SUPPORTING MATERIALS

Title:

Non-typeable *Haemophilus influenzae* major outer membrane protein P5 contributes to bacterial membrane stability, and affects the membrane protein composition crucial for interactions with the human host

Authors:

Yu-Ching Su^{1†}, Mahendar Kadari^{1†}, Megan L. Straw¹, Martina Janoušková¹, Sandra Jonsson¹, Oskar Thofte¹, Farshid Jalalvand¹, Erika Matuschek², Linda Sandblad³, Ákos Végvári⁴, Roman A. Zubarev⁴, and Kristian Riesbeck^{1*}

¹Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Jan Waldenströms gata 59, SE-205 02 Malmö, Sweden.

²EUCAST Development Laboratory, c/o Clinical Microbiology, Central Hospital, SE-351 85 Växjö, Sweden.

³Department of Chemistry and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden.

⁴Proteomics Biomedicum, Division of Physiological Chemistry I, Department of Medical Biochemistry & Biophysics (MBB), Karolinska Institute, Stockholm, 171 65, Sweden.

[†]These authors contributed equally.

*CORRESPONDENCE

Kristian Riesbeck

Email: kristian.riesbeck@med.lu.se

Article type: Brief Research Report

SUPPORTING TABLES

Bacterial strain ^{a, b}	Description/ genotype ^c	Reference
NTHi 3655	Otitis media clinical isolate from a 10-year-old child.	Musser et al., 1986
NTHi 3655∆ <i>р5</i>	Cm^{R} . Isogenic <i>p5</i> deletion mutant of NTHi 3655 by <i>cat</i> replacement. The strain is lack of P5 expression.	Thofte et al., 2021
NTHi 3655∆ <i>р5^{СТD}</i>	Cm ^R . Isogenic mutant of NTHi 3655. The $p5^{CTD}$ is replaced by <i>cat</i> . The mutant expresses CTD-truncated P5.	This study
NTHi 3655∆ <i>p5∷p5</i>	Zeo ^R . $p5$ -trans-complemented isogenic mutant of NTHi 3655 $\Delta p5$. The strain has a restored P5 expression as detected by SDS-PAGE and western blotting.	This study
<i>E. coli</i> DH5α	Used for general cloning and maintenance of plasmids.	
E. coli BL21 (DE3)	Used for protein expression upon induction with IPTG.	
E. coli-pET26b	Kan ^R . <i>E. coli</i> BL21 (DE3) bearing the empty vector pET-26b.	
E. coli-P4	Kan ^R . <i>E. coli</i> BL21 (DE3) bearing recombinant plasmid of pET26(b)+ with <i>hel</i> ORF (NTHi 3655) insert. The clone expresses His-tagged P4.	Su et al., 2016
E. coli-P5 ^{CTD}	Kan ^R . <i>E. coli</i> BL21 (DE3) bearing recombinant plasmid of pET26(b)+ with $p5^{CTD}$ ORF (NTHi 3655) insert. The clone expresses His-tagged CTD- deleted P5.	This study
E. coli-P6	Kan ^R . <i>E. coli</i> BL21 (DE3) bearing recombinant plasmid of pET26(b)+ with $p6$ ORF (NTHi 3655) insert. The clone expresses His-tagged P6.	Su et al., 2019

TABLE S1: List of bacterial strains used in this study.

^a Non-typeable *Haemophilus influenzae* (NTHi) wild type and mutant strains were grown on chocolate agar or cultured in brain heart infusion (BHI) broth supplemented with NAD (Sigma-Aldrich) and hemin (Merck, Darmstadt, Germany) each at 10 μ g/mL at 37°C in a humid atmosphere containing 5% CO₂.

^b Escherichia coli (E. coli) strains were grown in Luria-Bertani agar or media at 37°C.

^c Concentrations of antibiotics used: 10 µg/ml Cm; 50 µg/ml Kan; 4 µg/ml Zeo. Cm, chloramphenicol; Kan, kanamycin; Zeo, zeocin; ^R, Resistant.

Table S2. List of primers used.

Primer	Sequence 5'-3'	Amplicon ^d					
Construction of the <i>p5^{CTD}</i> -deletion and <i>p5</i> -transcomplemented mutant							
KR-1_forward ^a KR-2_reverse	CGCTGTTATCCGTAGCCAGACTTAATCTATCCGAATAAT TTGTTG GAAGAAAAAAGTTCAATTTATTATTCAGGTGCTGCAACA ACTGGTGC	Fragment A: upstream region of $p5$, and $p5$ gene (nt 1-696) lacking the CTD (nt 697-1080). 3' end of the amplicon overlapped with the 5'sequence of <i>cat</i>					
	herosise	overtapped with the 5 sequence of <i>cut</i> .					
KR-3_forward	GTTGTTGCAGCACCTGAATAATAAATTGAACTTTTTCTT CATCAG	Fragment ρ_{omp26} -cat: ORF of cat. 5' end of the amplicon overlapped with the					
KR-4_reverse	GTTAAACGAATACTAAAATTACGCCCCGCCCTGCCACTC ATCG	3'sequence of $p5$ (nt 1-696) that lack of CTD. The 3' end of amplicon overlapped with the 5' sequence of the downstream region of $p5$.					
KR-5_forward	GGCAGGGCGGGGGGGGGTAATTTTAGTATTCGTTTAACGAAA G	Fragment B: downstream flanking region of <i>p5</i> . 5' end of the amplicon overlapped					
KR-6_reverse ^a	CTATGGCTTGGCAGGTTTACGCATTGGTTATGCGGTATC TAATCC	with 3'sequence of <i>cat</i> .					
KR-7_reverse	GACCACCATTTGCCCCCATATTTATTTAGTACCGTTTACCG CGATTTC	Paired with KR-1_forward to amplify the upstream region of <i>p5</i> , and <i>p5</i> gene. The amplicon is labelled as Fragment D. 3' end of the amplicon overlapped with 5' sequence of <i>ble</i> O.					
KR-8_forward	CGGTAAACGGTACTAAATAAATATGGGGGCAAATGGTGG TCACCATCC	Fragment ρ_{blaTEM} -bleO: complete ORF of bleO. 5' end of the amplicon overlapped					

	KR-9_reverse	CCAGTGATTTTTTTTTTCTCTCAGTCCTGCTCCTCGGCCACGA AGTG	with the 3' end sequence of $p5$. 3' end of the amplicon overlapped with the 5'sequence of <i>cat</i> (that lack of promoter and ATG).			
	KR-10_reverse	CCGAGGAGCAGGACTGAGAGAAAAAAATCACTGGATAT ACCACCG	Paired with KR-6_reverse to amplify truncated ORF of <i>cat</i> (lack of promoter and ATG) and the downstream flanking region of $p5$. The yielded amplicon is labelled as Fragment E. 3' end of the amplicon overlapped with 3' end sequence of <i>ble</i> O.			
Cloning of full-length and P5 ^{CTD} fragments into pET26b						
	KR-11_forward ^b	CGGC <u>GGATCCG</u> ATGGTAAGCAAAACTTTCAG	Complete ORF of $p5^{\text{CTD}}$ (M233-K359)			
	KR-12_reverse ^c	CCCCAAGCTTTTAGTACCGTTTACCGCGA				

^a The primer pair were used to generate linear DNA as a mutation vector in knocking out $p5^{CTD}$ and p5 transcomplementation in NTHi 3655 and NTHi 3655 $\Delta p5$, respectively.

^{b, c} Restriction enzyme cutting sites are underlined. ^b*Bam*HI, ^c*Hind*III

^d Amplicon labelling is based on description in Figure S1.

	ConDonk		NTHi 3655	wild type	NTHi 3655∆p Abundance ^d Ran (grouped) abun	655Δ <i>p5</i>
Locus tag ^a	accession number	Protein description ^{b, c}	Abundance ^d (grouped)	Ranking of relative abundance ^c		Ranking of relative abundance ^c
CGSHi3655_06069	EDJ92910	Outer membrane protein P5	63273540915	1	n.d.	-
CGSHi3655_08469	EDJ92095	Elongation factor Tu	22560309347	2	6328607399	6
CGSHi3655_04579	EDJ92235	Lipoprotein E (P4)	20203504544	3	9058056604	4
CGSHi3655_05074	EDJ92441	Elongation factor G	16421155426	4	9403018225	2
CGSHi3655_06999	EDJ93618	D-galactose-binding periplasmic protein	15436745601	5	4480807308	12
CGSHi3655_05494	EDJ92795	HMW1B, OMP-85-like protein required	13939232618	6	4909453976	11
		for secretion of HMW1A and HMW2A				
CGSHi3655_02399	EDJ93375	Peptidoglycan-associated protein (P6)	12354893925	7	6029515187	7
CGSHi3655_06394	EDJ92975	Cysteine synthase	11677252146	8	1445383519	31
CGSHi3655_07569	EDJ93732	Outer membrane protein assembly factor	11322736675	9	4379086597	13
		BamA				
CGSHi3655_05044	EDJ92435	2',3'-cyclic nucleotide 2'-	10245205879	10	2282686411	20
		phosphodiesterase/3'-nucleotidase				
		bifunctional periplasmic protein				
CGSHi3655_07554	EDJ93729	Elongation factor Ts	10194083052	11	5326075349	9
CGSHi3655_04549	EDJ92229	Glycerophosphoryl diester	8796305964	12	9214407784	3
		phosphodiesterase (PD)				
CGSHi3655_07564	EDJ93731	Outer membrane protein 26	8754998794	13	1024683915	50
CGSHi3655_03601	EDJ92719	Periplasmic serine endoprotease DegP-like	8753653475	14	375812250,7	109
CGSHi3655_05489	EDJ92794	HMW2A, high molecular weight adhesin 2	8737357155	15	591026186,1	76
CGSHi3655_04941	EDJ92418	Outer membrane protein assembly factor	7153998442	16	1187515572	39
		BamD				

Table S3: Label free proteomic analysis for comparison of relative abundance of membrane proteins between NTHi 3655 and NTHi $3655\Delta p5$ with focus on the first 50 most abundance proteins identified in the wild type and some other important virulent factors.

CGSHi3655_04450	EDJ92617	L-lactate dehydrogenase	7021859704	17	1789411336	25
CGSHi3655_05279	EDJ92482	Chaperonin GroEL	6685334173	18	3114618508	15
CGSHi3655_01874	EDJ93270	Uridine phosphorylase	6543015797	19	2180182518	22
CGSHi3655_01709	EDJ93237	Excinuclease ABC subunit A	6019392563	20	1560470448	27
CGSHi3655_01201	EDJ92152	MetQ/NlpA family lipoprotein	5994694377	21	6650014269	5
CGSHi3655_05369	EDJ92500	Phosphoglycerate kinase	5586139195	22	2473946498	19
CGSHi3655_05664	EDJ92829	Putative ABC-type Co2+ transport system,	5540286273	23	1201029652	38
		periplasmic component				
CGSHi3655_06269	EDJ92950	Oligopeptide ABC transporter substrate-	5319394999	24	688716870,2	66
		binding protein OppA				
CGSHi3655_04706	EDJ92371	High-affinity zinc uptake system protein	4909379862	25	2793166523	16
		ZnuA				
CGSHi3655_03836	EDJ92766	Penicillin-binding protein activator LpoA	4823698873	26	1338065089	33
CGSHi3655_00570	EDJ92186	NAD nucleotidase	4704096353	27	5439999029	8
CGSHi3655_08691	EDJ92991	hypothetical protein	4145406674	28	2591290365	18
CGSHi3655_02404	EDJ93376	Tol-Pal system protein TolB	3897001650	29	1138781908	44
CGSHi3655_04816	EDJ92393	Sialic acid-binding periplasmic protein SiaP	3734750382	30	1899973049	24
CGSHi3655_02879	EDJ93471	Putative peptidyl-prolyl cis-trans isomerase	3679725016	31	753851102,3	63
		SurA				
CGSHi3655_08696	EDJ92992	TolC family protein	3592711694	32	1528967870	28
CGSHi3655_07154	EDJ93649	Heme-binding lipoprotein A	3517846202	33	1694747309	26
CGSHi3655_04781	EDJ92386	Outer membrane protein P2	3387090222	34	67955891362	1
CGSHi3655_09651	EDJ93183	Pyruvate kinase	3381401103	35	1264870880	35
CGSHi3655_03731	EDJ92745	Dihydrolipoyl dehydrogenase ProA	3359720363	36	2277343226	21
CGSHi3655_06264	EDJ92949	Transaldolase	3025891987	37	479268613,8	88
CGSHi3655_08314	EDJ93881	Amino acid ABC transporter-binding protein	2982221337	38	1087664607	49
CGSHi3655_00986	EDJ92330	5-methyltetrahydropteroyltriglutamate	2835397047	39	1116048797	46
		homocysteine methyltransferase MetE				

CGSHi3655_058	04 EDJ92857	TonB-dependent receptor	2736273449	40	2632016223	17
CGSHi3655_069.	34 EDJ93605	Phosphoenolpyruvate carboxykinase (ATP)	2708640725	41	1105107534	47
CGSHi3655_0372	21 EDJ92743	Pyruvate dehydrogenase E1 component	2678334158	42	1231110748	36
CGSHi3655_008	71 EDJ92307	UPF0319 protein	2664344595	43	605240104,3	75
CGSHi3655_0209	99 EDJ93315	AspartatetRNA ligase	2583121050	44	1136744244	45
CGSHi3655_017	14 EDJ93238	Adhesion and penetration protein	2535701286	45	382770496,2	104
		autotransporter (Hap)				
CGSHi3655_088	81 EDJ93029	DUF4198 domain-containing protein	2523546907	46	1012219900	52
CGSHi3655_0664	44 EDJ93547	2,3-bisphosphoglycerate-dependent	2518737292	47	1224549133	37
		phosphoglycerate mutase				
CGSHi3655_083	59 EDJ93890	Superoxide dismutase	2486297747	48	522943169,8	86
CGSHi3655_078.	34 EDJ93785	IsoleucinetRNA ligase	2482204444	49	2060506122	23
CGSHi3655_0689	99 EDJ93598	DNA-directed RNA polymerase subunit alpha	2448770522	50	998807096,6	53
		RpoA				
CGSHi3655_0069	90 EDJ92210	IgA-specific metalloendopeptidase	1947199498	60	377111850	107
CGSHi3655_014	12 EDJ92275	Iron-utilization periplasmic protein (FbpA)	1907680017	61	431354774,4	94
CGSHi3655_0249	99 EDJ93395	Outer membrane protein P1	1823558206	63	4931102179	10
CGSHi3655_0022	20 EDJ91974	HMW1A, high molecular weight adhesin 1	1397988164	77	132175165,5	181
CGSHi3655_023	09 EDJ93357	Putative metal ABC transporter substrate-	1390388270	78	1471424118	30
		binding protein Hpf (PF)				
CGSHi3655_017:	54 EDJ93246	Outer membrane protein assembly factor	1112081052	89	208789176,3	146
		BamC homolog				
CGSHi3655_070	79 EDJ93634	Outer membrane protein assembly factor	1109128392	90	380033207,3	106
		BamE				
CGSHi3655_080.	34 EDJ93825	Periplasmic chaperone PpiD	1091387249	91	175981229,2	158
CGSHi3655_0072	24 EDJ92122	Putative phospholipid-binding lipoprotein	764456279,3	116	544954934,5	83
		MlaA (VacJ lipoprotein)				

CGSHi3655_09751	EDJ93203	Outer-membrane lipoprotein carrier protein	734889130,3	119	872556046,1	58
		LolA				
CGSHi3655_03980	EDJ91973	HMW2A, high molecular weight adhesin 2	644855575,3	130	158420187	169
CGSHi3655_07159	EDJ93650	Putative heme iron utilization protein	532735594,6	153	408338555,3	99
CGSHi3655_04936	EDJ92417	Surface-adhesin protein E (PE)	446304219,8	164	267039998,1	127
CGSHi3655_01624	EDJ93220	Lipoprotein NlpI	424601766,4	170	62492455,21	245
CGSHi3655_00754	EDJ92128	Hemoglobin-haptoglobin binding protein B	115684374	342	107814220,6	200
		(HgpB)				
CGSHi3655_06234	EDJ92943	Peptidoglycan D,D-transpeptidase FtsI	112308129,9	346	152716521	170
		(PBP3)				
CGSHi3655_02684	EDJ93432	Penicillin-binding protein 1A (PBP1A)	92931801,31	375	n.d.	-
CGSHi3655_07474	EDJ93713	Multidrug resistance protein A	89552839,03	381	n.d.	-
CGSHi3655_01794	EDJ93254	Heme/hemopexin-binding protein A (HxuA)	69316855,02	425	13519913,15	383
CGSHi3655_04260	EDJ92579	Serine-type D-Ala-D-Ala carboxypeptidase	68766358,72	427	3009893,808	490
		(PBP5)				
CGSHi3655_05499	EDJ92796	HMW2C, putative glycosyltransferase	61910223,84	451	n.d.	-
		involved in glycosylation of HMW1A and				
		HMW2A				

^a Locus tag is based on the genomic annotation of NTHi 3655 at GenBank (NCBI Reference sequence: NZ_AAZF0000000.1).

^b Proteins that were mentioned and discussed in the main text are highlighted in bold font.

^c Identified proteins are ordered by their relative abundance on their first identification in NTHi 3655 wild type. -, no information.

^d Protein abundance was calculated from the sum of all unique normalised peptide ion abundances for a specific protein on each run; data represent the grouped abundance from three replicate samples. n.d., not detected.

SUPPORTING METHODOLOGY

Sample Preparation for Proteomic Analysis

Three replicates of membrane fraction sample from NTHi wild-type and mutant, in 130 µl of 100 mM Tris-HCl, pH 8.2, with protease inhibitors were supplemented with 20 µl of 8M urea in 50 mM Tris-HCl, pH 8.2 and sonicated in a water bath for 5 min. Then 20 µl of 1% ProteaseMAX in 10% acetonitrile (AcN)/50 mM Tris-HCl buffer was added before samples were sonicated in a water bath for 5 min and using a probe (a VibraCell probe (Sonics & Materials) at 2/2 s pulse with 40% amp for 1 min. Samples were transferred to a new sample tube and protein concentrations were determined by Pierce Micro BCA assay (ThermoFisher Scientific). Equal amounts (30 µg) of proteins were taken and normalized to a buffer volume of 70 µl with 50 mM Tris-HCl. Samples were reduced with 6 µl of 100 mM dithiothreitol in 50 mM Tris-HCl and incubated at 37°C for 45 min followed by alkylation with 16 µl of 100 mM iodoaceteamide in 50 mM Tris-HCl incubated at room temperature (RT) for 30 min. Proteolytic digestion was performed with addition of 5 μ l of 0.1 μ g/ μ l sequencing grade trypsin (Promega), maintaining 1:50 ratio of enzyme:protein, incubating at 37°C overnight (16 hours). Digestion was stopped by adding 6 µl of cc. formic acid (FA) before samples were cleaned on HyperSep C-18 plate with 40 µl bed volume (Thermo Fisher Scientific) using the manufacturer's instructions. Eluted peptides were dried on a vacuum concentrator (Eppendorf).

LC-MS/MS Data Acquisition and Data Analysis

Peptides reconstituted in solvent A (2% AcN/0.1% FA) were analyzed on an Ultimate 3000 UHPLC (Thermo Fisher Scientific) hyphenated to an OrbitrapTM LumosTM mass spectrometer (Thermo Fisher Scientific, USA). Peptides were loaded in an Acclaim PepMap trap column, 2 μ m x 75 μ m ID x 2 cm (ThermoFisher Scientific) and separated in an EASY-SprayTM HPLC column, 2 μ m x 75 μ m ID x 50 cm (Thermo Fisher Scientific) using a 90 min linear gradient. Data was acquired in data dependent acquisition (DDA) mode, isolating precursors at 120,000 mass resolution in the mass range of m/z 375 – 1500 in 3 s cycle time. The maximum injection time (IT) of 50 ms and dynamic exclusion of 30 s, precursors were isolated with 0.7 Th width. Tandem mass spectra were obtained using high collision energy of 28%, resolution of 15,000 and maximum IT of 22 ms.

Proteins were searched against UniProt *H. influenzae* (375177) database using the search engine Mascot Server v2.5.1 (MatrixScience) in Proteome Discoverer v2.5 software (Thermo Fisher Scientific) environment allowing maximum two missed cleavages for trypsin. Oxidation of methionine, deamidation of asparagine and glutamine were set as variable modifications, while carbamidomethylation of cysteine was used as fixed modification. The false discovery rate (FDR) was set to 1%.

SUPPORTING FIGURES

Figure S1: Schematic presentation of the construction of p5^{CTD}-knockout and p5transcomplemented mutants in NTHi 3655. (A) p5^{CTD}-deletion in NTHi 3655 chromosome. Upper panel represents the loci map of p5 (locus tag CGSHi3655 06069 (GenBank number: EDJ92910)) in NTHi 3655. p5 gene is flanked by CGSHi3655 06074 at upstream and, CGSHi3655 06064 and CGSHi3655 06059 at downstream. Open reading frame (ORF) of CTD of P5 (p5^{CTD}) is located at nucleotide (nt) 697-1080 in p5 gene. Lower panel indicates the genetic map of NTHi 3655 $\Delta p5^{CTD}$. To knockout $p5^{CTD}$, the upstream (labelled as Fragment A, 1244 bp) and downstream (Fragment B, 997 bp) flanking regions of the p5^{CTD} were amplified by PCR from NTHi 3655 genomic DNA using specific primer listed in Table S2. Fragment A consists of partial 5' end of CGSHi3655 06074, promoter p5 (ρ_{p5}) and 5' part of p5 ORF (nucleotide 1-696)). Fragment B contain CGSHi3655 06064 and partial 3' end of CGSHi3655 06059. Of note, an additional stop codon (TAA) was added at the 3' end of the partial ORF of p5 (nucleotide 1-696+TAA) to ensure the expression of P5 lacking CTD. The ORF of antibiotic resistance genes of chloramphenicol acetyltransferase (cat) (AY219687.1) was amplified from our in-house designed synthetic plasmid pUC-pomp26-Cm (GenScript) using specific primers (Table S2). Transcription of *cat* was driven by promoter (ρ_{omp26}) of *omp26* (CGSHi3655 07564) of NTHi 3655. The pomp26-cat (806 bp) was then fused to Fragment B by overlapping PCR to create Fragment C (1760 bp). Overlapping PCR was performed to combine Fragment A and C and generate a linear $p5^{CTD}$ -knockout vector (2958 bp). The linear DNA vector was transformed into NTHi 3655 wild type to replace the $p5^{\text{CTD}}$ (nt 697-1080) with pomp26-cat while retaining the ORF of the remaining transmembrane and extracellular loops of P5 (nt 1-696+stop codon), yielding NTHi $3655\Delta p5^{CTD}$ mutant. (B) Transcomplementation of p5 into NTHi 3655 $\Delta p5$. Upper panel represents the loci map of p5-knockout mutant. Lower panel shows the genetic map of transcomplemented-p5 into $\Delta p5$ background mutant. For p5

transcomplementation, DNA fragment (labelled as Fragment D (1620 bp)) (consists of partial 5' end of CGSHi3655 06074, promoter p5 (ρ_{p5}) and full ORF of p5 (nucleotide 1-1080)) was first amplified from NTHi 3655 wild type genomic DNA with specific primers listed in Table S2. Second DNA fragment (Fragment E (1656 bp)) (consists of partial ORF of cat, CGSHi3655 06064 and partial 3' end of CGSHi3655 06059) was amplified from the genomic DNA of NTHi 3655 $\Delta p5$ mutant. Of note, the ORF of *cat* in Fragment E is no longer functional because it did not have promoter and start codon. The ORF of phleomycin/zeocin-binding protein (bleO) (MT445781.1) was amplified from our in-house designed synthetic plasmid pUC- ρ_{blaTEM} -Zeo (GenScript) with specific primers (Table S2). Here the promoter (ρ_{blaTEM}) of β-lactamase TEM of NTHi 86-028NP (ABU87507.1) was used to transcribe bleO. The resulting PCR product of ρ_{blaTEM} -bleO (716 bp) was then fused to Fragment E in the order of 5' to 3' to form Fragment F (2328 bp) by overlapping PCR. Finally, overlapping PCRs were performed to combine Fragment D and F to generate a linear p5-transcomplemented vector. The DNA vector was lastly transformed into NTHi 3655 $\Delta p5$ to disrupt the *cat* ORF and replaced with the complete ORF of p5 with it's endogenous promoter (ρ_{p5}), generating a p5transcomplemented mutant, NTHi $3655 \Delta p5$.: p5. For panel A and B, transformation of linear vectors into NTHi 3655 wild type and $\Delta p5$ was carried out according to the procedure of Poje and Redfield (2003). p5^{CTD}-knockout and p5-transcomplemented mutants were selected on chocolate agar containing Cm (10 µg/mL) and Zeo (4 µg/mL), respectively. All mutants were characterized and confirmed by DNA sequencing and growth curve analysis. SDS-PAGE, western blotting and flow cytometry were also performed for detection of P5 with rabbit anti-P5^{loop3} polyclonal antibody (pAb) (Genscript, Piscataway, NJ) (Thofte et al., 2021).

Figure S2: Sequence analysis reveals the presence of OmpA-like domain at the C-terminal (CTD) of P5. (A) Full length sequence alignment between P5 of NTHi 3655 (GenBank accession number: EDJ92910) and OmpA from E. coli (P0A910) and Acinetobacter baumannii (Q6RYW5). Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) was used to perform multiple sequence alignment. We used OmpA of E. coli and A. baumannii as the protein models for P5 since these two proteins are the most well studied OmpA-like family proteins at the molecular and structural levels (Park et al., 2012; Samsudin et al., 2016). Full length P5 of NTHi 3655 shared 46.8% and 57.9% of sequence identity and similarity with the whole molecule of OmpA from E. coli, respective; and 25.1% and 37.6% of sequence identity and similarity with OmpA of A. baumannii, respectively. Conserved residues are in pink shading, and similar residues are in grey shading, which are more apparent within the OmpA-like domain (blue box). Green and orange arrows indicate two key residues D283 and R298 (residue number based on P5 protein sequence) that are essential in peptidoglycan binding. Red line indicates region that form contact with the inner leaflet of outer membrane (OM). (B) Sequence homology of "inner leaflet of OM"-binding region (A313 and A343) between E. coli OmpA of and NTHi P5. Interestingly, region between A313 and A343 of P5 shared reasonable sequence similarity (74.2%) with the OM-binding surface of OmpA. This suggests the

possibility of CTD of P5 to interact with lipid group of the inner leaflet of OM as observed for *E. coli* OmpA.

Figure S3. NTHi growth and cellular morphology in response to genetical deletion of $p5^{\text{CTD}}$ or entire *p5* and *p5* transcomplentation. (A) Bacterial growth curves based on absorbance at 600 nm. Briefly, bacterial suspensions were prepared from fresh colonies and adjusted to $OD_{600}=0.05$ in brain heart infusion (BHI) broth supplemented with 10 µl/ml of each NAD and hemin. The bacterial suspension (100 µl) was loaded in triplicates into 96-well plates and sealed

with Breath easy seal (DiversifieD Biotech, Dedham, WA). Plate was measured using TECAN SparkControlTM multimode plate reader (Tecan, Switzerland) with the setting of 15 min interval reads for 24 hours at 37°C, 5 % CO2, and orbital shaking (1 mm amplitude). Data were analysed using SPARK Control software Version v 3.1 SP1. Data shown is a representative experiment from three independent repeated experiments. Data represent mean values of three technical replicates derived from one representative experiment. Error bars indicate standard deviations. NTHi 3655 $\Delta p5$ and $\Delta p5^{CTD}$ mutants, as well as $\Delta p5$::p5 did not exhibit growth defect compared to the NTHi 3655 wild type rather a slight faster growth rate was observed among the mutants. (B) Visualization of bacterial cellular morphology by transmission electron microscope (TEM). TEM analysis were repeated three times and images from one representative analysis were shown. We did not observe any apparent changes in cell shapes and cell envelopes between the NTHi 3655 wild type, the isogenic mutants (NTHi 3655 $\Delta p5$ and $\Delta p 5^{CTD}$) and the transcomplemented mutant (NTHi 3655 $\Delta p 5$:: p5). The procedure for TEM was as described in (Thofte et al., 2021). Briefly, for TEM sample preparation, bacteria colonies were picked from the plate, fixated in 2.5% glutaraldehyde phosphate buffer and treated with 1% OsO4. Samples were washed and further dehydrated in an ethanol gradient series, and then infiltrated with increasing concentrations of LR white resin in ethanol (1:3, 1:1, 3:1) and added with 100% resin. The infiltration steps were performed with PELCO BioWave (Ted Pella). Samples were polymerized overnight at 65°C, sectioned to ultrathin 70 nm ribbons using Ultracut S ultramicrotome (Leica Microsystems) with a diamond knife (Diatome), placed on formvar coated cupper grids and contrasted with uranyl acetate and lead citrate. The samples were examined with a FEI Talos L120 TEM (Thermo Fisher Scientific). Micrograph images were acquired with FEI Ceta CMOS detector (Thermo Fisher Scientific) with 16k pixels. Electron microscopy preparation and analysis were carried out at Umeå Centre for Electron Microscopy (UCEM) at Umeå university (Sweden). A scale bar indicating 1 µm is inserted into all images.

REFERENCES

- Musser, J.M., Barenkamp, S.J., Granoff, D.M., and Selander, R.K. (1986). Genetic relationships of serologically nontypable and serotype b strains of *Haemophilus influenzae*. *Infect Immun* 52(1), 183-191. doi: 10.1128/iai.52.1.183-191.1986.
- Park, J.S., Lee, W.C., Yeo, K.J., Ryu, K.S., Kumarasiri, M., Hesek, D., et al. (2012). Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the gramnegative bacterial outer membrane. *FASEB J* 26(1), 219-228. doi: 10.1096/fj.11-188425.
- Poje, G., and Redfield, R.J. (2003). Transformation of *Haemophilus influenzae*. *Methods Mol Med* 71, 57-70. doi: 10.1385/1-59259-321-6:57.
- Samsudin, F., Ortiz-Suarez, M.L., Piggot, T.J., Bond, P.J., and Khalid, S. (2016). OmpA: A Flexible Clamp for Bacterial Cell Wall Attachment. *Structure* 24(12), 2227-2235. doi: 10.1016/j.str.2016.10.009.
- Su, Y.C., Mattsson, E., Singh, B., Jalalvand, F., Murphy, T.F., and Riesbeck, K. (2019). The Laminin Interactome: A Multifactorial Laminin-Binding Strategy by Nontypeable *Haemophilus influenzae* for Effective Adherence and Colonization. *J Infect Dis* 220(6), 1049-1060. doi: 10.1093/infdis/jiz217.

- Su, Y.C., Mukherjee, O., Singh, B., Hallgren, O., Westergren-Thorsson, G., Hood, D., et al. (2016). *Haemophilus influenzae* P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance. *J Infect Dis* 213(2), 314-323. doi: 10.1093/infdis/jiv374.
- Thofte, O., Bettoni, S., Su, Y.C., Thegerstrom, J., Jonsson, S., Mattsson, E., et al. (2021). Nontypeable *Haemophilus influenzae* P5 Binds Human C4b-Binding Protein, Promoting Serum Resistance. *J Immunol* 207(6), 1566-1577. doi: 10.4049/jimmunol.2100105.