with the DNN@MB-pol potential. The validity of

approximating Gibbs-Duhem integration calculations for MB-pol, at both classical and quantum

levels, with analogous calculations carried out with DNN@MB-pol is demonstrated empirically in

Figure 1 of the main text.

Supplementary Table 7: Classical triple points calculated with the DNN@MB-pol potential.

P /GPa T /K
Liq-III-V 0.4706 247.4
Liq-Ih-II 0.1646 243.3
Liq-V-VI 0.6422 257.0
Liq-II-V 0.6325 256.6
Liq-II-VI 0.6375 256.6
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Supplementary Table 8: Classical triple points calculated with the MB-pol potential.

P /GPa T /K
Liq-III-V 0.4326 250.2
Liq-Ih-II 0.1848 244.8
Liq-Ih-III 0.1714 246.7
Liq-V-VI 0.7030 265.2
Liq-II-V 0.5140 255.6
Liq-II-VI 0.6057 256.6
Liq-II-III 0.2506 248.2
Ih-II-III 0.1747 242.7
II-V-VI 0.6664 227.1

Supplementary Table 9: Quantum triple points calculated with the MB-pol.

P /GPa T /K
Liq-III-V 0.4035 249.9
Liq-Ih-II 0.1731 242.1
Liq-Ih-III 0.1437 246.0
Liq-V-VI 0.6748 265.8
Liq-II-V 0.4339 252.2
Liq-II-VI 0.5509 254.1
Liq-II-III 0.3239 249.1
Ih-II-III 0.1519 237.2
II-V-VI 0.6323 216.5
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Supplementary Note 5: Einstein Molecule method & stability of ice III

For proton-disordered ice polymorphs, the Einstein Molecule method relies on Pauling’s expres-

sion for the residual entropy of a crystal to determine the entropic contributions to the free-energy

differences between the liquid and the given proton-disordered ice polymorph. As discussed in

Ref. 73, this approach can straightforwardly be applied to ice polymorphs that present total proton

disorder by simply calculating Pauling’s entropy contributions for a “representative” configura-

tion. For ice polymorphs with partial proton disorder, however, the selection of a “representa-

tive” configuration is nontrivial since the energy of different “representative” configurations varies

significantly, which leads to significantly different free-energy values. In principle, the correct

“representantive” configuration is the configuration that minimizes the associated free energy. In

practice, identifying the correct “representantive” configuration for partially proton-disordered ice

polymorphs is a daunting task to accomplish because determining the minimum free-energy con-

figuration requires extremely long simulations due to the extremely slow transition from one con-

figuration to another. This implies that all calculations of the phase diagram of water performed

with the Einstein Molecule method are not able to correctly account for entropic contributions to

the free energy of partially proton-disordered ice polymorphs.

In contrast, by explicitly simulating the crystallization process, direct-coexistence and enhanced-

coexistence simulations do not rely on any approximations for the entropic contributions associated

with proton disorder. This allows for correctly determining the free-energy difference between liq-

uid water and a given ice polymorph, independently of the extent of proton disorder present in the
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ice polymorph (i.e., direct-coexistence and enhanced-coexistence simulations inherently sample

the relevant regions of the underlying multidimensional free-energy landscape).

The TIP4P/200573, 74 and TIP4P/Ice39, 75 phase diagrams, calculated using both the Einstein Molecule

method and direct-coexistence or enhanced-coexistence simulations, are shown in Figure 28. The
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Supplementary Figure 28: Comparison of phase diagrams from the TIP4P water model
family. a) Classical phase diagram of TIP4P/2005 from Ref. 74 calculated using the Einstein
Molecule method. b) Classical phase diagram of TIP4P/2005 from Ref. 73 calculated using direct-
coexistence simulations. c) Classical phase diagram of TIP4P/Ice from Ref. 75 calculated using
the Einstein Molecule method. d) Classical phase diagram of TIP4P/Ice from Ref. 39 calculated
using direct-coexistence simulations. The phase diagrams that are shown in a), c), and d) were
digitized from the original references. The experimental phase diagram33 is shown in each panel
using a dotted red line.
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comparisons clearly demonstrate that the Einstein Molecule method largely underestimates the re-

gion of stability for ice III, which thus results in an incorrect representation of the actual phase

diagrams for both TIP4P/2005 and TIP4P/ice.

To date, the TIP4PQ/2005 phase diagram has only been calculated at the quantum level using the

Einstein Molecule method.51 Since Figure 28 shows that the Einstein Molecule method underes-

timates the melting points of ice III, we determined the correct melting points of ice III for the

TIP4PQ/2005 model by performing multiple direct-coexistence simulations using the same coex-

istence setup as reported in Ref. 73. Supplementary Figure 29 shows the variation of the potential

energy calculated in liquid–ice III direct-coexistence simulations performed at 0.4 GPa and dif-

ferent temperatures. While there is some stochasticity involved in direct-coexistence simulations,

the time evolution clearly indicates a melting point in the vicinity of ∼280-285 K. In comparison,
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Supplementary Figure 29: Direct-coexistence simulations with TIP4PQ/2005. Variation of
the potential energy per water molecule along liquid water–ice III direct-coexistence simulations
carried out with the TIP4PQ/2005 model.
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the Einstein Molecule method used in Ref. 51 predicts a melting point of ∼256 K at the same

pressure, which is ∼25 K lower than the value obtained from our direct-coexistence simulations.

This difference is consistent with a difference of∼25 K between the melting points calculated with

TIP4P/2005 using the Einstein Molecule method and direct-coexistence simulations. 73 As a con-

sequence, the actual TIP4PQ/2005 phase diagram is expected to display a significantly larger area

of stability for ice III than that originally reported in Ref. 51. For reference, a comparison between

the original phase diagram of water calculated at the quantum level with the TIP4PQ/2005 model

in Ref. 51 and the corresponding MB-pol phase diagram is shown in Supplementary Figure 30.
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Supplementary Figure 30: TIP4PQ/2005 vs. MB-pol. (a) TIP4PQ/2005 phase diagram origi-
nally calculated at the quantum level in Ref. 51 using the Einstein Molecule method. As discussed
in the text, the actual phase diagram of TIP4PQ/2005 is expected to display a significantly larger
area of stability for ice III than that predicted by the Einstein Molecule method. (b) MB-pol phase
diagram calculated at the quantum level in this work using enhanced-coexistence simulations.
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